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Abstract 

Motivation. The chemistry of five–membered and six–membered conjugated cyclic ligands complexes belongs 
to the most important classes of organometallic compounds. The determination of the precise nature of the 
metal–ligand bond is of great importance for the synthesis of new compounds and understanding of their 
reactivity. We propose here a topological ELF analysis of the metal–ligand interaction with a comparative model 
study of 5– and 6–coordination respectively in ferrocene and dibenzenechromium. 
Method. Electron Localization Function (ELF) offers a reliable measure of electron pairing and localization. An 
ELF calculation partitions molecular space in terms of attractors and basins. Each basin, located around an 
attractor, could be clearly identify into series, each of then having a precise significance (core, lone pair, two–
center bond, three–center bond, …). 
Results. This work shows that both 5– and 6–coordinations could be decomposed in a sum of 1– and 2–
interactions, the latter being predominant. The bonding description is in agreement with the classical resonance 
scheme. 
Conclusions. The topological analysis of the ELF function provides a basis for interpreting and visualization of 
the bonding scheme in model sandwich molecules. 
Availability. TopMoD package is available free of charge at http://www.lct.jussieu.fr/silvi/topmod_english.html. 
Keywords. Density Functional Theory (DFT) calculation; metallocenes; sandwich compounds; bond theory; 
Electron Localization Function (ELF); metal–ligand interaction. 

1 INTRODUCTION 

The theoretical study of metal–ligand interactions is well developed [1]. Among the variety of 
ligands, five–membered and six–membered highly conjugated cyclic ligands are widely found in 
transition metal complexes. The former correspond to metallocenes, sandwich and half–sandwich 
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complexes for which simplest example is given by ferrocene [Fe(Cp)2] (Cp–, cyclopentadiene anion, 
C5H5

–) and the latter to arene complexes best exemplified by dibenzenechromium [Cr(Bz)2] (Bz, 
benzene, C6H6). Since the first synthesis of these compounds [2–4], the chemistry of metallocene 
and arene complexes now belongs to the most important classes of organometallic compounds 
which are very important for synthetic and industrial applications [5–7]. 

Two kinds of approaches are currently used in bonding interaction studies. The first one is based 
on the examination of the wavefunction and includes molecular orbital theory [8] as well as valence 
bond methods [9,10] whereas the second one is based on the electronic density [11]. Methods based 
on the molecular orbital theory are the most popular and among them we find the natural bond 
orbital (NBO) method [12], the charge distribution analysis (CDA) [13] and the energy 
decomposition analysis (EDA) [14] which is very similar to the extended transition state method 
(ETS) [15]. They have proven to be extremely useful in bond description and to compute 
quantitative bond energy [16]. The bonding remains however mostly described with an approximate 
localized formalism and generally requires an arbitrary choice of fragments. Topological analysis of 
the electronic density, as the Atoms in Molecules (AIM) theory [17], or the Electron Localization 
Function (ELF) built from the electron density [18,19] (see Materials and Methods) offers other 
interesting possibilities. These methods complement nicely approximate MO models since they 
permit an easily understanding and picturing of the bonding situation on the entire system. 
Furthermore, they could be applied to experimental density. 

The bonding situation in metal–cyclic conjugated ligands complexes has already been analyzed 
with quantum chemical calculations in earlier theoretical work [20,21]. Recent MO studies on 
metallocenes and arenes complexes focus on cyclopentadienyl–main–group metal bond [22–24], on 
heterocyclopentadienyl–transition metal bond [25–29], on heterocyclopentadienyl–main–group 
metal bond [30], and on heterobenzene–transition metal bond [31]. They give interesting trends in 
structure stabilities and bond energies depending on the nature of the conjugated ring and on the 
central atom. The binding interactions in ferrocene and dibenzenechromium have been also recently 
analyzed [32] with orbital and energy decomposition analyses. Topological analyses on 
metallocenes and arenes complexes are less abundant. AIM theory has been used for analyzing the 
bonding in metallocenes [33–35] as well as in arene complexes [36,37], in which various types of 
bond paths are located between the metal center and the conjugated ring. However, no systematic 
topological study has been done to give a general description of metal–cyclic conjugated ligand 
bond.

We have recently explored the 5–coordination mode of azaferrocene and phosphaferrocene with 
the ELF method and shown that 5–coordination is characterized by both 1– and 2–interactions
[38]. We propose here an extension of this previous work with a comparative model study of 5–
and 6–coordination respectively in ferrocene 1 and dibenzenechromium 2 (Figure 1). It is shown 
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that in both complexes the dominant –type bonding with the ring is accompanied by –type
contributions, in agreement with the classical resonance scheme which is thus clearly visualized. 

Fe

1

Cr

2
Figure 1. Molecules studied in this investigation. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
We performed calculations on ferrocene 1 and dibenzenechromium 2 (Figure 1). Both eclipsed 

and staggered conformations of the cyclopentadienyl units in 1 (respectively of D5h and D5d

symmetry) and of the arene units in 2 (respectively of D6h and D6d symmetry) were explored in the 
geometry optimization. A vibrational analysis was performed at each stationary point. In each case, 
one almost–zero frequency corresponding to the free rotation of the rings was found. The difference 
between the eclipsed and staggered structures is negligible for compounds 1 and 2. Therefore, for 
the sake of conciseness, only data obtained for eclipsed structures are presented here. 

2.2 Computer Software 
Geometry optimizations of all compounds studied were performed with the Gaussian 98 [39] 

suite of program. Becke’s hybrid three–parameter exchange functional and Lee, Yang, and Parr’s 
nonlocal correlation functional (B3LYP) [40,41] have been used in conjugation with the 6–31G* 
basis set containing six cartesian d function. 

In each case, following the optimization runs, the topological analysis of the Electron 
Localization Function (ELF) was made with the TopMoD program [42, 43]. The first approach in 
the field of electronic topology was made by Richard Bader in his theory of Atoms in Molecules, in 
which he applied topological concepts to the electronic density r  [17]. More recently, the basis–

independent ELF method, proposed by Becke and Edgecombe has proved to be very versatile in 
determining static and dynamic properties of electronic densities, in a great variety of molecules 
[18]. This function is: 

2

1

1

rD
rD

r

o

In this equation rD  is given by the following formula: 
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This is the excess of local kinetic energy density, due to Pauli repulsion [44]. 
35

rCrD Fo  is the Thomas–Fermi kinetic energy density which acts as a renormalization 

factor, and CF is the Fermi constant (CF = 2.871 Å). The range of values of  is 0  1. For a 
single pair of electrons with antiparallel spins,  = 1, while for the uniform gas of electrons, by 
construction,  = 0.5. 

Recently, Silvi and Savin [19] applied these concepts to a new theory of bonding, in which a 
partition of the molecular space into basins located around an attractor having a clear signification 
is obtained. Core basins, labeled C(X) and located around the heavy atoms, are typical of the K 
shell for C atoms and K, L and M shells for Fe and Cr atoms. A given valence basin will be labeled 
as one of the following: (i) V(X) when it only shares a boundary with a core basin and thus contains 
electrons that are not involved in a bonding process. This monosynaptic basin corresponds to the 
usual Lewis language for nonbonding electrons. In this case, the ideal count of electrons is 2 for a 
“lone pair” or 1 for an “odd electron”, depending on the actual cases. (ii) V(X, Y) when the basin 
shares a boundary with the cores of two atoms X and Y. Such a basin is typical of a bond between 
X and Y and is called a disynaptic (bicentric) basin. It has been shown in previous studies that its 
population may vary significantly, according to the actual nature of the bond [45–48]. Though the 
classical MO language distinguishes  and  contributions to bonding, the ELF analysis, which is 
based on the total electronic density, characterizes basins and attractors without separating these 
types of contribution. For example, when dealing with alkenes, two V(C, C) basins are observed at 
the usual standard bond length, separately lying above and below the double–bond local plane. (iii)
V(X, Y, Z) when the basin shares a boundary with the cores of three atoms X, Y and Z. Such a 
basin is typical of a three center bond and is called a trisynaptic (tricentric) basin. 

The TopMoD program uses as input the wfn file generated by Gaussian 98, with natural orbital 
population. The calculations are then carried out in four steps: (i) evaluation of the ELF function 
over a 3D grid; (ii) identification of the various basins and assignment of the corresponding grid 
points; (iii) location of the critical points of the ELF function; (iv) integration of charge density over 
the basins. 

3 RESULTS AND DISCUSSION 

Table 1 displays the most important geometrical parameters for 1 and 2 that have been calculated 
at the B3LYP/6–31G* level of theory. The calculated metal–ligand and C–C distances are in very 
good agreement with the experimental data and do not deserve special comment. 
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Figure 2. Upper part. Contours of the ELF in a plane containing a CH bond of each cycle in 1. Lower part. ELF picture 
of the bonding between one ring and iron atom in 1.
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Table 1. Theoretical and Experimental Geometry Parameters for 1 and 2
 Symmetry M C–M C–C M–X a

1 D5h Fe 2.052 1.428 1.655 
1 b D5h Fe 2.064 1.440 1.661 
2 D6h Cr 2.155 1.419 1.621 
2 c D6h Cr 2.150 1.423 1.613 

Bond lengths in Å 
a X designates the center of the conjugated rings 
b Gas phase electron diffraction study [49] 
c Electron diffraction data [50] 

Table 2. Electron Population for the Various Basins of 1 and 2
 Symmetry M C(M) C(C) V(C, H) V(M, C) V(M, C, C) V(M) 

1 D5h Fe 24.15 2.09 2.16 0.39 2.54 – 
2 D6h Cr 21.93 2.09 2.14 0.25 2.66 0.06 

The calculated results for the ELF analysis based on the optimized geometry of 1 and 2 are given 
in Table 2. Let us first consider the data of 1 more closely (Figure 2). 

The ELF calculation yields the core basins of the Fe and C atoms, with respectively 24.15 and 
2.09 e. The calculated population of C(Fe) corresponds to the (1s)2(2s,p)8(3s,p)8(3d)6 sequence of 
electrons expected for a Fe(II) oxidative state. Furthermore, the shape of C(Fe) shows clearly 
(Figure 2) that electrons are located mainly just above and below, and in the plan parallel to Cp 
rings around the metal center, which correspond to the extension of the three occupied d orbital of 
a1g and e2g symmetry. This shows that the d electrons of Fe2+ which are not involved in bonding 
remain close to the positive nucleus atom and are not differentiated from other core electrons. The 
inclusion of d electron in C(Fe) induces a large volume of the iron core basin in comparison to the 
one of carbon atom, with a ratio of 1 to 42. The C–H bonds are depicted by the ten V(C, H) bonding 
basins, populated each by 2.16 e. 

The bonding between Fe and each cycle occurs through two distinct type of basins, depicted with 
striking difference in Figure 2: (i) five disynaptic basins, noted V(Fe, C), each with a population of 
0.39 e. They correspond to 1–interactions between each carbon and the metal center. (ii) five 
trisynaptic basins, noted V(Fe, C, C), each with a population of 2.54 e. They correspond to 2–
interactions between each CC bond and the metal center 

As seen above, C(Fe) is much bulkier than C(C). This explains that C(Fe) possesses the ability of 
forming ten bonds with each cycle. V(Fe, C, C) basins are mainly located between the two carbon 
atoms even if they possess a border with C(Fe). These basins come from the CC bond in isolated 
Cp– ring. On the contrary, V(Fe, C) basins do not fit with any basin of isolated Cp– ring and result 
directly from the interaction with iron. The V(Fe, C, C) basin has a population (2.54 e), smaller than 
that of CC bond in isolated Cp– (2.94 e. B3LYP/6–31+G*). The rest of the electrons attributed to 
the CC bonds (2.94 – 2.54 = 0.40 e) forms almost exactly the population of the V(Fe, C) basins. 
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Cp–iron interaction could be written as a combination of 5 equivalent resonance forms as 
illustrated in Figure 3. In this localized description, 5–coordination is composed of a –bond
between the carbon atom bearing the negative charge and the metal center and of two –bond
between CC double bond and the iron atom. 

Figure 3. Resonance forms of the 5–coordination. 

According to the Dewar–Chatt–Duncanson model [51,52],  metal–ethylene bond is described 
by a ligand to metal donation from the CC MO and a metal to ligand back–donation in the *

CC MO 
(Figure 4). 

Figure 4. Dewar–Chatt–Duncanson model of the interaction between a CC double bond and a metal center M. 

This description of a double bond–metal interaction finds a parallel in AIM theory [53]. In the 
case of ELF analysis, the donation and back–donation (Figure 4, left and right respectively) will 
correspond to a trisynaptic basin and to two disynaptic basins respectively. 

From the above analysis, it emerges that: (i) V(Fe, C, C) basins correspond to the CC double 
bond to metal donation, (ii) V(Fe, C) basins could mix metal to CC double bond back–donation and 

–bond between the carbon atom and the metal center. If we considered the charged species Fe2+

and Cp– as interacting fragments, we have seen that the electronic population of the V(Fe, C, C) and 
V(Fe, C) basins comes exclusively from Cp– rings. This shows that in this decomposition scheme, 
the V(Fe, C) basin does not come from metal to ligand back–donation. 5–coordination in ferrocene 
could thus be described by a combination of 2– and 1–interaction. Furthermore, if the choice of 
interacting fragments is Fe2+ and Cp–, the interaction corresponds to dative ligand to metal bond of 
respectively  and –type.

We will now compare the result of the ELF analysis of dibenzenechromium 2 (Table 2) with 
those obtained for the ferrocene 1. C(C) and V(C, H) are the same in 2 as they are in 1 and do not 
deserve comment. The population of C(Cr) (21.93 e) is in agreement with the 
(1s)2(2s,p)8(3s,p)8(3d)4 sequence of electrons expected for a Cr(0) oxidative state. Six very small 

Fe Fe
-bond-bond

M M M M
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basins V(Cr) populated each by 0.06 e are located in the neighboring of the border of C(Cr), in the 
plane parallel to the Bz ring and including the metal center. They correspond to excess of electron 
coming from the metal center, which do not participate to the bonding but which cannot be 
accommodated into the core. The population of C(Cr) and V(Cr) indicates that the metal center has 
lost 24 – 21.93 – 6 × 0.06 = 1.71 electron to form bonds with both cycles, contrary to the case of 
dicationic iron which gives no electron to the bonds in ferrocene. 

The ELF analysis indicates that each cycle is bound to the metal through 6 V(Cr, C) basins and 6 
V(Cr, C, C) basins, by analogy with the preceding compound. As when dealing with 1, the 6–
coordination of 2 is actually composed of two contributions via 1– and 2–interaction modes. Each 
V(Cr, C) basins is populated by 0.25 e, which give a total of 12 × 0.25 = 3.00 e for the 1–
interaction in 2. This shows that both the metal and the cycle give electrons to V(Cr, C), basins 
which, as for Cp–, did not exist in free benzene. The V(Cr, C, C) basins are each populated by 2.66 
e which is slightly less than the population of a CC bond in benzene (2.80 e). This analysis lead to 
the description of the 6–coordination as depicted in Figure 5. 

Figure 5. Schematic representation of the 6–coordination in 2.

The last question we address is the respective weight of three center and two center interaction 
form in 5– and 6–coordination. This may be given by the respective population of each kind of 
basin. However, V(M, C, C) basin includes both  and  electrons and we have thus to subtract the 

 electrons in order not to overestimate the weight of the 2–interaction. The V(C, C) basin in the 
single CC bond of ethane is populated by 1.79 e. We can thus estimate that 2.54 – 1.79 = 0.75 e 
(2.66 – 1.79 = 0.87 e) of V(Fe, C, C) (V(Cr, C, C) respectively) participate in the three center 
interaction of 1 (2 respectively) whereas 0.39 e (0.25 e respectively) participate in the two center 
interaction of 1 (2 respectively). These results give a percentage of 66% and 78% of 2–interaction
respectively in ferrocene and dibenzenechromium. They show that 1–interaction remains relatively 
weak in each case, which is consistent with the aromaticity of the cycle. 

4 CONCLUSIONS 

This work shows that both 5– and 6–coordinations may be decomposed in a sum of 1– and 
2–interactions, the latter being predominant. This shows that the ELF analysis provides a helpful 

Cr Cr Cr
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qualitative and quantitative view of bonding in delocalized systems and could be used to bring 
information about the electronic properties of various ligands whose actual nature remains to be 
established and compared to cyclic aromatic ligands [54,55]. 
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