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Abstract

In this article, we propose several quantization based stratified sampling methods to reduce the
variance of a Monte-Carlo simulation.

Theoretical aspects of stratification lead to a strong link between the problem of optimal L2-
quantization of a random variable and the variance reduction that can be achieved. We first em-
phasize on the consistency of quantization for designing strata in stratified sampling methods in
both finite dimensional and infinite dimensional frameworks. We show that this strata design has a
uniform efficiency among the class of Lipschitz continuous functionals.

Then a stratified sampling algorithm based on product functional quantization is proposed for
path-dependent functionals of multi-factor diffusions. The method is also available for other Gaus-
sian processes as the Brownian bridge or an Ornstein-Uhlenbeck process. We derive in detail the
quantization of the Ornstein-Uhlenbeck process.

The balance between the algorithmic complexity of the simulation and the variance reduction
factor has also been studied.
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Introduction

The quantization of a random variable X consists of its approximation by a random variable Y taking
finitely many values. This problem has been initially investigated for its applications to signal trans-
mission and for compression issues. (See [8].) In this context, quantization was a method of signal
discretization. The point of interest was to design the random variable Y in order to minimize the
resulting error. This led to the concept of optimal quantization.

More recently, quantization has been introduced in numerical probability to devise numerical inte-
gration methods [21] and for solving multi-dimensional stochastic control problems such as American
options pricing [1] and swing options pricing [2]. Optimal quantization has many other applications and
extensions in various fields like automatic classification (quantization of empirical measures) and pattern
recognition.

Since the early 2000’s, the infinite dimensional setting has been extensively investigated from both
theoretical and numerical viewpoints with a special attention paid to functional quantization (the infinite
dimensional case) [17, 22]. Stochastic processes are viewed as random variables taking values in their
path spaces such as L2

T := L2([0, T ], dt).
Still the Monte-Carlo simulation remains the most common numerical methods in the field of nu-

merical probability. One reason is that it is easy to implement in an industrial configuration. In the
industry of derivative, banks implement generic Monte-Carlo frameworks for pricing numerous payoffs
with a wide variety of models. Another advantage is that the Monte-Carlo method can be parallelized.

Variance reduction methods can be used to reduce dramatically the computation time of a Monte-
Carlo simulation, or increase its accuracy. Main variance reduction methods are (adaptive) control
variate, pre-conditioning, importance sampling and stratification [9, 16]. The problem is that these
methods may strongly depend on the payoff or the model and imply specific changes in the practical im-
plementation of the Monte-Carlo method. Thus, most institutions do not implement the most advanced
methods in practice except for marginal cases.

In this paper, we point out theoretical aspects of quantization that lead to a strong link between
the problem of optimal L2-quantization of a random variable and the variance reduction that can be
achieved by stratification. We emphasize on the consistency of quantization for designing strata in
stratified sampling methods in both finite dimensional and infinite dimensional frameworks. Then, we
devise a stratified sampling algorithm based on product functional quantization for path-dependent
functionals of multi-factor Brownian diffusions. We show that this strata design has a uniform efficiency
among the class of Lipschitz continuous functionals of the Brownian motion. The simulation cost of
the conditional path is O(n) where n is the number of discretization dates, like for naive Monte-Carlo
simulations. In this context, this stratification based variance reduction method can be considered as a
guided Monte-Carlo simulation. (See figure 6.) The method extends to any Gaussian process as soon
as its Karhunen-Loève decomposition is explicitly known. So is the case for the Brownian bridge or the
Ornstein-Uhlenbeck process. The special case of the Ornstein-Uhlenbeck process is derived in annex B.

One very common situation is the case of Monte-Carlo implementations that are based on multi-
factor Brownian diffusions approximated by their Euler scheme. The presented method is particulary
adapted to this situation. Even in the multi-dimensional case, no matter how the independent Brownian
motions are correlated or used afterwards ; no matter if it is used for diffusing the underlying stock, a
stochastic volatility process or an actualization factor. Functional stratification can be used as a generic
variance reduction method. The point is that it is used upstream in the Monte-Carlo framework. One
does not need to re-implement the whole framework but only the way it is alimented with Brownian
motions. Thus quantization-based functional stratification can come along on the top of a computation
procedure. In the last section, numerical tests are provided with a benchmark with a Up-In-Call pricing
in the Black and Scholes model.

The paper is organized as follows. Section 1 presents the main results about optimal quantization
that are required in the following. The emphasis is on the functional quantization of Gaussian processes.
Section 2 presents the first historic quantization-based variance reduction method : using quantization as
a control variate variable, as proposed in [22, 15]. Then section 3 outlines the links between quantization
and stratification. The emphasis is on the Gaussian case. The method is specified in the functional
case for Gaussian processes in section 4. We present a simulation method for the Brownian motion
and other examples of Gaussian processes (as the Ornstein-Uhlenbeck process and the Brownian bridge)
that preserves the O(n) simulation complexity where n is the number of time steps. In section 5, we
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provide numerical experiments of the method with option pricing problems arising in mathematical
finance. Annex A provides the proof of a closed form expression for the Brownian motion used for
functional stratification. Annex B presents the computation of the Karhunen-Loève decomposition of
the Orstein-Uhlenbeck process, and the related numerical methods. A pseudo-code for the decomposition
computation is provided.

1 Optimal quantization, the abstract framework

1.1 Introduction to quantization of random variables

In the following, (Ω,A,P) is a probability space, and E is a separable reflexive Banach space. The norm
on E is denoted | · |. In the following, one will assume that the random variable are defined on (Ω,A,P).
One denotes N

∗ := {1, 2, · · · }.
The principle of the quantization of a random variable X taking its values in E is to approximate X

by a random variable Y taking a finite number N of values in E. The discrete random variable Y is a
quantizer of X .

The resulting error of this discretization is the Lp-norm of X−Y . One wants to minimize this induced
error. This gives the following minimization problem:

min {‖X − Y ‖p, Y : Ω→ E measurable, card(Y (Ω)) ≤ N} . (1)

Definition (Voronoi partition). Consider N ∈ N
∗, Γ = {y1, · · · , yN} ⊂ E and let C = {C1, · · · , CN} be

a Borel partition of E. C is a Voronoi partition associated with Γ if ∀i ∈ J1, NK, Ci ⊂ {ξ ∈ E, |ξ− yi| =
min

j∈J1,NK
|ξ − yj |}.

If C = {C1, · · · , CN} is a Voronoi partition associated with Γ = {y1, · · · , yN}, it is clear that ∀i ∈
J1, NK, yi ∈ Ci. Ci is called Voronoi slab associated with yi in C and yi is the centre of the slab Ci.
One denotes Ci = slabC(yi), and for every a ∈ Γ, W (a|Γ) is the closed subset of E defined by W (a|Γ) ={
y ∈ E, |y − a| = min

b∈Γ
|y − b|

}
.

Definition (Nearest neighbour projection). Let us consider the settled point set Γ = {y1, · · · , yN} ⊂ E
and C = {C1, · · · , CN} the associated Voronoi partition. The nearest neighbour projection on Γ is the

application ProjΓ :=
N∑
1=1

yi1Ci
.

Proposition 1.1. Let X be an E-valued Lp random variable, and Y taking its values in the settled point
set Γ = {y1, · · · , yN} ⊂ E where N ∈ N. Set X̂Γ the random variable defined by X̂Γ := ProjΓ(X) where
ProjΓ is a nearest neighbour projection on Γ, called a Voronoi Γ-quantizer of X.

Then we clearly have |X − X̂Γ| ≤ |X − Y | a.s.. Hence ‖X − X̂Γ‖p ≤ ‖X − Y ‖p.

As a consequence of the previous remark, solving the minimization problem (1) amounts to solving
the simpler minimization problem

min {‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N} . (2)

The quantity ‖X − ProjΓ(X)‖p is called the mean Lp-quantization error. When this minimum is
reached, one refers to optimal quantization.

The problem of the existence of a minimum have been investigated for decades on its numerical and
theoretical aspects in the finite dimensional case [20, 10].

• For every N ≥ 1, the Lp-quantization error is Lipschitz continuous and reaches a minimum. An N -
tuple that achieves the minimum has pairwise distinct components, as soon as card(supp(PX)) ≥ N .
This result stands in the general abstract case of a random variable valued in a reflexive Banach
space. (This has been prooved in [17].)

• If card(X(Ω)) is infinite, this minimum strictly decreases to 0 as N goes to infinity. The rate of
convergence is ruled by theorem 1.2 in the finite dimensional case.
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Theorem 1.2 (Zador). • Sharp rate (See [10]) Let r > 0 and X ∈ Lp+η(P) for some η > 0.
Let PX(dξ) = φ(ξ)dξ + µ(dξ) be the canonical decomposition of the distribution of X (µ and the
Lebesgue measure are singular). Then, (if φ 6≡ 0),

eN,r(X,R
d) ∼ J̃r,d ×

(∫

Rd

φ
d

d+r (u)du

) 1
d
+ 1

r

×N− 1
d as N →∞, (3)

where J̃r,d ∈ (0,∞).

• Non asymptotic upper bound (See [19]) Let d ≥ 1. There exists Cd,r,η ∈]0,∞[ such that, for
every R

d-valued random vector X,

∀N ≥ 1, eN,r(X,R
d) ≤ Cd,r,η‖X‖r+ηN

− 1
d . (4)

This mainly says us that min
{
‖X − X̂‖p, card(Γ) ≤ N

}
∼ CPX ,p,dN

− 1
d . The first statement of the

theorem was first prooved for distributions with compact supports by Zador in [27]. Then a first extension
to general probability distributions on R

d is developped in [5]. The first mathematically rigorous proof
can be found in [10]. The non asymptotic error bound of the second statement is prooved in [19].

In figure 1, the Voronoi partition of a random N -quantizer and an L2-optimized N quantizer of the
N (0, I2) distribution are given.
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Figure 1: Voronoi partition of a random quantizer and a L2-optimized N -quantizer of the N (0, I2)
distribution in R

2. (N = 20).

1.2 Stationarity and centroidal Voronoi tessellations

We now assume that E is a separable Hilbert space (H, 〈., .〉H).

• CN(X) is the set of L2-optimal quantizers of X of level N .

• eN(X) is the minimal quadratic distortion that can be achieved when approximating X by a
quantizer of level N .

Definition (Stationarity). A quantizer Y of X is stationary (or self-consistent) if

Y = E[X |Y ]. (5)

Proposition 1.3 (Stationarity of L2-optimal quantizer). A (quadratic) optimal quantizer is stationary.

The stationarity is a particularity of the quadratic case (p = 2). In other Lp cases, a similar property
involving the notion of p-centre occurs. A proof of is available in [11].

A consequence is, if Y = ProjΓ(X) is an L2-optimal quantizer, and C = {C1, · · · , Cn} is the associated
Voronoi partition, one has ∀y ∈ Γ, y = E[X |X ∈ slabC(y)].
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Proposition 1.4. Let X be an H-valued L2 random variable. Let us denote DX
N the squared quadratic

quantization error associated with a codebook of size N with respect to X.

DX
N : HN → R+

(x1, · · · , xN ) → E

[
min

1≤i≤N
|X − xi|2H

]
.

The distortion function DX
N is |.|H-differentiable at N -quantizers x ∈ HN with pairwise distinct

components and

∇DX
N (x) = 2

(∫

Ci(x)

(xi − ξ)PX(dξ)
)
1≤i≤N

= 2
(
E(X̂Γ(x) −X)1{X̂Γ(x)=xi}

)
1≤i≤N

. (6)

Hence any Voronoi quantizer associated with a critical point of DX
N is a stationary quantizer.

Definition (Centroidal projection). Let C = {C1, · · · , CN} be a Borel partition of H. Let us define for

1 ≤ i ≤ N , Gi =

{
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 in the other case.

the centroids associated with X and C.

The centroidal projection associated C and X is the application ProjC,X : x→
N∑
i=1

Gi1Ci
(x).

Lemma 1.5 (Huyghens, variance decomposition). Let X ∈ L2(P) be a H-valued L2 random variable,

N ∈ N
∗ and C = (Ci)1≤i≤N a Borel partition of H. Consider ProjC,X =

N∑
i=1

Gi1Ci
the associated cen-

troidal projection.
Then one has,

Var(X) = E[|X − ProjC,X(X)|2]
︸ ︷︷ ︸

:=(1)

+E[|ProjC,X(X)− E[X ]|2
︸ ︷︷ ︸

:=(2)

.

The variance of the probability distribution X decomposes itself into the intraclass inertia (1) plus
the interclass inertia (2).

Proof of lemma:

Var(X) = E[|X − ProjC,X(X) + ProjC,X(X)− E[X ]|2]
= E[|X − ProjC,X(X)|2]
︸ ︷︷ ︸

=(1)

+E[|ProjC,X(X)− E[X ]|2]
︸ ︷︷ ︸

=(2)

+2E[〈X − ProjC,X(X),ProjC,X(X)− E[X ]〉]
︸ ︷︷ ︸

:=(3)

.

Now (3) = 0 since ProjC,X(X) = E[X |ProjC,X(X)]. �

1.3 Optimal quantization and principal component analysis

1.3.1 Reduction of dimension

The aim is now the reduction of the quantization problem to finite dimensional subspaces of H . For any
finite dimensional subspace U of H , let ΠU denote the orthogonal projection from H onto U .

Proposition 1.6. Let U be a finite dimensional linear subspace of H. Then

eN (ΠU (X))2 ≤ eN(X)2 ≤ inf

{
E

[
min
a∈Γ
‖X − a‖2

]
,Γ ⊂ U, 1 ≤ cardΓ ≤ N

}

= E‖X −ΠU (X)‖2 + eN (ΠU (X))2.

In other words, the quadratic quantization error with respect to Γ ⊂ U consists of the projection
error and the quantization error of the projected random variable. Let us refer to [17] for a proof.

Notation: Let dN (X) = min{dim span(Γ),Γ ∈ CN (X)} denotes the quantization dimension of the level
N of the quantization problem for X .
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It follows from proposition 1.6 that

e2N (X) = min

{
E[‖X −ΠV (X)‖2] + e2N (ΠV (X)),

V ⊂ H linear subspace
such that dimV ≥ dN (X)

}
.

1.3.2 Covariance operator of a random variable

Definition. Let X be a centered H-valued L2 random variable.
The covariance operator CX : H → H of X is defined by CXy = E[〈y,X〉X ].

1. In the finite dimensional case, the matrix of CX in the canonical basis is the covariance matrix of
X .

2. If X = (Xt)t∈[0,T ] is a bi-measurable centered L2(P)-process with paths in L2([0, T ], dt) a.s. and
covariance function ΓX(s, t) := E[XsXt] satisfying

∫
[0,T ] ΓX(s, t)ds < +∞. Then X can be seen as

a L2([0, T ], dt)-valued random variable with E[‖X‖2] <∞.

CXy =

∫

[0,T ]

y(s)ΓX(s, ·)ds, y ∈ L2([0, T ], dt). (7)

In [17], it is prooved that linear subspaces U of H spanned by n-stationary codebooks of Gaussian
measures correspond to principal components of X , in other words, are spanned by eigenvectors of CX

corresponding to the m largest eigenvalues. Thus these subspaces correspond to the first m principal
components of X .

Theorem 1.7. Let Γ be an optimal codebook for X, U = span(Γ) and m = dimU . Then CX(U) = U
and E‖X − ΠU (X)‖2 =

∑
j≥m+1

λXj , where λX1 ≥ λX2 ≥ · · · > 0 are the ordered non-zero eigenvalues of

CX (written as many times as their multiplicity).

∑

j≥m+1

λXj = inf{E‖X −ΠV (X)‖2|V ⊂ H linear subspace, dim V = m}.

We now deduce the final representation of eN(X).

eN(X)2 =
∑

j≥m+1

λXj + eN

( m⊗

j=1

N (0, λXj )
)2

for m ≥ dN (X), (8)

eN(X)2 <
∑

j≥m+1

λXj + eN

( m⊗

j=1

N (0, λXj )
)2

for 1 ≤ m < dN (X). (9)

These two equations (8) and (9) show that for the quantization of a Gaussian process X , as soon
as we know its Karhunen-Loève basis (eXn )n∈N∗ and its eigenvalues (λXn )n∈N∗ , the problem of optimal
L2-quantization comes to the problem of the quantization of a Gaussian vector of dimension dN .

1.4 Product quantization

Let (en)n∈N∗ be a Hilbertian basis of H and I ⊂ N
∗ is a non empty finite subset of N∗. For every k ∈ I,

consider a Nk-tuple ΓNk = {xNk

1 , · · · , xNk

Nk
} ⊂ R.

An easy way to construct a quantizer is to define the codebook Γ by the set of the points x such that
for every k ∈ I, 〈x, ek〉 ∈ Γk and for every k ∈ N

∗\I, 〈x, ek〉 = E[〈X, ek〉].
The Voronoi cells associated with such a codebook are hyper-parallelepipeds.

Proposition 1.8 (Case of independent marginals). With the same notations, if one assumes that the
marginals of X, (〈X, e1〉, 〈X, e2〉, · · · ) are independent, then one can choose for each k ∈ I the values
Γk = {xNk

1 , · · · , xNk

Nk
} such that Y k = ProjΓk(〈X, ek〉) is a stationary quantizer of 〈X, ek〉. Then Y =

ProjΓ(X) is a stationary quantizer of X.

This method yields a stationary quantizer with a simple projection rule.
A drawback of product quantization is that one needs to restrict to the case of independent marginals

in order to preserve stationarity.
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1.5 Numerical optimal quantization

Various numerical algorithms have been developed to obtain numerically an optimal N -grid with a
minimal quadratic quantization error in the finite-dimensional setting. A review of these methods is
available in [24]. Let us mention the Lloyd’s algorithm for the quadratic case, which is the natural
probabilistic counterpart of a classification algorithm due to Forgy [7].

Another algorithm is a stochastic gradient method which is suggested by the fact that the L2-
quantization distortion function is differentiable at any N -tuple having pairwise distinct components
and a PX-negligible Voronoi tessellation boundary and has an integral representation. The algorithm is
deeply investigated in [21].

Equation (6) shows that any Voronoi quantizer associated with a critical point of DX
N is a stationary

quantizer. In the case of one dimensional distributions, as the Gaussian distribution, the Hessian of the
distortion is known and can be represented by a tridiagonal matrix. Hence, it is easy to invert and a
Newton-Raphson method can be implemented. It is completely detailed in [21] in the Gaussian case. It
remains the fastest way to compute L2-optimal quantizers of one-dimensional Gaussian variables.

1.6 Quantization of Gaussian processes

1.6.1 Quantization

From now on, we will assume that X is a bi-measurable Gaussian process defined on the probability

space (Ω,A,P) satisfying E[|X |2
L2

T

] =
T∫
0

E[X2
s ]ds <∞,.

We have seen in section 1.3 that in this context, as soon as one knows the Karhunen-Loève system
(eXn , λ

X
n )n∈N∗ of the covariance operator of X , the problem of the L2-optimal quantization of the process

X comes to the quantization of the Gaussian vector
m⊗
j=1

N (0, λXj ). The companion parameters of the

functional quantizer are easily deduced from the quantizer of
m⊗
j=1

N (0, λXj ) that is used.

All this is valid for any Gaussian process X , except that one needs to know its Karhunen-Loève
basis. Several usual Gaussian processes have explicit Karhunen-Loève expansions, like the Brownian
motion and the Brownian bridge. The Ornstein-Uhlenbeck process admits a semi-closed form for its
Karhunen-Loève expansion. (The formula is derived for normalized parameters in the stationary case in
[12], p.195.) In section B, the computation of Karhunen-Loève decomposition of the Ornstein-Uhlenbeck

process is detailed in the general Gaussian case (r0
L∼ N (m0, σ

2
0)). As far as we know, the K-L expansion

of the fractional Brownian motion is not known.
Further in the paper, numerical illustrations will be given for the following cases.
1. The Brownian motion (Wt)t∈[0,T ]:

eWn (t) :=

√

2

T
sin

(

π(n− 1/2)
t

T

)

, λW
n :=

( T

π(n− 1/2)

)2

, n ≥ 1. (10)

2. The Brownian bridge on [0, T ]:

eBn (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

( T

πn

)2

, n ≥ 1. (11)

3. The Ornstein-Uhlenbeck process on [0, T ], starting from 0, and defined by the SDE

drt = −θrtdt+ σdWt : (12)

eOU
n (t) :=





1
√

T
2
−

sin(2ωλn
T )

4ωλn



 sin(ωλnt), λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1, (13)

where (ωλn)n≥1 are the strictly positive solutions of the equation

θ sin(ωλnT ) + ωλn cos(ωλnT ) = 0,

sorted in an increasing order. (Based on results from section B.)

4. The stationary Ornstein-Uhlenbeck process on [0, T ]. (See section B.)

On figure 2, one can see an N -optimal L2-quantizer of the standard Brownian motion.
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Figure 2: Optimal quantizer of a standard Brownian motion on [0, 1].

1.6.2 Product quantization

Thanks to equations (8) and (9), product quantization of the finite dimensional Gaussian vector ξ
L∼

m⊗
j=1

N (0, λXj ) yields a stationary quantizer of the processX . In this context, let us introduce the following

notations:
The quantizer of X is X̂ =

∑
n≥1

√
λXn ξ̂ne

X
n , where ξ̂n is an optimal Nn-quantizer of ξn and N1× · · · ×

Nn ≤ N, N1, · · · , Nn ≥ 1. (Hence for large enough n, Nn = 1 so that ξ̂n = 0.)
The paths of an N1 × · · · ×Nn-quantizer χ and a multi-index i = {i1, · · · , in, · · · } that produces this

quantization are of the form

χi =
∑

n≥1

√
λXn x

Nn

in
eXn . (14)

A quantizer χ defined by equation (14) is called a K-L product quantizer. Furthermore, one denotes
by Opq(X,N) the set of the K-L product quantizers of size at most N of X .

In the case of a product quantization, the counterpart of equation (8) is

E[min
i
|X − χi|2] =

dx∑
n=1

λXn E

[
min

1≤in≤Nn

|ξn − x(Nn)
in
|
]
+

∑
n≥dx+1

λXn

=
dx∑
n=1

λXn E

[
min

1≤in≤Nn

|ξn − x(Nn)
in
|
]
+ E[|X |2

L2
T

]−
dx∑
n=1

λXn .

(15)

1.6.3 Product decomposition blind optimization

As a consequence, the lowest quadratic quantization error induced by a K-L-product quantizer having
at most N codebooks is obtained as a solution of the minimization problem

min
{
e(χ), χ ∈ Opq(X,N)

}
, (16)

that is, thanks to equation (15)

min
{ d∑

n=1

λXn min
RNn

‖ξ − ξ̂(Nn)‖22 +
∑

n≥d+1

λXn , N1 × · · · ×Nn ≤ N, d ≥ 1
}
. (17)

A solution of (16) is called an optimal K-L product quantizer.
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The blind optimization procedure consists of computing the criterium for every possible decomposition
N1 × · · · × Nn ≤ N . For a given Gaussian process X , results can be kept off-line for a future use.
Optimal decompositions for a wide range of values of N for both Brownian bridge and Brownian motion
are available on the web site www.quantize.maths-fi.com [23] for download. The blind optimization
procedure is more thoroughly described in [22]. Let us remind that the optimal decomposition depends
on the parameters of the Orstein-Uhlenbeck process (σ and θ in equation (12)) and the maturity.

Some values of optimal decompositions for the stationary Ornstein-Uhlenbeck process are given in
table 3.

N Nrec Squared L2 Quantization Error Nrec decomposition

1 1 1.5 1
10 10 0.65318 5 - 2
100 96 0.40929 6 - 4 - 2 - 2
1000 960 0.29618 10 - 6 - 4 - 2 - 2
10000 9984 0.23150 13 - 8 - 4 - 3 - 2 - 2 - 2

Figure 3: Record of optimal product decomposition values of the stationary centered Ornstein-Uhlenbeck
process given by drt = −θrtdt+ σdWt on [0, T ] with θ = 1, σ = 1 and T = 3.

Proceeding in this article, we will be confronted with other similar optimization problems (with
another criterium than the quadratic distortion). The blind optimization procedure will be the way to
compute optimal product decomposition databases.

In figure 4, one can see examples of optimal product quantizers of the Brownian motion and the
Brownian bridge on [0, 1]. In figure 4, one can see optimal product quantizers of the centered Ornstein-
Uhlenbeck process starting from r0 = 0 and a stationary Ornstein-Uhlenbeck on [0, 3].
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Figure 4: Optimal product quantizer of a standard Brownian motion (left) and a standard Brownian
bridge (right) on [0, 1].

1.6.4 Rate of decay for the quantization error

In [17], a precise link between the rate problem and Shannon-Kolmogorov’s entropy of X is estab-
lished. This allowed them to compute the exact rate of convergence of the minimal L2-quantization
error under rather general conditions on the eigenvalues of the covariance operator. Typical rates are
O(log(n)−a), a > 0. This conditions are fulfilled by a large class of processes as the Ornstein-Uhlenbeck
process and the Brownian motion.
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Figure 5: Optimal product quantizer of a centered Ornstein-Uhlenbeck process, starting from r0 = 0
(left) and stationary (right) given by drt = −rtdt+ dWt, on [0, 3].

2 Quantization as a control variate: a first attempt to quantiza-

tion based variance reduction

This method has been initially proposed in [22].

2.1 Quantization as a control variate variable

LetX : (Ω,A,P)→ E be a square integrable random variable, condiderN ∈ N
∗ and let Γ = {y1, · · · , yN}

be an N -codebook. We suppose that we have access to a Γ-valued quantizer Y = Proj(X) =
N∑
i=1

yi1Ci
(x)

where C = {C1, · · · , CN} is a partition of E. At this step, we do not need Proj to be a nearest neighbour
projection on Γ.

Let F : E → E be a Lipschitz continuous function such that F (X) ∈ L2(P). In order to compute
E[F (X)], one writes:

E[F (X)] = E
[
F (Proj(X))

]
+ E

[
F (X)− F (Proj(X))

]

= E
[
F (Proj(X))

]
︸ ︷︷ ︸

(a)

+
1

M

M∑

m=1

F (X(m))− F (Proj(X(m)))

︸ ︷︷ ︸
(b)

+RN,M , (18)

where X(m), 1 ≤ m ≤ M are M independent copies of X , and RN,M is a remainder term defined by
equation (18).

Here, term (a) can be computed by quantization and term (b) can be computed by a Monte-Carlo
simulation. Now

‖RN,M‖2 = σ(F (X)−F (Proj(X)))√
M

≤ ‖F (X)−F (Proj(X))‖2√
M

≤ [F ]Lip
‖X−Proj(X)‖2√

M
.

Furthermore,
√
MRN,M →L N

(
0,Var

(
F (X)− F (Proj(X))

))
.

Consequently, in the d-dimensional case, if F is simply a Lipschitz function and if (YN )N∈N =
(ProjN (X))N∈N is a rate optimal sequence of quantizers of X ,

‖F (X)− F (ProjN (X))‖2 ≤ [F ]Lip
CX

N1/d

and

‖RN,M‖2 ≤ [F ]Lip
CX

M1/2N1/d
.
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Likewise, in the case of the Brownian motion, if (ŴN )N≥1 is a rate optimal sequence of product
quantization of the Brownian motion, if F is simply a Lipschitz functional, then

‖F (W )− F (ŴN )‖2 ≤ [F ]Lip
CW

log(N)1/2

and

‖|RN,M |L2
T
‖2 ≤ [F ]Lip

CW

M log(N)1/2
.

2.2 Practical implementation: the problem of fast nearest neighbour search

• The complexity of the projection: Concerning practical implementation, one notices in equation
(18) that for every step of the Monte-Carlo method, one has to compute the projection Proj(X(m)). This
is the critical part of the algorithm when dealing with optimal quantization. Hence, the efficiency of the
quantization as a control variate variable is conditioned by the efficiency of the projection procedure.
When dealing with Voronoi quantization, this is the nearest neighbour projection.

The problem of nearest neighbour projection, also known as the post office problem [14], has been
widely investigated in the area of computational geometry. It is encountered for many applications, as
pattern recognition and information retrieval.

The problem has been solved near optimally for the case of low dimensions. Algorithms differ on
their practical efficiency on real data sets. For large dimensions, most solutions have a complexity that is
exponential with the dimension, or require a bigger query time than the obvious brute force algorithm.
In fact for dimension d > logN , a brute force algorithm is usually the best choice. This effect is known
as the curse of dimensionality. Still, even in low dimension, fast nearest neighbour search is a critical
part of the algorithm. Let us refer to [26] for a review about fast nearest neighbour search algorithms.

Concerning vector quantization, the speed of the projection can also be increased by relaxing the
hypothesis within the projection on the quantizer is a nearest neighbour projection. It can be done by
designing other kind of partitions of the state space.

• The functional case: One other drawback of the method, when dealing with the functional case
is that one does not simulate the whole trajectory of the stochastic process but only its marginals at
discretes dates. Hence it is not possible to compute its projection. This problem finds its solution in the
simulation scheme for Gaussian processes derived in section 4.2 for the functional stratification.

A variance reduction technique using a functional quantizer of the Brownian motion as a control
variate has been proposed in [15].

3 Application of quantization to stratification

3.1 A short background on stratification

The base idea of stratification is to localize the Monte-Carlo method on the element of a measurable
partition of the state space of a L2 random variable X : (Ω,A)→ (E, ε).

• Let (Ai)i∈I be a finite ε-measurable partition of E. The sets Ai are called strata. Assume that the
weights pi = P(X ∈ Ai) are known for i ∈ I and strictly positive.

• Let us define the collection of independent random variables (Xi)i∈I with distribution L(X |X ∈
Ai).

Remark: One assumes that one can write Xi = φi(U) where U is uniformly distributed on [0, 1]ri

and φ : [0, 1]ri → R is an easily computable function. (One has ri ∈ N ∪ {+∞}, the case ri = +∞
occurs for example in the case of the acceptance-rejection method.) This condition simply means that

the random variables Xi
L∼ L(X |X ∈ Ai) are easy to simulate on a computer.

It is a major constraint for practical implementation of stratification methods. This simulability
condition usually has a strong impact on the possible design of the strata. In the following, one will
come back several times on this condition.
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Let F : (E, ε)→ (R,B(R)) such that E[F 2(X)] < +∞.

E[F (X)] =
∑
i∈I

E[1{Xi∈Ai}F (X)] =
∑
i∈I

piE[F (X)|X ∈ Ai]

=
∑
i∈I

piE[F (Xi)].

The stratification concept comes into play now. Let M be the global budget allocated to the com-
putation of E[F (X)] and Mi = qiM the budget allocated to compute E[F (Xi)] in each stratus. One
assumes that

∑
i∈I

qi = 1. This leads to define the (unbiased) estimator of E[F (X)]:

F (X)
I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F (Xk
i ), (19)

where (Xk
i )1≤k≤Mi

is a L(X |X ∈ Ai)-distributed random sample.

Proposition 3.1. With the same notations:

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2i
qi
σ2
F,i, (20)

where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)) ∀i ∈ I.

Proof: Let us denote Zi =
1
Mi

Mi∑
k=1

F (Xk
i ). (Zi)i∈I are independent.

One has F (X)
I

M =
∑
i∈I

piZi. Hence, by independence,

Var(F (X)
I

M ) =
∑

i∈I

p2i Var(Zi) =
∑

i∈I

p2i
1

Mi
Var(F (Xi)) =

1

M

∑

i∈I

p2i
qi
σ2
F,i.

�

Optimizing the simulation allocation to each stratus amounts to solving the following minimization
problem:

min
(qi)∈PI

∑

i∈I

p2i
qi
σ2
F,i where PI =

{
(qi)i∈I ∈ R

I
+

∣∣∣
∑

i∈I

qi = 1
}
. (21)

3.1.1 Sub-optimal choice

The first natural choice is to set
qi = pi, i ∈ I. (22)

The two motivations for this choice are the facts that the weights pi are known and because it always
reduces the variance.

∑
i∈I

p2
i

qi
σ2
F,i =

∑
i∈I

piσ
2
F,i =

∑
i∈I

E

[(
F (X)− E[F (X)|X ∈ Ai]

)2
1Ai

(X)
]

= ‖F (X)− E[F (X)|σ({X ∈ Ai}, i ∈ I)]‖22
≤ ‖F (X)− E[F (X)]‖22 = Var(F (X)).

3.1.2 Optimal choice

The optimal choice is the solution of the constrained minimization problem (21). The Schwartz inequality
yields

∑

i∈I

piσF,i =
∑

i∈I

piσF,i√
qi

√
qi ≤

(∑

i∈I

p2iσ
2
F,i

qi

)1/2(∑

i∈I

qi

︸ ︷︷ ︸
=1

)1/2
.
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As a consequence, the solution of the minimization problem corresponds to the equality case into the
Schwartz inequality. Hence the solution of the minimization problem is given by

q∗i =
piσF,i∑

j∈I

pjσF,j
, i ∈ I (23)

and the corresponding minimal variance is given by
( ∑

i∈I

piσF,i

)2
.

At this point, the problem is that one does not know the local inertia σ2
F,i. Still, using the fact that

Lp norms are decreasing with p, one sees that

σF,i ≥ E

[∣∣F (X)− E[F (X)|{X ∈ Ai}]
∣∣
∣∣∣{X ∈ Ai}

]
,

so that (∑

i∈I

piσF,i

)2
≥
∥∥∥F (X)− E

[
F (X)|σ({X ∈ Ai}, i ∈ I)

]∥∥∥
2

1
.

In [6], Étoré and Jourdain proposed an algorithm for adaptively modifying the proportion of further
drawings in each stratum, that converges to the optimal allocation. This can be used in a general
framework.

In section 3.2, we will see that the problem of designing good strata, in term of variance reduction is
linked with the problem of optimal quantization. Moreover, the case of quantization based strata have
two other advantages:

• The weights pi are already known, which saves us from evaluating their values during the Monte-
Carlo evaluation.

• As concerns the optimal choice for the allocation parameters qi, one shows in theorem 3.2 that
weights can be chosen such that stratification has a uniform efficiency among the class of Lipschitz
continuous functionals. This weights have an explicit expression in the case of quantization based
stratification.

3.2 Stratification and quantization

The main drawback induced by using quantization as a control variate variable is that it requires re-
peated computations of projections on the quantizer. (Nearest neighbour search in the case of a Voronoi
quantizer.) The point when dealing with stratification is that one does not have to use a projection
procedure.

The critical point now is the cost of the simulation of conditional distributions L(X |X ∈ Ai), i ∈ I.
Theorem 3.2 brings together previous results about stratification and highlights the relationships with

the notions of local inertia and intraclass inertia. It stresses the fact that stratification has a uniform
efficiency among the class of Lipschitz continuous functionals.

Theorem 3.2 (Universal stratification). Let A = (Ai)i∈I be a partition (stratification) of E. (Keep in
mind the notation ProjA,Z for the centroidal projection of the distribution Z on a partition A, defined
in definition 1.2).

1. For every i ∈ I, consider the local inertia of the random variable X,

σ2
i = E

[
|X − E[X |X ∈ Ai]|2

∣∣∣X ∈ Ai

]
.

Then, for every Lipschitz continuous function F : E → R,

∀i ∈ I, σF,i ≤ [F ]Lipσi so that sup
[F ]Lip≤1

σF,i ≤ σi. (24)
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2. In the case of the sub-optimal choice (see section 3.1.1),

sup
[F ]Lip≤1

( ∑
i∈I

piσ
2
F,i

)
≤ ∑

i∈I

piσ
2
i =

∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]
∥∥∥
2

2

=
∥∥∥X − ProjA,X(X)

∥∥∥
2

2
.

(25)

3. In the case of the optimal choice (see section 3.1.2),

sup
[F ]Lip≤1

(∑

i∈I

piσ
2
F,i

)
≤
(∑

i∈I

piσi

)2
, (26)

and (∑

i∈I

piσi

)2
≥
∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]

∥∥∥
2

1
=
∥∥∥X − ProjA,X(X)

∥∥∥
2

1
.

4. If one considers vector-valued Lipschitz continuous functions F : E → E, then inequalities (24),
(25) and (26) hold as equalities.

Proof: One has
σ2
F,i = Var(F (X)|X ∈ Ai)

= E
[∣∣F (X)− E[F (X)|X ∈ Ai]

∣∣2∣∣X ∈ Ai

]

≤ E
[∣∣F (X)− F (E[X |X ∈ Ai])

∣∣2∣∣X ∈ Ai

]
.

Now using that F is Lipschitz, it follows that

σ2
F,i ≤ [F ]2Lip

1

pi
E

[∣∣X − E[X |X ∈ Ai]
∣∣21{X∈Ai}

]
= [F 2]Lipσ

2
i .

Items 2 and 3 easily follow from item 1. Claim 4 is obvious by considering F = IdE . �

The general case: The idea is now to use the partition {A1, · · · , AN} and the N -codebook Γ =

{y1, · · · , yN} associated with the projection Proj(x) =
N∑
i=1

yi1Ai
(x).

In the case of a Voronoi quantization, this amounts to setting I = {1, · · · , N} and Ai = slabA(xi).

Then for every i ∈ {1, · · · , N}, there exists a Borel function φ(xi, .) : [0, 1]q → E such that φ(xi, U)
L∼

L(X |X ∈ Ci) =
1Ci

PX(dξ)

P[X∈Ci]
, where U

L∼ U([0, 1]q).
Now let (ξ, U) be a couple of independent random variables such that ξ has the distribution of

Y = Proj(X) and U
L∼ U([0, 1]q). Then one checks that φ(ξ, U) has the same distribution as X , so

that one may assume without loss of generality that X = φ(Proj(X), U) and which in turn implies that
ξ = Proj(X) i.e.

X = φ(Proj(X), U), where U
L∼ U([0, 1]q) is independent of Proj(X).

In terms of implementation as mentioned above, one needs a simple form for the function φ (in term
of computational complexity) which induces some stringent constraints on the choice of the strata.

3.3 Simulability for hyper-rectangles strata in the independent Gaussian

case.

Consider a random variable X
L∼ N (0, Id), d ≥ 1. Let (e1, · · · , ed) be an orthonormal basis of E = R

d.
We set N1, · · · , Nd ≥ 1 the number of strata in each direction. So we consider for 1 ≤ i ≤ d, −∞ = xi0 ≤
xi1 ≤ · · · ≤ xiNi

= +∞. The strata are

Ai =

d∏

l=1

{
x ∈ R

d such that 〈el, x〉 ∈ [ylil−1, y
l
il ]
}
, i ∈

d∏

l=1

{1, · · · , Nl}.
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Then for every multi-index i ∈
d∏

l=1

{1, · · · , Nl},

L(X |X ∈ Ai) =

d⊗

l=1

L(Z|Z ∈ [xlil−1, x
l
il ]), where Z

L∼ N (0, 1).

Then pi = P(Ai) =
d∏

k=1

(
N (xik )−N (xik−1

)
)

and for −∞ ≤ a ≤ b ≤ ∞,

L(Z|Z ∈ [a, b]) = N−1
((
N (b)−N (a)

)
U +N (a)

)
, U

L∼ U([0, 1]). (27)

4 Functional stratification of a Gaussian process

In the functional case, the state space of the random values are functional spaces. What is usually done
is to simulate a scheme to approximate marginals of the underlying process.

In this section, we assume that X is an R-valued Gaussian process on [0, T ]. We are interested in
the value of E[F (Xt0 , Xt1 , · · · , Xtn)] where 0 = t0 ≤ t1 ≤ · · · ≤ tn = T are n+1 dates of interest for the
underlying process.

(For example, X can be a standard Brownian motion on [0, T ], and V the risk-neutral expectation
of a path-dependent payoff of a diffusion based on X .)

What is done in this section can be easily generalized to multi-dimensional processes in the case where
their coordinates are independent. (For example, when dealing with multi-factor Brownian diffusions, it
does not matter how the Brownian motions are being correlated afterward.) Still we restrict ourselves
to the one dimensional setting for clarity.

Let us assume that χ ∈ Opq(X,N) is a K-L product quantizer of X . The codebook associated with
this product quantizer is the set of the paths of the form

χi =
∑

n≥1

√
λXn x

(Nn)
i eXn , i = {i1, · · · , in, · · · },

with the same notations as in section 1.6.2.
We now need to be able to simulate the conditional distribution

L(X |X ∈ Ai)

where Ai is the slab associated with χi in the codebook.
To simulate the conditional distribution L(X |X ∈ Ai) , one will :

• First, simulate the first K-L coordinates of X , using (27).

• Then simulate the conditional distribution of the marginals of the Gaussian process, its first coor-
dinates being settled.

4.1 Simulation of marginals of the Gaussian process, given its d first K-L

coordinates.

In this setting, the aim is to simulate the conditional distribution

L
(
Xt0 , · · · , Xtn

∣∣∣
∫ T

0

Xse
X
1 ds,

∫ T

0

Xse
X
2 (s)ds, · · · ,

∫ T

0

Xse
X
d (s)ds

)
(28)

where (Xt)t∈[0, T ] is a L2
R-valued Gaussian process, and (eXk , λ

X
k )k∈N∗ is the Karhunen-Loève system

associated with the process X .

As X is a Gaussian process,
(
Xt0 , · · · , Xtn ,

∫ T

0
Xse

X
1 (s)ds, · · · ,

∫ T

0
Xse

X
d (s)ds

)
is a Gaussian vector.

Hence, if we denote Y :=




∫ T

0
Xse

X
1 (s)ds
...∫ T

0
Xse

X
d (s)ds


 and V :=




Xt0
...

Xtn


, the conditional distribution (28) is
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given by the transition kernel ν(y,A) = N
(
AfV |Y (y), cov(V − E[V |Y ])

)
, where AfV |Y : Rd → R

n is an
affine function corresponding to the linear regression of V on Y , AfV |Y (Y ) := E[V |Y ].

• The conditional expectation writes AfV |Y (Y ) = E[V ]+RV |Y Y where RV |Y = cov(V, Y ) cov(Y )−1.

As cov(Y ) =
((
λXi δij

))
1≤i,j≤d

, and cov(V, Y ) = ((λXk e
X
k (ti)))1≤k≤d,0≤i≤n, one has

RV |Y =
((
eXj (ti)

))
0≤i≤n,1≤j≤d

. (29)

• The covariance matrix is

K := cov(V − E[V |Y ]) = E

[
(V −RV |Y Y )(V −RV |Y Y )

]

= cov(V )− 2 cov(V,RV |Y Y ) + cov(RV |Y Y )
= cov(V )− cov(RV |Y Y )

=

((
cov(Vl, Vk)−

d∑

i=1

λie
X
i (tl)e

X
i (tk)

))

0≤k,l≤n

.

Now, we are able to simulate according to this probability distribution.
The easiest way of doing this in the definite positive case is to compute the Cholesky factorization of

the matrix K, but in this case, the simulation of a simple path requires an n× n matrix multiplication,
which complexity is quadratic. This solution is not satisfactory for our purpose.

4.2 Faster simulation of conditional paths - Bayesian simulation

As pointed out above, the natural method to simulate L(V |Y ) requires for each path a multiplication
by a Cholesky transform of K whose cost is O(n2). This cost is to high.

• Yet, in the context of this paper, d is the quantization dimension of the process. It is close to log(N)
if N is the number of strata, and n, the number of time steps, is usually very large compared to d.

• Moreover, we make the assumption that the cost of the simulation of (Xt0 , · · · , Xtn) is O(n). (So
is the case for the Brownian motion, the Ornstein-Uhlenbeck process or the Brownian bridge for
example.)

• The idea here is that the conditional distribution L(V |Y ) is determined through the Bayes lemma,
by the conditional distribution L(Y |V ) and the two marginal distributions L(V ) and L(Y ).

One knows that V = E[V |Y ]
⊥⊥
+ Z where Z

L∼ N (0, cov(V − E[V |Y ])) is independent of Y . Hence
one is able to simulate according to L(V |Y = y) if one can simulate the distribution of Z, writing
L(V |Y = y) = E[V |Y = y] + L(Z).

This decomposition corresponds to the splitting of the Karhunen-Loève expansion:



V0
...
Vn


 =

d∑

k=1

√
λXk ξk︸ ︷︷ ︸
=Yk




eXk (t1)
...

eXk (tn)




︸ ︷︷ ︸
=E[V |Y ]

⊥⊥
+

∑

l≥d+1

√
λkξk




eXk (t1)
...

eXk (tn)




︸ ︷︷ ︸
=Z

.

To simulate Z, one simulates the distribution of V and the conditional distribution L(Z|V ).

One has L(Z|V )
L∼ V − L(E[V |Y ]|V )

L∼ V −AfV |Y L(Y |V )
L∼ V −AfV |YN (E[Y |V ], cov(Y − E[Y |V ])).

If AfY |V is the affine function corresponding to the regression of Y on V and RY |V its linear part,

cov(Y − E[Y |V ]) = cov(Y ) + cov(E[Y |V ])− 2 cov(Y,E[Y |V ])
= cov(Y )−RY |V cov(V )tRY |V .
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This yields Z = V − AfV |Y (G) where G
L∼ N (AfY |V (V ), cov(Y )−RY |V cov(V )tRY |V ).

Finally, the algorithm writes:

• Simulate V . (cost of O(n).)

• Simulate G
L∼ N (AfY |V (V ), cov(Y )−RY |V cov(V )tRY |V )

(cost of O(d × d)).

• Compute Z = V −AfV |Y (G). (cost of O(d× n)).

• The random variable T = AfV |Y (y) + Z satisfies T
L∼ L(V |Y = y).

Let us remind the fact that the affine function AfV |Y is trivially defined in equation (29), because
coordinates of Y are independent. Other matrices implied in this algorithm are computed prior to any
Monte-Carlo simulation.

In the general case, the matrix RY |V needed by the method can be computed by performing a
numerical least square regression.

Still, in the case of the Brownian motion, there is a closed form for the matrix RY |V . If tj =
jT
n = jh,

0 ≤ j ≤ n, this yields RY |V = ((αij))1≤i≤d,0≤j≤n, with

• for j /∈ {0, n}, αij = λWi
2eWi (tj)−eWi (tj−1)−eWi (tj+1)

h ,

• αi0 = λWi

((
eWi

′)
(t0)− eWi (t1)−eWi (t0)

h

)
,

• αin = λWi

(
eWi (tn)−eWi (tn−1)

h −
(
eWi
)′
(tn)

)
.

The proof is available in section A. The case of a non uniform subdivision is handled as well.

Now, we have a very fast and easy way to simulate the conditional distribution (28) at our disposal.

In figures 6 and 7, we plot a few paths of the conditional distribution of various Gaussian processes
knowing that they belong to a given L2 Voronoi cell. The appearance of the drawing suggests to consider
the method as a "guided Monte-Carlo simulation".

4.3 Blind optimization procedures

We have seen in section 3.2 that the quantity d(χ) =
( ∑

χi∈Γ

piσi

)2
is an upper bound of the variance of

the estimator, given in equation (19) in the case where the functional is 1-Lipschitz continuous. Hence one
may want to minimize this criterium instead of the L2-quantization error. This yields the minimization
problem

min
{
d(χ), χ ∈ Opq(X,N)

}
(30)

instead of the minimization problem (16).
The same kind of blind optimization procedure as in section 1.6.3 can be performed. Some values of

the optimal decomposition for the standard Brownian motion are given in table 8.
Optimal product decompositions for both Brownian bridge and Brownian motion and for a wide

range of values of N are available on the web site www.quantize.maths-fi.com [23] for download.
When comparing all the decompositions obtained for a quantizer size smaller than 11000, one notices
that in the case of the Brownian motion, the optimal decompositions for both criteria are "almost"
always the same. The only values where decompositions differ are the ranges 270− 271 and 3328− 3359.
The two criteria do not have very different values for the two decompositions. Therefore, in practice,
one can use the same decomposition database for the two applications.

Nonetheless, in the case of the Brownian bridge and the Ornstein-Uhlenbeck process, one notices that
the optimal decompositions for the variance and the optimal decomposition for the L2-distortion differ
more often.
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Figure 6: Plot of a few paths of the conditional distribution of the Brownian motion, knowing that its
path belong to the L2 Voronoi cell of the highlighted curve in the quantizer.
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Figure 7: Plot of a few paths of the conditional distribution of the Brownian bridge (left) and the
stationary Ornstein-Uhlenbeck process (right), knowing that its path belong to the L2 Voronoi cell of
the highlighted curve in the quantizer.

N Nrec d(χ) Nrec decomposition

1 1 0.5 1
10 10 9.75689 · 10−2 5 - 2
100 96 5.10548 · 10−2 12 - 4 - 2
1000 966 3.51289 · 10−2 23 - 7 - 3 - 2
10000 9984 2.63721 · 10−2 26 - 8 - 4 - 3 - 2 - 2

Figure 8: Record of optimal product decomposition record values of the standard Brownian motion with
respect to the criterium (30).

4.4 Functional stratification of diffusions

When dealing with diffusions with respect with a (multi-dimensional) Brownian motion, most Monte-
Carlo methods imply a discretization scheme as the Euler scheme [9]. In this case, one replaces the

18



Brownian motion by a stratified Brownian motion in the Euler scheme. This method is justified in many
aspects:

1. Let us consider the diffusion

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, t ∈ [0, T ], where (31)

• σ ∈ C1([0, T ]× R,R) positive and bounded,

• ∀(t, x) ∈ [0, T ]× R, |b(t, x)| ≤ C(1 + |x|).

In the one dimensional setting, as soon as the drift of the Lamperti transform of the SDE (31)
is Lipschitz continuous, it is prooved in [18] that the unique strong solution of (31), seen as a
functional of the underlying Brownian motion is ‖ · ‖p-Lipschitz continuous.

Hence one stands in the case of a Lipschitz continuous functional where one can use the results of
section 3.2 about universal stratification.

2. The function (Wt0 , · · · ,Wtn) →
(
Wt1 −Wt0 , · · · ,Wtn −Wtn−1

)
that maps the marginals of the

Brownian motion to the corresponding Euler scheme is linear from R
n+1 to R

n and thus Lipschitz
continuous as well.

In next section (5), numerical examples are given when replacing the Brownian motion by a stratified
Brownian motion in the Euler scheme.

5 Application to option pricing

Now, we are able to simulate the conditional distribution of a Gaussian process, given one of its Voronoi
cell in a product quantizer. One condition is to know an orthonormal Hilbert basis that diagonalizes its
covariance operator. The cases of the Brownian motion, the Brownian bridge and the Ornstein-Uhlenbeck
process have been handled.

The particular case of the Brownian motion allows to use functional stratification as a generic variance
reduction method for the case of functionals of Brownian diffusions. Even in the multi-dimensional case,
no matter how the independent Brownian motions are correlated or used afterwards ; no matter if it is
used for diffusing the underlying stock, a stochastic volatility process or an actualization factor. It can
be used as a variance reduction method.

Hence, this is a very interesting variance reduction method to be used in an industrial way, indepen-
dently of the path-dependent payoff or the model (as soon as it uses Brownian diffusions or one of the
other proposed Gaussian processes). Users do not have to set up complicated adjustments when using
it.

In the following of this section, the method is used to illustrate its performance on simple one
dimensional cases. One begins with the case of a continuous time Up-In Call in the Black and Scholes
model, for which a closed formula is known, and used as a Benchmark.

5.1 Benchmark with an Up-In-Call pricing in the Black and Scholes model.

Here, one benchmarks the numerical method for a path dependent option in a case where a theoretical
value is known : a barrier option in the Black and Scholes Model.

For the sake of simplicity, consider a log-normal Black and Scholes diffusion with no drift (no interest
rate and no dividend).

One has a closed form for the continuous barrier option. A numerical correction proposed by Broadie
and Glasserman [4] is done to get the closed-form price to be compared to. The number of Monte-Carlo
simulations is 100000 in every case.

One prices an Up-In-Call with different values of the initial spot S, the strike K, the barrier H , the
volatility σ, the maturity T , and the number of fixing dates for the discrete barrier n. In every case, a
95% confidence interval is given. So is the variance of the estimator.

The numerical results are reported in table 9 when using the method with 20 stratas and table 10
when using the method with 100 stratas. In this tables, the first column correspond to the Broadie and
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Glasserman’s closed form proxy. The second one corresponds to a simple Monte-Carlo estimator. The
last three columns correspond to a stratified sampling estimator with different simulation allocation for
each strata.

The "sub-optimal weights" column stands for the allocation budget of equation (22). The "Lip.-
optimal weights" column stand for the "universal stratification" budget allocation proposed in theorem
3.2. Both these two case have explicit allocation rules. Last column, "Optimal weights" corresponds to
an estimation of the optimal budget allocation given in expression (23).

Parameters Broadie & Simple Strat. Estimator Strat. Estimator Strat. Estimator
Glasserman’s Estimator sub-optimal weights Lip.-optimal weights Optimal weights

proxy

S = 100, K = 100 14.0379 13.9281 13.9283 13.9364
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8491, 14.0071] [13.8519, 14.0047] [13.8827, 13.9901]
T = 1.5, n = 365 Var = 729.2518 Var = 162.4650 Var = 151.9481 Var = 75.1319
S = 100, K = 100 1.4206 1.3659 1.3510 1.3602
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.3106, 1.4211] [1.3039, 1.3981] [1.3472, 1.3732]
T = 1, n = 365 Var = 151.6366 Var = 79.5118 Var = 57.7425 Var = 4.4053

Figure 9: Numerical results for the Up In Call option, with 20 stratas.

Parameters Broadie & Simple Strat. Estimator Strat. Estimator Strat. Estimator

Glasserman’s Estimator sub-optimal weights Lip.-optimal weights Optimal weights
proxy

S = 100, K = 100 14.0379 13.9382 13.9511 13.9483
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8720, 14.0043] [13.8874, 14.0150] [13.9047, 13.9919]
T = 1.5, n = 365 Var = 729.2518 Var = 114.0634 Var = 105.8760 Var = 49.5071
S = 100, K = 100 1.4206 1.3296 1.3493 1.3611
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.2825, 1.3768] [1.3093, 1.3893] [1.3508, 1.3715]
T = 1, n = 365 Var = 151.6366 Var = 57.8899 Var = 41.6666 Var = 2.8099

Figure 10: Numerical results for the Up In Call option, with 100 stratas.

5.2 Test with an auto-call pricing in the CEV model.

Here, we stand in the case were the stock follows a CEV model with no drift

dSt = σS
β
2
t dWt, 0 ≤ β < 2.

The simulation scheme that is used here is a Euler scheme on ln(St). One has

d ln(St) = −
σ2

2
Sβ−2
t dt+ σS

β
2 −1
t dWt.

Let us remind the fact that there are closed-form expressions for vanilla option pricing in this model
that can be expressed as a function of the noncentral chi-square distribution [13]. A first test of consis-
tency for the method was to check that we could find the same price when performing such a Monte-Carlo
simulation. The tested path-dependent payoff that we consider here is the so-called "auto-call" payoff.
Description of the auto-call payoff:

St is the stock price at time t and t1 < · · · < tn = T is a schedule of observation dates. K and H ,
the "strike" and the "barrier" are two settled values with which S will be compared to. P denotes the
"nominal", and C a bound.

At the first date t1 of the schedule, if St1 > K, the holder of the option gets (1+C)P and the product
stops. If St1 ≤ K, one waits until the second date of the schedule. If St2 > K, the holder gets (1 +C)P
and the product stops. And so on... If St does not reach K until the last date tn = T .

At tn, if ST > K, the holder gets (1 + C)P . If B < ST ≤ K, the holder gets P and if ST ≤ B, he
gets P ST

K .
The numerical results are reported in table 11 when using the method with 20 and 50 stratas. The

parameters of the model are β = 1.5, S0 = 100, σ = 0.3. For the payoff, K = 110, H = 80, P = 100,
C = 0.07. The considered observation dates are {1, 2, 3}. The number of time steps in the Euler scheme
is 300 and one performs 100000 Monte-Carlo simulations in every case.
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Number of strata Simple Strat. Estimator Strat. Estimator Strat. Estimator
Estimator sub-optimal weights Lip.-optimal weights Optimal weights

99.0598 99.0839 99.0886 99.0477
20 [98.9887, 99.1310] [99.0438, 99.1239] [99.0488, 99.1284] [99.0184, 99.0769]

Var = 131.8089 Var = 41.8067 Var = 41.2888 Var = 22.2549
99.0598 99.0507 99.0790 99.0444

50 [98.9887, 99.1310] [99.0129, 99.0886] [99.0414, 99.1166] [99.0179, 99.0709]
Var = 131.8089 Var = 37.3150 Var = 36.8408 Var = 18.2954

Figure 11: Numerical results for the auto-call option in the CEV model, with 20 and 50 stratas.

5.3 Test with an Asian option pricing in the one-factor Schwartz’s model.

Here, we stand in the case of a stock which follows the following SDE:

dS = θ(α − lnS)Sdt+ σSdWt, (32)

under the risk neutral probability.
The stochastic process X = ln(S) is an Ornstein-Uhlenbeck process:

dX = θ(µ−X)dt+ σdWt with µ = α− σ2

2θ
. (33)

This model, proposed by Schwartz in [25] is an example of stochastic behaviour of commodity prices
that takes into account mean reversion. Such exponentials of Ornstein-Uhlenbeck processes are very
common in commodity derivatives models. One particularity in these markets is that the spot is not
directly observed. Derivatives mostly rely on futures of the considered commodity. Still, one takes this
one factor "toy" model as a simple case study for our variance reduction method.

The considered payoff is an Asian option on a discrete schedule of observation dates t0 < · · · < tn = T .

K is the "strike" of the options whose payoff is

(
1

n+1

n∑
k=0

Stk −K
)

+

.

One uses the stratified estimator with the Ornstein-Uhlenbeck process. Optimal product decomposi-
tions for the criteria (30) are used and available in table 12 where the numerical results are reported.

The numerical parameters are S0 = 100, θ = 0.3, α = ln(110), σ = 0.3 and K = 100. One performs
100000 Monte-Carlo simulations in every case. The observation dates are

(
iTn
)
i={0,··· ,n} with T = 3 and

n = 36.

Number of strata Simple Strat. Estimator Strat. Estimator Strat. Estimator
and product decomposition Estimator sub-optimal weights Lip.-optimal weights Optimal weights

9.8485 9.8867 9.8848 9.8846
20 [9.7508, 9.9462] [9.8632, 9.9102] [9.8624, 9.9073] [9.8695, 9.8997]

20 = 10 × 2 Var = 248.3156 Var = 14.3132 Var = 13.1090 Var = 5.9547
9.8485 9.8835 9.87862 9.8845

50 [9.7508, 9.9462] [9.8608, 9.9061] [9.8555, 9.8983] [9.8702, 9.8987]
48 = 10 × 5 Var = 248.3156 Var = 13.4003 Var = 11.8787 Var = 5.2949

9.8485 9.8883 9.8924 9.8844
100 [9.7508, 9.9462] [9.8661, 9.9105] [9.8716, 9.9133] [9.8706, 9.8782]

100 = 10 × 5 × 2 Var = 248.3156 Var = 12.8434 Var = 11.3508 Var = 4.9664

Figure 12: Numerical results for the Asian option in the Schwartz’s model, with 20 and 100 stratas.

To perform this computation, one had to use a non-centered Ornstein-Uhlenbeck quantizer. Building
such a quantizer is a straightforward extension of the centered case. As showed in section B, if r is an
Ornstein-Uhlenbeck process on [0, T ] following the dynamic drt = θ(µ − rt)dt+ σdWt, r0 ∼ N (m0, σ

2
0),

with non zero values of µ and m0, one has

Xt = m0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

(1)=non stochastic path

+

(
centered Ornstein-Uhlenbeck process

corresponding to m0 = µ = 0

)
. (34)

Hence, one only needs to add the expectation (1) to the centered optimal (product) quantizer to
get an optimal (product) quantizer for the non centered case. An example of such a non centered
Ornstein-Uhlenbeck product quantizer is available in figure 13.
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Figure 13: Functional 10 × 2-product quantizer of an Ornstein-Uhlenbeck process starting from r0 = 6
defined by the diffusion drt = θ(µ − rt)dt+ σdWt with µ = 5, σ = 0.3 and θ = 0.8 on [0, 3].

5.4 Commentaries on the numerical results

In every tested case, one notices that the quantization-based stratified sampling method reduces notice-
ably the variance of the Monte-Carlo estimator. The "universal stratification" allocation proposed in
theorem 3.2 overcomes the sub-optimal weight allocation. Still in the case of the auto-call, its advantage
is not very perceptible.

Moreover, the "optimal allocation" estimation yields a very good variance reduction factor. This
suggests to implement either a simple prior rough estimation of the optimal allocation or a more sophis-
ticated algorithm as the one proposed in [6] by Étoré and Jourdain.

A Special case of the Brownian motion for RY |V computation.

In this section, one uses the same notations as in section 4.2. We give the closed form of the matrix
RY |V := ((αij))1≤i≤d,0≤j≤n ∈ Md,n(R) which corresponds to the affine function AfY |V defined by
E[Y |V ] = AfY |V (V ).

Consider t0 = 0 ≤ t1 ≤ · · · ≤ tn = T a subdivision of [0, T ].

E

[ ∫ T

0

Wse
W
i (s)ds|Wt0 , · · · ,Wtn

]
=

n−1∑

j=0

E

[ ∫ tj+1

tj

Wse
W
i (s)ds

∣∣∣Wtj ,Wtj+1

]

︸ ︷︷ ︸
=fi

j
(Wtj

,Wtj+1
)

,

where f i
j is an affine function.

If tj 6= tj+1, f i
j(x, y) = E

[ ∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y − x) + (Y
B,tj+1−tj
s−tj )

)
eWi (s)ds

]
(where Y B,tj+1−tj

s−tj is a

standard Brownian bridge)

= x
(∫ tj+1

tj

tj+1 − s
tj+1 − tj

eWi (s)ds
)

︸ ︷︷ ︸
:=Ai

j

+y
(∫ tj+1

tj

s− tj
tj+1 − tj

eWi (s)ds
)

︸ ︷︷ ︸
:=Bi

j

= xAi
j + yBi

j .

Simple computations lead to:

∫ tj+1

tj

eWi (s)ds =

√
2

T

T

π(i − 1
2 )

(
cos
(
π(i − 1

2
)
tj
T

)
− cos

(
π(i − 1

2
)
tj+1

T

))
,
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and ∫ tj+1

tj
seWi (s)ds =

√
2
T

T
π(i− 1

2 )

(
tj cos(π(i − 1

2 )
tj
T )− tj+1 cos(π(i − 1

2 )
tj+1

T )
)

+
√

2
T

(
T

π(i− 1
2 )

)2(
sin(π(i − 1

2 )
tj+1

T )− sin(π(i − 1
2 )

tj
T ))
)
.

Hence E

[ ∫ T

0
Wse

W
i (s)ds|Wt1 , · · · ,Wtn

]
=

n−1∑
j=0

Ai
jWtj +B

i
jWtj+1 =

n∑
i=0

αijWti with, for every 1 ≤ j <

n, αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1.

Finally one gets the following closed forms for RY |V := ((αij))1≤i≤d,0≤j≤n.

• If tj−1 < tj < tj+1,

αij = λWi
(tj+1 − tj−1)e

W
i (tj)− (tj+1 − tj)eWi (tj−1)− (tj − tj−1)e

W
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1, αij = λW
i

(

eWi
′
(tj)−

eWi (tj+1)−eWi (tj)

tj+1−tj

)

.

If tj−1 < tj = tj+1, αij = λW
i

(

eWi (tj)−eWi (tj−1)

tj−tj−1
− eWi

′
(tj)

)

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 = Ai
0 =

{
λWi

(
eWi

′
(t0)− eWi (t1)−eWi (t0)

t1−t0

)
if t1 6= t0,

0 in the other case.

• αin = Bi
n−1 =

{
λWi

(
eWi (tn)−eWi (tn−1)

tn−tn−1
− eWi

′
(tn)

)
if tn 6= tn−1,

0 in the other case.

(The equality cases are useful when dealing with time steps that make the numerical evaluation of
eWi (tj+1)− eWi (tj) to close to zero.)

B Computation of the Karhunen-Loève decomposition the Ornstein-

Uhlenbeck process

In this section, one details the Karhunen-Loève decomposition of the Ornstein-Uhlenbeck process. Propo-
sition B.3 brings the results together. Section B.3 presents the numerical method for computing this
decomposition.

B.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is defined by the SDE

drt = θ(µ− rt)dt+ σdWt, with σ ≥ 0 and θ > 0. (35)

The equation is solved by applying Itô’s formula to the process Ut := rte
θt. One gets

rt = r0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dWs. (36)

If one assumes that r0 is Gaussian (r0
L∼ N (m0, σ

2
0)) and is independent from W , the process (rt)t>0 is

Gaussian. One has E[rt] = m0e
−θt+µ(1−e−θt) and cov(rs, rt) =

σ2

2θ e
−θ(s+t)(e2θmin(s,t)−1)+σ2

0e
−θ(s+t).

Moreover lim
t→∞

Var(rt) =
σ2

2θ (the long term variance). If the initial variance σ2
0 is equal to long term

variance σ2

2θ , the process is stationary and the covariance writes cov(rs, rt) =
σ2

2θ e
−θ|s−t|.

The total variance of the process on [0, T ] is

‖r2‖22 =

∫ T

0

Var(rs)ds =
σ2T

2θ
+
(
σ2
0 −

σ2

2θ

)( 1

2θ
− e−2θT

2θ

)
.
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B.2 The Ornstein-Uhlenbeck covariance operator:

The Ornstein-Uhlenbeck covariance operator is given by

TOUf(s) =

∫ T

0

σ2

2θ
e−θ(s+t)

(
e2θmin(s,t) − 1

)
f(s)ds+

∫ T

0

σ2
0e

−θ(s+t)f(s)ds. (37)

Computing the Karhunen-Loève decomposition of the Ornstein-Uhlenbeck process
TOU is a compact Hermitian positive operator on the separable Hilbert space L2([0, T ]). Hence there

is an orthonormal basis of V consisting of eigenvectors of TOU and each eigenvalue is real and strictly

positive. Moreover ‖TOU‖2 ≤ σ2T
2θ + σ2

4θ2

(
e−2θT − 1

)
. One has

TOUf(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds +

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds +

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.

Proposition B.1. If f ∈ C([0, 1]), and if g = TOUf , then

g′′ − θ2g = −σ2f, (38)

with
σ2
0g

′(0) =
(
σ2 − θσ2

0

)
g(0) and g′(T ) = −θg(T ). (39)

Proof:

g(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.

g′(t) = −
σ2

2

∫ t

0

eθ(s−t)f(s)ds+
σ2

2

∫ T

t

eθ(t−s)f(s)ds−

(

θσ2
0 −

σ2

2

)
∫ T

0

e−θ(s+t)f(s)ds

g′′(t) =
σ2θ

2

[

∫ t

0

f(s)eθ(s−t)ds+

∫ T

t

f(s)eθ(t−s)ds
]

+ θ

∫ T

0

(

θσ2
0 −

σ2

2

)

e−θ(s+t)f(s)ds− σ2f(t).

One gets g′′(t) = θ2g(t)−σ2f(t). Moreover, equation (39) comes when identifying expressions with t = 0 and

t = T . �

Proposition B.2. Conversely, if g ∈ C2([0, T ]) and if f satisfies equations (38) and (39) then g =
TOUf .

Proof: Computing TOUg′′ yields:

TOUg′′ =
∫ t

0
σ2

2θ e
θ(s−t)g′′(s)ds+

∫ T

t
σ2

2θ e
θ(t−s)g′′(s)ds+

∫ T

0

(
σ2
0 − σ2

2θ

)
g′′(s)ds.

An integration by parts yields

TOUg′′ = −σ2
0g

′(0)e−θt − σ2g(t) + σ2

2 g(0)e
−θt −

(
θσ2

0 − σ2

2

)
g(0)e−θt + θ2TOUg(t)

= −σ2g(t) + θ2TOUg(t) thanks to (39).

Now, by necessary conditions, TOUf = λf ⇔ σ2g = λ(θ2g − g′′). One obtains

λg′′ + (σ2 − λθ2)g = 0. (40)

�

Hence the solution of the ordinary differential equation (40) on [0, T ] has the form g(t) = A cos(ωt)+

B sin(ωt), with ω =
√

σ2−λθ2

λ ⇔ λ = σ2

ω2+θ2 .

Equation (39) yields ωBσ2
0 = (σ2 − θσ2

0)A. Hence, function g(x) writes

g(t) = K
(
ωσ2

0 cos(ωt) + (σ2 − θσ2
0) sin(ωt)

)
.

Hence g′(T ) = −θg(T ) yields

ωσ2 cos(ωT ) +
[
− ω2σ2

0 + θσ2 − θ2σ2
0

]
sin(ωT ) = 0. (41)

Conversely, by the same computation, one sees that λn ∈]0, ‖TOU‖2] is an eigenvalue of TOU if and
only if equation (41) is fulfilled.
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Proposition B.3. Finally, if one knows the sorted increasing sequence (ωn) of the strictly positive
solutions of equation (41), the Karhunen-Loève basis (λOU

n , eOU
n ) of the Ornstein-Uhlenbeck covariance

operator TOU are given by:

• λOU
n = σ2

ω2
n+θ2 , and

• eOU
n (t) = Kn

(
ωnσ

2
0 cos(ωnt) + (σ2 − θσ2

0) sin(ωnt)
)
, where Kn is the normalization constant.

If (σ, σ0) 6= (0, 0), Kn is given by

1/K2
n =

1

2wn
σ2
0(σ

2 − θσ2
0)[1− cos(2ωnT )] +

1

2
σ4
0ω

2
n

(
T +

1

2ωn
sin(2ωnT )

)

+
1

2
(σ2 − θσ2

0)
2
(
T − 1

2ωn
sin(2ωnT )

)
. (42)

Case of a deterministic start point: In this case (σ0 = 0), one has

eOU
n (t) =

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt).

Stationary case: In the stationary case, σ2
0 = σ2

2θ , one has

eOU
n (t) = Cn

(
ωn cos(ωnt) + θ sin(ωnt)

)
,

where Cn is the normalization constant. Cn is given by

1/C2
n =

θ

2

(
1− cos(2ωnT )

)
+
ω2
n

2

(
T +

sin(2ωnT )

2ωn

)
+
θ2

2

(
T − sin(2ωnT )

2ωn

)
.

B.3 Numerical computation of the Karhunen-Loève decomposition of the

Ornstein-Uhlenbeck process

As we have seen in the previous section, everything comes to evaluate numerically the strictly positive
solutions of equation (41).

B.3.1 Deterministic start point

In this case, (σ0 = 0), one can check that elements of {π2 + k π
T |k ∈ N} are not solutions of equation (41),

thus the equation comes to
θ tan(ωT ) = −ω. (43)

The case where θ = 0 comes to the case of the Brownian motion, hence one assumes that θ 6= 0.
Solutions of this equation are illustrated in figure 14. One can easily show that a unique solution wn lies

in each interval
]
nπ
T − π

2T ,
nπ
T

[
, for n ∈ N

∗.

lim
n→∞

ωn −
(nπ
T
− π

2T

)
= 0.

B.3.2 Non deterministic start point

Let us assume now that σ0 6= 0 and consider equation (41) again. The term −ω2σ2
0 + θσ2 − θ2σ2

0 never
vanishes on ]0,+∞[ if θ2σ2

0 − θσ2 ≥ 0.
First case: θ2σ2

0 − θσ2 ≥ 0.
Here, everything comes to the equation

tan(ωT ) =
ωσ2

ω2σ2
0 + θ2σ2

0 − θσ2
. (44)

Solutions of this equation are illustrated in figure 15.
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ω1 ω2 ω3 ω4

0

0

tan(ωT )
−ω/θ

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 14: (Deterministic start point). Solutions of equation (43). (Ornstein-Uhlenbeck process
starting from a determined point r0, σ0 = 0.) Values for this figure are T = 3, σ = 1 and θ = 3.

ω1 ω2 ω3 ω4

0

0

tan(ωT )
ωσ2

ω2σ2
0+θ2σ2

0−θσ2

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 15: (Non deterministic start point, θ2σ2
0 − θσ2 ≥ 0). Solutions of equation (43). (Ornstein-

Uhlenbeck process starting from r0
L∼ N (0, σ2

0), σ0 6= 0.) Values for this figure are T = 3, σ = 1, θ = 3
and σ2

0 = 0.4.

One can easily show that ∀n ∈ N
∗, ∃!ω ∈

]
nπ
T , nπT + π

2T

[
, which is solution of equation (41). Moreover

a solution lies in ]0, π
2T [ if and only if (θ2σ2

0 − θσ2)T − σ2 < 0.
Second case: θ2σ2

0 − θσ2 < 0.

Here, the term −ω2σ2
0 + θσ2 − θ2σ2

0 vanishes for ω = V :=
√
θ σ2

σ2
0
− θ2. If V is not a solution of

equation (41), (i.e. if V does not belong to { π
2T + k π

T |k ∈ N}), no other value of this set is a solution,
and everything comes again to the same equation (44).

Solutions of this equation are illustrated in figure 16. One can then easily show that ∀n ∈ N
∗∩]V,+∞[, ∃!ω ∈]

nπ
T , nπT + π

2T

[
, which is solution of equation (41). Moreover, in every non empty interval

]
kπ
T − π

2T ,
kπ
T +

π
2T

[
∩
]
0, V

[
, k ∈ N

∗ there is another solution of the equation.
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ω1
ω2 ω3 ω4

0

0

tan(ωT )
ωσ2

ω2σ2
0+θ2σ2

0−θσ2

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 16: (Non deterministic start point, θ2σ2
0 − θσ2 < 0). Solutions of equation (43). (Ornstein-

Uhlenbeck process starting from r0
L∼ N (0, σ2

0), σ0 6= 0.) Values for this figure are T = 3, σ = 1, θ = 3
and σ2

0 = 0.3.

B.3.3 Pseudo-Code for computing Ornstein-Uhlenbeck eigenvalues

A pseudo-code for the computation of the n-th eigenvalue of the Ornstein-Uhlenbeck covariance operator
is given in algorithm 1. In this algorithm, the function search(a, left, right) stands for a root finding
method. It fills argument a with the root of equation (41) that is bracketed by [left, right].

In the author’s implementation, one uses the Brent’s method [3] as a reliable root finding method. As
Newton-like methods, Brent method can take advantage of a guess of the value of the root. (One needs
a bracketing method: the idea is to start from a small interval around the guess that is geometrically
expanded, until the limiting range [left, right] is reached. )

B.3.4 A numerical guess for the value of ωn.

As we have seen, we use a root finding method for evaluating numerically the value of ωn. In this section,
we propose a numerical guess for this quantity, that can be used as a starting point in the root finding
method.

Function tan is approximated on ] − π
2 ,

π
2 [ by the rational fraction ψ(x) :=

4(8−π2)x3

π4 +x

1− 4x2

π2

, which is a

good uniform approximation of tan on this interval. ‖ tan−ψ‖]−
π
2 ,π2 [

∞ = 10−π2

2π ≈ 0.02075.
Now, in the case of the Ornstein-Uhlenbeck eigenvalue computation, for a deterministic start point,

equation (43) can be approximated by

θψ(ωnT + nπ) = −ωn n ≥ 1. (45)

This comes to a polynomial equation of degree 3 for every n > 0 which has a unique solution wguess
n ∈

]nπT − π
2T ,

nπ
T [. This numerical guess yields a good accuracy for approximating the value of ωn.
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