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Abstract

This paper addresses the dimensional synthesis of parallel kinematics machines. A multiobjective optimization
problem is proposed in order to determine optimum structural and geometric parameters of parallel manipulators.
The proposed approach is applied to the optimum design of a three-degree-of-freedom planar parallel manipulator
in order to minimize the mass of the mechanism in motion and to maximize its regular shaped workspace.
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1 INTRODUCTION

The design of parallel kinematics machines is a com-
plex subject. The fundamental problem is that their
performance heavily depends on their geometry [1]
and the mutual dependency of almost all the perfor-
mance measures. This makes the problem computa-
tionally complex and yields the traditional solution
approaches inefficient. As reported in [2], since the
performance of a parallel manipulator depends on its
dimensions, the latter depend on the manipulator ap-
plication(s). Furthermore, numerous design aspects
contribute to the Parallel Kinematics Machine (PKM)
performance and an efficient design will be one that
takes into account all or most of these design aspects.
This is an iterative process and an efficient design re-
quires a lot of computational efforts and capabilities
for mapping design parameters into design criteria,
and hence turning out with a multiobjective design
optimization problem. Indeed, the optimal geometric
parameters of a PKM can be determined by means
of a the resolution of a multiobjective optimization
problem. The solutions of such a problem are non-
dominated solutions, also called Pareto-optimal solu-
tions. Therefore, design optimization of parallel mech-
anisms is a key issue for their development.

Several researchers have focused on the optimiza-
tion problem of parallel mechanisms the last few
years. They have come up either with mono- or
multi-objective design optimization problems. For
instance, Lou et al. presented a general approach
for the optimal design of parallel manipulators to
maximize the volume of an effective regular-shaped
workspace while subject to constraints on their dex-
terity [3, 4]. Hay and Snyman [1] considered the
optimal design of parallel manipulators to obtain a
prescribed workspace, whereas Ottaviano and Cecca-
relli [5, 6] proposed a formulation for the optimum
design of 3-Degree-Of-Freedom (DOF) spatial paral-
lel manipulators for given position and orientation
workspaces. They based their study on the static

analysis and the singularity loci of a manipulator in
order to optimize the geometric design of the Tsai ma-
nipulator for a given free from singularity workspace.
Hao and Merlet [7] discussed a multi-criterion optimal
design methodology based on interval analysis to de-
termine the possible geometric parameters satisfying
two compulsory requirements of the workspace and
accuracy. Similarly, Ceccarelli et al. [8] dealt with the
multi-criterion optimum design of both parallel and
serial manipulators with the focus on the workspace
aspects, singularity and stiffness properties. Gosselin
and Angeles [9, 10] analyzed the design of a 3-DOF
planar and a 3-DOF spherical parallel manipulators
by maximizing their workspace volume while paying
attention to their dexterity. Pham and Chen [11] sug-
gested maximizing the workspace of a parallel flex-
ure mechanism with the constraints on a global and
uniformity measure of manipulability. Stamper et
al. [12] used the global conditioning index based on
the integral of the inverse condition number of the
kinematic Jacobian matrix over the workspace in or-
der to optimize a spatial 3-DOF translational par-
allel manipulator. Stock and Miller [13] formulated
a weighted sum multi-criterion optimization problem
with manipulability and workspace as two objective
functions. Menon et al. [14] used the maximization
of the first natural frequency as an objective func-
tion for the geometrical optimization of the parallel
mechanisms. Similarly, Li et al. [15] proposed dy-
namics and elastodynamics optimization of a 2-DOF
planar parallel robot to improve the dynamic accu-
racy of the mechanism. They proposed a dynamic
index to identify the range of natural frequency with
different configurations. Krefft [16] also formulated
a multi-criterion elastodynamic optimization problem
for parallel mechanisms while considering workspace,
velocity transmission, inertia, stiffness and the first
natural frequency as optimization objectives. Chab-
lat and Wenger [17] proposed an analytical approach
for the architectural optimization of a 3-DOF transla-



tional parallel mechanism, named Orthoglide 3-axis,
based on prescribed kinetostatic performance to be
satisfied in a given Cartesian workspace.

Most of the foregoing research works aimed to improve
the mechanisms’ performance throughout their whole
workspace. In this paper, the mechanisms’ perfor-
mance are improved over a regular shaped workspace
that is defined based on the specifications. As a re-
sult, we propose a methodology to deal with the mul-
tiobjective design optimization of PKMs. The size of
the regular shaped workspace and the mass in motion
of the mechanism are the objective functions of the
optimization problem. Its constraints are determined
based on the mechanism accuracy, assembly and the
conditioning number of its kinematic Jacobian ma-
trix. The proposed approach is highlighted with the
optimal design of a 3-DOF Planar Parallel Manipula-
tor (PPM). The non-dominated solutions, also called
Pareto-optimal solutions, are obtained by means of a
genetic algorithm.

2 3-PRR PLANAR PARALLEL MANIPU-

LATORS

Planar parallel manipulators are distinguished by the
fact that all their components and corresponding mo-
tions, including their end-effector, generate planar mo-
tions. Their architecture is simple and they are usu-
ally simple to control. They can find many appli-
cations in planar motions that require high dynam-
ics. Their weakness is their difficulty to carry out a
large payload whose the weight is normal to the plane
of motion. 3-DOF PPMs are classified in families,
namely, the 3–RRR, 3–RPR, 3–PRR and 3–PPP
PPMs where R and P stand for revolute and prismatic
joints, respectively. Those families are described in [2].
In the scope of this paper, we focus on the optimum
design of 3–PPP PPMs , where P denotes an actu-
ated prismatic joint. However, the proposed approach
can be applied to any type of PPM.

2.1 Manipulator architecture

A 3-DOF PPM with three identical chains is shown
in Fig. 1. Each kinematic chain is of PRR-type and
consists of one actuated prismatic joint, P ; two rev-
olute joints, R; and two links. This 3-PRR manip-
ulator is intended to position and orient the equilat-
eral triangle-shaped platform C1C2C3 in the plane of
motion. The geometric center of platform C1C2C3,
denoted by P , is the operation point of the manipula-
tor. The displacements of the three prismatic joints,
i.e., ρ1, ρ2 and ρ3, are the input variables whereas the
Cartesian coordinates of point P , i.e., xp and yp, and
the orientation φ of the platform are the output vari-
ables. The base-platform of the manipulator is also an
equilateral triangle with vertices A1, A2 and A3, point
O is its geometric center and the origin of the refer-
ence frame. The prismatic actuators are aligned to its
sides and are attached to points Ai (i = 1, 2, 3) with
orientation angles α1, α2 and α3 being equal to 0◦,
120◦ and 240◦, respectively. Here are the parameters
describing the manipulator geometry:

• R: radius of the circumscribed circle of triangle
A1A2A3 of center O, i.e., R=OAi;

• r: radius of the circumscribed circle of triangle
C1C2C3 of center P , i.e., r=PCi;

• Lb: the length of the intermediate links, i.e., Lb =
BiCi;

• rj : the cross-section radius of the intermediate link;

• rp: the cross-section radius of the moving platform
link.
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Figure 1: 3–PRR planar parallel manipulator

2.2 Kinematic modeling of the 3-PRR PPM

Knowing the geometric parameters of the mechanism,
i.e., R, r and Lb, its Inverse Kinematics Model (IKM)
gives the relation between the actuators displacements
ρi and the moving platform pose, i.e., xp, yp and φ:

ρ = f (xp) (1)

with

ρ =
[

ρ1 ρ2 ρ3
]T

(2a)

xp =
[

xp yp φ
]T

(2b)

Eq. (1) can be expressed as a quadratic equation [18].
The latter may have eight solutions corresponding to
the eight working modes of the mechanism [19]. The
choice of the working mode can also be used as a de-
sign parameter of the mechanism as it modifies the lo-
cation of its singular configurations. The Direct Kine-
matics Model (DKM) of the manipulator characterizes
the moving platform pose in terms of the prismatic ac-
tuators displacements:

xp = f (ρ) (3)

The DKM of the 3 − PRR PPM may have six solu-
tions corresponding to the six assembly modes of the
mechanism [20].



2.3 Kinematic Jacobian matrix of the 3-PRR
PPM

The kinematic Jacobian matrix defines the relation-
ship between the actuators and mobile platform ve-
locity vectors. For the ith kinematic chain, a closed
loop vector equation can be written as:

−−→
OP =

−−→
OAi +

−−−→
AiBi +

−−−→
BiCi +

−−→
CiP (4)

Equation (4) can be expressed algebraically as:

p = Rrai + ρiai + Lbbi − rei (5)

with ai, bi, ei and rai being the unit vectors depicted
in Fig. 1. Upon differentiation of Eq. (5) with respect
to time we get,

ṗ = ρ̇iai + Lbḃi − rėi (6)

ḃi and ėi being written as:

ḃi = β̇iEbi ėi = φ̇Eei (7)

β̇i is the angular velocity of the ith intermediate link
and E is the right angle rotation matrix given by,

E =

[

0 −1
1 0

]

(8)

Accordingly, Eq. (6) becomes

ṗ = ρ̇iai + Lbβ̇iEbi − rφ̇Eei (9)

Upon multiplication of Eq. (9) by bT
i , we obtain the

matrix form:

Aẋp = Bρ̇ (10)

with

A =





bT
1

rbT
1
Ee1

bT
2

rbT
2
Ee2

bT
3 rbT

3 Ee3



 (11)

and

B =





bT
1
a1 0 0
0 bT

2
a2 0

0 0 bT
3 a3



 (12)

Therefore, the prismatic joints rates are expressed in
terms of the moving platform twist as follows:

ρ̇ = B−1Aẋp = Jẋp (13)

where J is the kinematic Jacobian matrix of the ma-
nipulator.

J = B−1A =
1

ai.bi





b1 rk (b1 × e1)
b2 rk (b2 × e2)
b3 rk (b3 × e3)



 (14)

The singular configurations of the 3–PRR PPM can
be obtained by means of a singularity analysis of J as
explained in [18].

2.4 Stiffness matrix

The stiffness model of the 3-PRR PPM is obtained by
means of the refined lumped mass modeling presented
in [21].
Let us consider a general schematic of the 3-PRR
PPM that is composed of a mobile platform connected
to a fixed base by means of three identical kinematics
chains, as shown in Fig. 2. Each kinematic contains
an actuated prismatic joint and two passive revolute
joints.

Base

PPP

R

R

R

R

R

R

Mobile Platform

Figure 2: Schematic diagram of a 3-PRR

According to the flexible model described in [21], each
kinematic chain of the 3-PRR manipulator can be
considered as a serial architecture as shown in Fig. 3
that contains sequentially:

Ac RR Rigid BodyRigid Body

L r

Base Platform
(Rigid)

1-dof 6-dof 6-dof
SpringSpringSpring

Figure 3: Flexible model of the single kinematic chains
of the 3-PRR PPM, Ac stands for actuating joint and
R for revolute joint

• a rigid link between the manipulator base and the ith

actuated joint (part of the base platform) described
by the constant homogeneous transformation matrix
Ti

Base;

• a 1-dof actuated joint, defined by the homogeneous
matrix function Va(q

i
0
) where qi

0
is the actuated coor-

dinate;

• a 1-dof virtual spring describing the actuator me-
chanical stiffness, which is defined by the homoge-
neous matrix function Vs1

(

θi0
)

where θi0 is the virtual
spring coordinate corresponding to the translational
spring;

• a 1-dof passive R-joint at the beginning of the leg
allowing one rotation angle qi

2
, which is described by

the homogeneous matrix function Vr1(q
i
2
)

• a rigid leg of length L linking the foot and the mov-
able platform, which is described by the constant ho-
mogeneous transformation matrix Ti

L;



• a 6-dof virtual spring describing the leg stiffness,
which is defined by the homogeneous matrix function
Vs2

(

θi
1
· · · θi

6

)

, with θi
1
, θi

2
, θi

3
and θi

4
, θi

5
, θi

6
being

the virtual spring coordinates corresponding to the
spring translational and rotational deflections;

• a 1-dof passive R-joint between the leg and the plat-
form, allowing one rotation angle qi3, which is de-
scribed by the homogeneous matrix function Vr2(q

i
3
);

• a rigid link of length r from the manipulator leg to
the geometric center of the mobile platform, which is
described by the constant homogeneous transforma-
tion matrix Ti

r;

• a 6-dof virtual spring describing the stiffness of the
moving platform, which is defined by the homoge-
neous matrix function Vs3

(

θi
7
· · · θi

12

)

, θi
7
, θi

8
, θi

9
and

θi10, θ
i
11, θ

i
12 being the virtual spring coordinates cor-

responding to translational and rotational deflections
of link CiP ;

• a homogeneous transformation matrix Ti
End charac-

terizing the rotation from the 6-dof spring associated
with link CiP and the manipulator base frame;

The corresponding mathematical expression defining
the end-effector location subject to variations in all
above defined coordinates of the ith kinematic chain
can be written as follows:

Ti =Ti
BaseV

i
a

(

qi0
)

Vs1

(

θi0
)

Vr1

(

qi1
)

Ti
LVs2 (15)

(

θi1 · · · θi6
)

Vr2(q
i
2)T

i
rVs3

(

θi7 · · · θi12
)

Ti
Base

From [21], the kinetostatic model of the ith leg of the
3-PRR PPM can be reduced to a system of two matrix
equations, namely,

[

Si
θ Ji

q

Ji
q 02×2

] [

fi
δqi

]

=

[

δti
02

]

(16)

where the sub-matrix Si
θ = Ji

θK
i
θ

−1
Ji
θ

T
describes the

spring compliance relative to the geometric center of
the moving platform, and the sub-matrix Ji

q takes into
account the passive joint influence on the moving plat-
form motions.

Ki
θ

−1
matrix, of size 13×13, describes the compliance

of the virtual springs and takes the form:

Ki
θ

−1

=







Ki
act

−1
01×6 01×6

06×1 Ki
leg

−1
06×6

06×1 06×6 Ki
pf

−1






(17)

where Ki
act is the 1×1 stiffness matrix of the ith actu-

ator, Ki
leg is the 6× 6 stiffness matrix of the ith inter-

mediate leg and Ki
pf is the 6×6 the stiffness matrix of

the ith link of the moving platform. The compliance
matrices of the intermediate legs and the ith link of
the moving platform are calculated by means of the

stiffness model of a cantilever beam, namely,

Ki
L

−1

=





















L
EA

0 0 0 0 0

0 L3

3EIz
0 0 0 L2

2EIz

0 0 L3

3EIy
0 − L2

2EIy
0

0 0 0 L
GIx

0 0

0 0 − L2

2EIy
0 L

EIy
0

0 L2

2EIz
0 0 0 L

EIz





















(18)

L is the length of the beam, i.e., L = Lb for the in-
termediate legs and L = r for the moving platform
links. A is the cross-sectional area of the beam, i.e.,
ALb

= πr2j and Ar = πr2p. Iz=Iy is the polar moment
of inertia about y and z axes, i.e., for the intermediate
legs and the moving platform links, their expressions
are πr4j /4 and πr4p/4, respectively. Ix= Iz + Iy is the
polar moment of inertia about the longitudinal axis of
the beam. E is the Young modulus of the material
and G its shear modulus
Ji
θ of size 6× 13 is the Jacobian matrix related to the

virtual springs and Ji
q of size 6 × 2, the one related

to the passive joints. fi is the wrench exerted on the
ith leg of the 3-PRR PPM at the geometric center
of the moving platform and δti is the corresponding
translational and rotational displacements vector.
Therefore, the Cartesian stiffness matrix Ki of the ith
leg defining the motion-to-force mapping is obtained
from Eq. (16).

fi = Ki δti (19)

Finally, the Cartesian stiffness matrixK of the 3-PRR
PPM is found with a simple addition of Ki matrices,
namely,

K =

3
∑

i=1

Ki (20)

3 MULTIOBJECTIVE DESIGN OPTI-

MIZATION

In general, the design process of PKMs simultane-
ously deals with two groups of criteria, one relates
to the kinematic properties while the other relates
to the kinetostatic/dynamic properties of the mecha-
nism. Both of these groups include a number of perfor-
mance measures that essentially vary throughout the
workspace but remain within the prescribed bounds.
Kinematic aspects are comparatively less complex and
are usually based on the concept of critical points
whereas kinetostatic aspects work with a detailed de-
scription of the structure and their evaluation is usu-
ally time consuming. Indeed, one of the major design
issues in kinetostatic design is the computation of the
stiffness matrix [22]. Accordingly, a multiobjective de-
sign optimization approach is proposed based on per-
formance measures/criteria from both kinematic and
kinetostatic domains. On the one hand, this approach
deals with the geometric/kinematic design in order
to determine the PKM geometry including the link



lengths and the joint limits. On the other hand, it
considers the kinetostatic design to determine the size
and the mass properties of the links.

3.1 Optimization objectives

The multiobjective optimization problem aims to de-
termine the optimum geometric parameters of a PKM
in order to maximize its workspace as well as to min-
imize the mass of the mechanism in motion. Here,
the workspace of the mechanism is discretized and the
considered performance measures and constraints are
evaluated and verified for each point.

3.1.1 Mass in motion of the mechanism

The mass in motion of the mechanism is considered
to be the first objective function of the optimization
problem. Mass and inertia are functions of manipula-
tor dimensions, i.e., link lengths, cross-sectional area,
thickness. Hence, in general, the mass in motion mt

of the mechanism is composed of the mass of the plat-
form, mpf , the mass of the three intermediate bars,
mb, and the mass in motion of the three prismatic
actuators, ms:

mt = mpf + 3mb + 3ms (21)

Since the actuators are fixed, their mass is considered
to be constant while the mass of the other two compo-
nents can easily be calculated by using the geometry
of the components and the density d of their material,
given as,

mpf = πr2prd, mb = πr2jLbd (22)

Consequently, the first objective function of the opti-
mization problem is written as:

f1 (x) = mt → min (23)

x being the vector of the geometric design parameters
of the mechanism.

3.1.2 Regular workspace size

Workspace is one of the most important design
issues as it defines the working volume of the
robot/manipulator and determines the area that can
be reached by a reference frame located on the mov-
ing platform or end-effector [23, 12]. The size and
shape of the workspace are of primary importance for
the global geometric performance evaluations of the
manipulators [24].
The quality of the workspace that reflects the shape,
size, presence of singularities is of prime importance
in PKM design. Workspace based design optimiza-
tion of parallel mechanisms can usually be solved with
two different formulations. The first formulation aims
to design a manipulator whose workspace contains a
prescribed workspace and the second approach aims
to design a manipulator, of which the workspace is as
large as possible. However, maximizing the workspace
may result in poor design with regard to the manipu-
lator dexterity and manipulability [12]. This problem
can be solved by properly defining the constraints of
the optimization problem. Here, the multiobjective

optimization problem of PKMs is based on the formu-
lation of workspace maximization, i.e, to determine
the optimum geometry of PKM in order to maximize
a regular-shaped workspace. Workspace size can be
defined by its geometric shape parameters like the ra-
dius of a cylindrical/spherical workspace or the sides
of the cube for a cubic workspace.
In the scope of the paper, a cylindrical workspace de-
fined with its radius Rw is considered. Furthermore,
at each point of the workspace, an angular rotation
range ∆φ=20 ◦ of the platform about the Z-axis can
be achieved. A 3-dimensional schematic of the regular
shaped workspace is shown in Fig. 4, where xc, yc are
the coordinates of the center of the regular dextrous
workspace and φc is the orientation of the platform at
its home-posture (see Fig. 1).

Rw

∆φ
(xc, yc, φc)

Figure 4: 3-PRR workspace

Consequently, in order to maximize the manipulator
workspace, the second objective of the optimization
problem can be written as:

f2 (x) = Rw → max (24)

3.2 Optimization constraints

Besides, the geometric and actuator constraints of the
PKM, conditioning of the kinematic Jacobian matrix
and accuracy obtained from the stiffness characteris-
tics of the mechanism are considered. Constraining
the conditioning of the Jacobian matrix guarantees
singularity free workspace whereas limits on accuracy
consideration ensure sufficient mechanism stiffness.

3.2.1 Geometric Constraints

The first constraint is related to the mechanism as-
sembly, namely,

Lb + r ≥ R/2 (25)

In order to avoid intersections between prismatic
joints, the lower and upper bounds of the prismatic
lengths are defined as follows:

0 < ρi <
√
3R (26)

3.2.2 Condition number of the kinematic Jacobian
matrix

The condition number κF (M) of a m × n matrix M,
with m ≤ n, based on the Frobenius norm is defined
as follows,

κF (M) =
1

m

√

tr(MTM)tr [(MTM)−1] (27)



Here, the condition number is computed based on the
Frobenius norm as the latter produces a condition
number that is analytic in terms of the posture pa-
rameters whereas the 2-norm does not. Besides, it
is much costlier to compute singular values than to
compute matrix inverses.
The terms of the direct Jacobian matrix of the 3-
PRR PPM are not homogeneous as they do not have
same units. Accordingly, its condition number is
meaningless. Indeed, its singular values cannot be ar-
ranged in order as they are of different nature. How-
ever, from [25] and [26], the Jacobian can be normal-
ized by means of a normalizing length. Later on, the
concept of characteristic length was introduced in [27]
in order to avoid the random choice of the normalizing
length. For instance, the previous concept was used
in [18] to analyze the kinetostatic performance of ma-
nipulators with multiple inverse kinematic solutions,
and therefore to select their best working mode.
Accordingly, for the design optimization of 3-
PRR PPM, the minimum of the inverse condition
number of the kinematic Jacobian matrix, κ−1 (J), is
supposed to be higher than a prescribed value, say 0.1,
throughout the manipulator workspace, for any rota-
tion of its end-effector, i.e.,

min
(

κ−1 (J)
)

≥ 0.1 (28)

3.2.3 Accuracy constraints

The position and orientation accuracy is assessed by
using the stiffness parameters of the mechanism. Let
(δx, δy, δz) and (δφx, δφy , δφz) be the position and
orientation errors of the end-effector subjected to ex-
ternal forces (Fx, Fy, Fz) and torques (τz , τy , τz).
The constraints related to the accuracy of the ma-
nipulator are defined as follows:

δx ≤ δxmax δy ≤ δymax δz ≤ δzmax

δφx ≤ δφmax
x δφy ≤ δφmax

y δφz ≤ δφmax
z

(29)

(δxmax, δymax, δzmax) being the maximum allowable
position errors and

(

δφmax
x , δφmax

y , δφmax
z

)

the max-
imum allowable orientation errors of the end-effector.
These accuracy constraints can be expressed in terms
of the components of the mechanism stiffness matrix
and the wrench applied to the end-effector. Let us
assume that the accuracy requirements are:

√

δx2 + δy2 ≤ 0.0001m (30a)

δz ≤ 0.001m (30b)

δφz ≤ 1 deg (30c)

If the end-effector is subjected to a wrench, whose
components are ‖Fx,y‖=Fz=100N and τz=100Nm,
then the accuracy constraints can be expressed as:

kmin
xy ≥ ‖Fx,y‖ /

√

δx2 + δy2 = 106 N.m-1 (31a)

kmin
z ≥ Fz/δz = 105 N.m-1 (31b)

kmin
φz

≥ τz/δφz =
10

π/180
N.m.rad-1 (31c)

3.3 Design Variables

Along with the above mentioned geometric parame-
ters (R, r, Lb) of the 3-PRR PPM, the dimension of
the circular-cross-section of the intermediate bars de-
fined with radius rj and the circular-cross-section of
the platform bars defined with rp are considered as
design variables, also called decision variables. The
platform is assumed to be made up of three circular
bars, each of length r. Hence, the design parameters
vector x is given by:

x =
[

R r Lb rj rp
]T

(32)

3.4 Multiobjective optimization problem

statement

The Multiobjective Optimization Problem (MOO) for
a 3–PRR PPM can be stated as:
Find the optimum design parameters x of a 3–
PRR PPM in order to minimize the mass in motion
of the mechanism and to maximize its regular shaped
workspace subject to some design constraints, i.e., the
inverse condition number of the kinematic Jacobian
matrix and accuracy are to be higher than prescribed
values throughout the manipulator workspace.
Mathematically, the problem can be written as:

minimize f1(x) = mt (33)

maximize f2(x) = Rw

over x =
[

R r Lb rj rp
]T

subject to : g1 : Lb + r ≥ R

2

g2 : 0 < ρi <
√
3R

g3 : κ−1 (J) ≥ 0.1

g4 : kmin
xy ≥ Fx,y

√

δx2 + δy2
= 106

g5 : kmin
z ≥ Fz

δz
= 105

g6 : kmin
φz

≥ τz
δφz

=
10

π/180

xlb ≤ x ≤ xub

where xlb and xub are the lower and upper bounds of
x, respectively.

4 RESULTS AND DISCUSSIONS

The multiobjective optimization problem (33) is
solved by means of modeFRONTIER [28] and by using
its built-in multiobjective optimization algorithms.
MATLAB code is incorporated in order to analyze
the system and to get the numerical values for the ob-
jective functions and constraints that are analyzed in
modeFRONTIER for their optimality and feasibility.
The lower and upper bounds of the design variables
are given in Table 1. The manipulator is supposed to
be built in steel with a density equal to d=7850kg/m3

and a Young modulus equal to E=210×109N/m2.



Design Variable R r Lb rj rp
Lower Bound (lb) [m] 0.5 0.5 0.5 0 0
Upper Bound (ub) [m] 4 4 4 0.1 0.1

Table 1: Lower and upper bounds of the design vari-
ables

For each design iteration, workspace limits are cal-
culated based on the set of design parameters of the
mechanism. Then, workspace discretization is per-
formed with respect to its x, y coordinates and with
respect to the orientation angle φ of the moving plat-
form. The constraints of the problem are evaluated at
each grid point of the workspace.

Scheduler MOGA-II

Number of iterations 200

Directional cross-over probability 0.5

Selection probability 0.05

Mutation probability 0.1

DNA (DeoxyriboNucleic Acid) string
0.05

mutation ratio

DOE algorithm Sobol

DOE number of designs 30

Total number of iterations 30× 200 = 6000

Table 2: modeFRONTIER algorithm parameters

A multiobjective genetic algorithm (MOGA) is used
to obtain the Pareto frontier based on the mecha-
nism mass and the workspace radius. modeFRON-
TIER scheduler and Design Of Experiments (DOE)
parameters are given in Table 2. MATLAB is used to
process and analyze the system for any individual of
the current population (generated by the modeFRON-
TIER scheduler). Corresponding to each population
set, MATLAB returns the output variables that are
analyzed by modeFRONTIER for the feasible solu-
tions according to the given constraints. At the end,
the Pareto-optimal solutions are obtained from the
generated feasible solutions.
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Figure 5: Pareto frontier for 3-PRR optimization
problem

The Pareto frontier is shown in Fig. 5 whereas the de-

sign variables and the corresponding objective func-
tions for two extreme and one intermediate Pareto
optimal solutions, as shown in Fig. 5, are depicted
in Table 3.
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Figure 6: Design variables as a function of Rw for the
Pareto-optimal solutions

The designs associated with the three foregoing solu-
tions are shown in Fig. 7.
Figure 8 illustrates the variational trends as well as
the inter-dependency between the objective functions
and design variables by means of a scatter matrix.
The lower triangular part of the matrix represents
the correlation coefficients, ξ, whereas the upper one
shows the corresponding scatter plots. The diagonal
elements represent the probability density charts of
each variable. The correlation coefficients vary from
-1 to 1. Two variables are strongly dependent when
their correlation coefficient is close to 1 or -1 and in-
dependent when the latter is null.
Figure 8 shows that:

• Both objectives functions mt and Rw are strongly
dependent as their correlation coefficient is equal to
0.907;

• Both objectives functions mt and Rw are strongly
dependent on all design variables as all of the corre-
sponding correlation coefficients are greater than 0.7;

• Rw (ξ ≥ 0.830) is slightly more dependent than
mt (0.711≤ξ≤0.981) of the design variables;

Figure 6 illustrates the design variables R, r, Lb, rj
and rp as a function of Rw for the Pareto-optimal
solutions. It is noteworthy that the higher Rw, the
higher the design variables. It is apparent that the
variations in variables R, r, Lb and rj with respect
to (w.r.t.) Rw are almost linear whereas the varia-
tions in rp w.r.t. Rw is rather quadratic. As a matter
of fact, it should be due to the fact that the higher the
size of the mechanism the higher the bending of the
moving platform links whereas the intermediate links
are mainly subjected to tension and compression. Fi-
nally, the three sets of design variables corresponding



Design
ID

Design Variables Objectives

R [m] r [m] Lb [m] rj [m] rp [m] mt [kg] Rw [m]

I 1.412 0.319 0.620 0.026 0.023 44.5 0.110

II 3.066 1.283 1.896 0.036 0.056 484.8 1.207

III 3.872 1.947 1.977 0.039 0.096 1545.6 1.609

Table 3: Three Pareto optimal solutions
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Figure 7: CAD Designs of three Pareto-optimal solutions
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Figure 8: Scatter matrix illustrating the correlations between the objective functions and the design variables

to the Pareto-optimal solutions depicted in Fig. 5 are
shown in Fig. 6 by means of the green, pink and red
symbols.

5 CONCLUSIONS

In this paper, the problem of dimensional synthesis of
parallel kinematics machines was addressed. A multi-

objective design optimization problem was formulated
in order to determine optimum structural and geo-
metric parameters of any parallel kinematics machine.
The proposed approach is similar to that used in [29]
but we took into account the mass and the regular
workspace instead of considering the entire volume of
the manipulator. The proposed approach was applied



to the optimum design of a three-degree-of-freedom
planar parallel manipulator with the aim to minimize
the mass in motion of the mechanism and to maximize
its regular shaped workspace.
It is apparent that other performance indices can be
used as constraints. However, they cannot necessarily
be used as objective functions as the latter are usually
formulated as a sum of an index over all the manipu-
lator workspace. As another constraint, we could use
the collisions between the legs of the manipulator as
illustrated in [4].
Our future works will deal with the multiobjective de-
sign optimization and the comparison of 3-DOF pla-
nar parallel manipulators of different architectures as
well as the optimization of the cross-section type of
their links.
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