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Sylvain Corlay∗ † Gilles Pagès †

March 15, 2010

Abstract

In this article, we propose several quantization based stratified sam-
pling methods to reduce the variance of a Monte-Carlo simulation.

Theoretical aspects of stratification lead to a strong link between the
problem of optimal L2-quantization of a random variable and the variance
reduction that can be achieved. We first emphasize on the consistency of
quantization for designing strata in stratified sampling methods in both
finite dimensional and infinite dimensional frameworks. We show that
this strata design has a uniform efficiency among the class of Lipschitz
continuous functionals.

Then a stratified sampling algorithm based on product functional
quantization is proposed for path-dependent functionals of multi-factor
diffusions. The method is also available for processes made of other Gaus-
sian processes as the Brownian bridge or an Ornstein-Uhlenbeck process.

The balance between the algorithmic complexity of the simulation and
the variance reduction factor has also been studied.
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Introduction

The quantization of a random variable X consists of its approximation by a
random variable Y taking at most N values. This problem has been initially
investigated for its applications to signal transmission and for compression issues
[8]. In this context, quantization was a process of signal discretization. The
point of interest was to choose the random variable Y in order to minimize the
resulting error. This led to the concept of optimal quantization.

More recently, quantization has been introduced in numerical probability
to device numerical integration methods [17] and for solving multi-dimensional
stochastic control problems such as American options pricing [1] and swing op-
tions pricing [2, 3]. Optimal quantization has many other applications and ex-
tensions in various fields like automatic classification (quantization of empirical
measures) and pattern recognition.

In the early 2000’s, the infinite dimensional setting has been extensively
investigated from a theoretical and numerical viewpoints with a special attention
paid to functional quantization [13, 14]. Stochastic processes are viewed as
random vectors taking values in their path spaces such as L2

T := L2([0, T ], dt).
Still the Monte-Carlo simulation remains the most common numerical meth-

ods in the field of numerical probability. One reason is that it is easy to imple-
ment in an industrial configuration. In the industry of derivative pricing, banks
implement generic Monte-Carlo frameworks for pricing numerous payoffs with
a wide variety of models. Another advantage is that the Monte-Carlo method
can be parallelized.

Variance reduction methods can be used to reduce dramatically the com-
putation time of a Monte-Carlo simulation. Main variance reduction methods
are (adaptive) control variate, pre-conditioning, importance sampling and strat-
ification [9]. The problem is that these methods may strongly depend on the
payoff or the model and imply wide changes in the practical implementation of
the Monte-Carlo method. Thus, most institutions do not implement the most
advanced methods in practice except for marginal cases.

In this paper, we point out theoretical aspects of quantization that lead to a
strong link between the problem of optimal L2-quantization of a random variable
and the variance reduction that can be achieved by stratification. We empha-
size on the consistency of quantization for designing strata in stratified sampling
methods in both finite dimensional and infinite dimensional frameworks. Then
a stratified sampling algorithm based on product functional quantization is pro-
posed for path-dependent functionals of multi-factor Brownian diffusions. The
simulation cost of the conditional path is O(n) where n is the number of dis-
cretization dates, as in naive Monte-Carlo simulations. In this context, this
stratification based variance reduction method can be considered as a guided
Monte-Carlo simulation. (See figure 6.) The method is in fact available for
any Gaussian processe as soon as its Karhunen-Loève decomposition is explic-
itly known. It is the case for the Brownian bridge or an Ornstein-Uhlenbeck
process. The special case of the Ornstein-Uhlenbeck process is derived in annex
7.

One very common situation is the case of Monte-Carlo implementations that
are based on multi-dimensional and multi-factor Brownian diffusions approxi-
mated by their Euler scheme. The presented method is particulary adapted
to this situation. Even in the multi-dimensonal case, no matter how the inde-
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pendent Brownian motions are correlated or used afterwards ; no matter if it
is used for diffusing the underlying stock, a stochastic volatility process or an
actualization factor. Functional stratification can be used as a generic variance
reduction method. The point is that it is used upstream in the Monte-Carlo
framework. One does not need to re-implement the whole framework but only
the way it is alimented by Brownian motions. Thus quantization-based func-
tional stratifications can come along on the top of a production context. In the
last section, numerical tests are provided with a benchmark with a Up-In-Call
pricing in the Black and Scholes model.

1 Optimal quantization, the abstract framework

1.1 Introduction to quantization of random variables

In the following, (Ω,A,P) is a probability space, and E is a separable reflexive
Banach space. The norm on E is denoted | · |.

The principle of the quantization of a random variable X taking its values
in E is to estimate X by a random variable Y taking a finite number of values
in E. The discrete random variable Y is a quantizer of X .

The resulting error of this discretization is the Lp-norm of X−Y . One wants
to minimize this induced error. This gives the following minimization problem:

min
{
‖X − Y ‖p, Y : Ω→ E measurable, card(Y (Ω)) ≤ N

}
. (1)

Definition (Nearest neighbour projection). Let us consider the settled point
set Γ = {y1, · · · , yN} ⊂ E. A nearest neighbour projection on Γ is a Borel
application ProjΓ : E → Γ such that ∀x ∈ E |x− ProjΓ(x)| = min

1≤i≤N
|x− yi|.

Definition (Voronoi partition). N ∈ N
∗, Γ = {y1, · · · , yN} ⊂ E and C =

{C1, · · · , CN} a partition of E. C is a Voronoi partition associated with Γ if
∀i ∈ J1, NK, Ci ⊂ {ξ ∈ E, |ξ − yi| = min

j∈J1,NK
|ξ − yj|}.

Proposition 1.1. Let X be an E-valued Lp random variable, and Y taking its
values in the settled point set Γ = {y1, · · · , yN} ⊂ E where N ∈ N. Let X̂Γ the

random variable defined by X̂Γ := ProjΓ(X) where ProjΓ is a nearest neighbour
projection on Γ, called a Voronoi Γ-quantizer of X.

Then we clearly have |X−X̂Γ| ≤ |X−Y | a.s.. Hence ‖X−X̂Γ‖p ≤ ‖X−Y ‖p.

IfC = {C1, · · · , CN} is a Voronoi partition associated with Γ = {y1, · · · , yN},
it is clear that ∀i ∈ J1, NK, yi ∈ Ci. Ci is called Voronoi slab associated with yi
in C and yi is the centre of the slab Ci.
One denotes Ci = slabC(yi), and for every a ∈ Γ, W (a|Γ) is the closed subset
of E defined by

W (a|Γ) =
{
y ∈ E

∣∣∣|y − a| = min
b∈Γ
|y − b|

}
.

It is clear that
N∑

1=1
yi1Ci

is a nearest neighbour projection on Γ.
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If we want to approximate a random variable X by Y valued in a finite
subset Γ, the best option is to choose for Y a measurable nearest neighbour
projection of X on Γ.

As a consequence of the previous remark, solving the minimization problem
(1) comes to solving the simpler minimization problem

min
{
‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N

}
. (2)

The quantity ‖X − ProjΓ(X)‖p is called the Lp-quantization error. When
this minimum is reached, one refers to optimal quantization.

The problem of the existence of a minimum have been investigated for
decades on its numerical and theoretical aspects in the finite dimensional case
[10].

• N being settled, the Lp-distortion is Lipschitz continuous and reaches a
minimum. A Ntuple that achieves the minimum has pairwise distinct
components, as soon as card(supp(PX)) ≥ N . This result stands in the
general abstract case of a random value in a reflexive Banach space.

• If card(X(Ω)) is infinite, this minimum strictly decreases to 0 as N goes
to infinity. The rate of convergence is ruled by Zador theorem in the finite
dimensional case.

Theorem 1.2 (Zador). Assume that for some ε > 0, E[|X |p+ε] < +∞. If

Γ ⊂ R
d is finite, let us denote X̂Γ = ProjΓ(X), a measurable nearest neighbour

projection. Then

lim
n→+∞

(
N

p
d min
card(Γ)≤N

‖X − X̂Γ‖pp
)
= Jp,d

(∫

Rd

g
d

d+p (ξ)λd(dξ)
)1+ p

d

where PX(dξ) = g(ξ)λd(dξ) + µ(dξ), µ ⊥ λd (λd is the Lebesgue measure on
R

d.) The constant Jp,d corresponds to the case of the uniform distribution on
[0, 1]d.

This mainly says us that min
{
‖X − X̂‖p, card(Γ) ≤ N

}
∼ CPX ,p,dN

− 1
d .

In figure 1, the Voronoi partition of a random N -quantizer and an L2-
optimized N quantizer of the N (0, I2) distribution are given.

1.2 Stationarity and centroidal Voronoi tessellations

We now stand in the case where E is a separable Hilbert space (H, 〈., .〉H), and
in the quadratic case (p = 2 and X ∈ L2(H)).

Notation ConsiderX a L2(H) random variable. We introduce the following
notations:

• Cn(X) is the set of L2-optimal quantizers of X of level n.

• en(X) is the minimal quadratic distortion that can be achieved when
approximating X by a quantizer of level n.

Definition (Stationarity). A quantizer Y of X is stationary (or self-consistent)
if

Y = E[X |Y ]. (3)
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Figure 1: Voronoi partition of a random quantizer and a L2-optimized N -
quantizer of the N (0, I2) distribution in R

2. (N = 20).

Proposition 1.3 (Stationarity of L2-optimal quantizer). A (quadratic) optimal
quantizer is stationary.

The stationarity is a particularity of the quadratic case. In other Lp cases, a
similar property involving the notion of p-centre occurs. A proof of is available
in [11].

A consequence is, if Y = ProjΓ(X) is an L2-optimal quantizer, and C =
{C1, · · · , Cn} is the associated Voronoi partition, one has ∀y ∈ Γ, y = E[X |X ∈
slabC(y)].

Proposition 1.4. Let X be an H-valued L2 random variable. Let us denote
DX

N the squared quadratic quantization error associated with a codebook of size
N with respect to X.

DX
N : HN → R+

(x1, · · · , xN ) → E

[
min

1≤i≤N
|X − xi|2H

]
,

The distortion function DX
N is |.|H-differentiable at N -quantizers x ∈ HN

with pairwise distinct components and

∇DX
N (x) = 2

(∫

Ci(x)

(xi−ξ)PX(dξ)
)
1≤i≤N

= 2
(
E(X̂Γ(x)−X)1{X̂Γ(x)=xi}

)
1≤i≤N

.

(4)
Hence any Voronoi quantizer associated with a critical point of DX

N is a station-
ary quantizer.

Definition (Centroidal projection). Let C = {C1, · · · , CN} be a Borel partition

of H. Let us define for 1 ≤ i ≤ N , Gi =

{
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 in the other case.

the centroids associated with X and the partition C.
We call centroidal projection associated with the partition C and the random

variable X and denote ProjC,X the application

ProjC,X : H → {x1, · · · , xN} ⊂ H

x →
N∑
i=1

Gi1Ci
(x).
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Lemma 1.5 (Huyghens, Variance Decomposition). Let X ∈ L2(P) be a H-
valued L2 random vector, N ∈ N

∗ and C = (Ci)1≤i≤N a Borel partition of H.

Consider ProjC,X =
N∑
i=1

Gi1Ci
the associated centroidal projection.

Then one has, Var(X) = E[|X − ProjC,X(X)|2]
︸ ︷︷ ︸

:=(1)

+E[|ProjC,X(X)− E[X ]|2
︸ ︷︷ ︸

:=(2)

.

The variance of the probability distribution X decomposes itself into the in-

traclass inertia (1) plus the interclass inertia (2).

Proof of lemma:

Var(X) = E[|X − ProjC,X(X) + ProjC,X(X)− E[X ]|2]
= E[|X − ProjC,X(X)|2]
︸ ︷︷ ︸

=(1)

+E[|ProjC,X(X)− E[X ]|2]
︸ ︷︷ ︸

=(2)

+2E[〈X − ProjC,X(X),ProjC,X(X)− E[X ]〉]
︸ ︷︷ ︸

:=(3)

.

Now (3) = 0 since ProjC,X(X) = E[X |ProjC,X(X)]. �

1.3 Optimal quantization and principal component anal-

ysis

1.3.1 Covariance operator of a random variable

A point of interest of the stationarity of L2 optimal quantizers is that stationary
quantizers necessarily lies in the reproducing kernel Hilbert space (or Cameron-
Martin space) of the covariance operator of X (if E[X ] = 0).

Definition. Let X be a centred H valued L2 random variable.
The covariance operator CX : H → H of X is defined by CXy = E[〈y,X〉X ].

1. CX is a symmetric positive trace class operator.

2. In the finite dimensional case, the matrix of CX in the canonical basis is
the covariance matrix of X .

Definition. The reproducing kernel Hilbert space KX is a subspace of H defined
by

KX :=
{
E[ZX ]|Z ∈ {〈y,X〉|y ∈ H}L

2(P)
}

=
{
E[g(X)X ]|g ∈ {〈y, ·〉|y ∈ H}L

2(PX)
}
.

The set KX is equipped with the inner product

〈k1, k2〉X := E[Z1Z2] if k1 = E[Z1X ] and k2 = E[Z2X ].

so that (KX , 〈·〉) is a Hilbert space, isometric with {〈y,X〉|y ∈ H}L
2(P)

.

Hence, KX is spanned as a Hilbert space by {CX(y)|y ∈ H}. Taking any
g ∈ L2(P ) does not enlarge KX , so that

KX = {E[g(X)X ]|g ∈ L2(P)X}. (5)

Furthermore, for every y, z ∈ H , thanks to the Fubini theorem, one has the so
called reproducing property: 〈k, CXy〉X = 〈k, y〉, k ∈ KX , y ∈ H.
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Proposition 1.6. If E[X ] = 0 and Γ ⊂ H is a N -stationary codebook for X,
then Γ ⊂ KX .

Proof: Consider a ∈ Γ. a = E[X |X ∈ W (a|Γ)] = E[g(X)X ], where
g = 1W (a|Γ)/PX [W (a|Γ)] ∈ L2(P). The assertion follows from equation (5).

1.3.2 The case of a bi-measurable stochastic processes

Consider the Hilbert space H = L2([0, T ], dt) and a bi-measurable centred
L2(P)-process X = (Xt)t∈[0,T ] with paths in L2([0, T ], dt) a.s. and covariance
function ΓX(s, t) := E[XsXt] satisfying

∫
[0,T ] ΓX(s, t)ds < +∞. Then X can be

seen as a H-valued random vector with E[‖X‖2] <∞.

CXy =

∫

[0,T ]

y(s)ΓX(s, ·)ds, y ∈ L2([0, T ], dt). (6)

In this setting, proposition 1.6 indicates that the components of a stationary
quantizer have certain smoothness properties. Proofs are available in [13, 11].

1.3.3 Reduction of dimension

The aim is now the reduction of the quantization problem to finite dimensional
subspaces of H . For any finite dimensional subspace U of H , let ΠU denote the
orthogonal projection from H onto U .

Proposition 1.7. Let U be a finite dimensional linear subspace of H. Then

en(ΠU (X))2 ≤ en(X)2 ≤ inf
{
E[mina∈Γ ‖X − a‖2]

∣∣Γ ⊂ U, 1 ≤ cardΓ ≤ n
}

= E‖X −ΠU (X)‖2 + en(ΠU (X))2.

In other words, the quadratic quantization error with respect to Γ ⊂ U con-
sists of the projection error and the quantization error of the projected random
vector.

Notation: Let us denote dn(X) = min{dim span(Γ),Γ ∈ Cn(X)} the
quantization dimensiion of the level n of the quantization problem for X .

It follows from proposition 1.7 that e2n(X) = min{E[‖X − ΠV (X)‖2] +
e2n(ΠV (X))|V ⊂ H linear subspace dimV ≥ dn(X)}.

1.3.4 The case of Gaussian measures

In this section, let X be a centred H-valued random vector with Gaussian
distribution PX . Since we wish to investigate the infinite dimensional situation,
we assume throughout that dimKX =∞. (supp(PX) = KX .)

In this case, the proposition 1.6 can be considerably improved.

Theorem 1.8. Le Γ ⊂ H be a n-stationary codebook for X and let U = span(Γ).
Then ΠU (X) and X − ΠU (X) are independent so that CX(U) = U . In partic-
ular, Γ ⊂ CX(H) ⊂ KX .

This theorem shows that linear subspaces U of H spanned by n-stationary
codebooks correspond to principal components ofX , in other words, are spanned
by eigenvectors of CX .
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In order to deal with n-optimal codebooks, let λX
1 ≥ λX

2 ≥ · · · > 0 be the
ordered non-zero eigenvalues of CX (written as many times as its multiplicity)

and note that E[‖X‖2] =
∞∑
j=1

λX
j .

Theorem 1.9. Let Γ be an optimal codebook for X, U = span(Γ) and m =
dimU . Then CX(U) = U and

E‖X −ΠU (X)‖2 =
∑

j≥m+1

λX
j .

Observe that
∑

j≥m+1

λX
j = inf{E‖X −ΠV (X)‖2|V ⊂ H linear subspace, dimV = m}.

This theorem shows that m-dimensional subspaces of H spanned by n-optimal
codebooks are spanned by eigenvectors of CX that belong to the m largest eigen-
values. Thus these subspaces correspond to the first m principal components of
X .

We now deduce the final representation of en(X).

en(X)2 =
∑

j≥m+1

λX
j + en

( m⊗

j=1

N (0, λX
j )
)2

for m ≥ dn(X), (7)

en(X)2 <
∑

j≥m+1

λX
j + en

( m⊗

j=1

N (0, λX
j )
)2

for 1 ≤ m < dn(X). (8)

This two equations (7) and (8) show that for the quantization of a Gaussian
process, as soon as we know its Karhunen-Loève basis (en)n∈N∗ and its eigen-
values (λX

n )n∈N∗ , the problem of optimal L2-quantization comes to the problem
of the quantization of a Gaussian vector of dimension dn.

In the following, one will see that the Karhunen-Loève basis of many com-
mon Gaussian processes are known (Brownian motion, Brownian bridge and the
Ornstein-Uhlenbeck process).

1.3.5 Product quantization

Let (en)n∈N∗ be a Hilbertian basis of H and I ⊂ N
∗ is a finite subset of N∗. For

every k ∈ I, consider a Nk-tuple ΓNk = {xNk

1 , · · · , xNk

Nk
} ⊂ R.

An easy way to construct a quantizer is to define the codebook Γ by the
set of the points x such that for every k ∈ I, 〈x, ek〉 ∈ Γk and for every k ∈
N

∗ − I, 〈x, ek〉 = E[〈X, ek〉].
To quantize X , one will consider Y = ProjΓ(X), where ProjΓ is a nearest

neighbour projection on Γ. The Voronoi cells associated with such a codebook
are hyper-parallelepipeds.

Proposition 1.10 (Case of independent marginals). With the same notations,
if one assumes that the marginals of X, (〈X, e1〉, 〈X, e2〉, · · · ) are independent,
then one can choose for each k ∈ I the values Γk = {xNk

1 , · · · , xNk

Nk
} such that

Y k = ProjΓk(〈X, ek〉) is a stationary quantizer of 〈X, ek〉. Then Y = ProjΓ(X)
is a stationary quantizer of X.

8



This method gives us a way to get a stationary quantizer with an easy
projection rule.

A drawback of product quantization is that one needs to restrict themselves
to the case of independent marginals in order to have stationarity.

1.4 Numerical optimal quantization

Various numerical algorithm have been developped to get numerically an opti-
mal N -grid with a minimal qudratic quantization error in the finite-dimensional
setting. A review of these methods is available in [16]. Let us mention the
Lloyd’s algorithm for the quadratic case, which is the natural probabilistic coun-
terpart of a classification algorithm due to Forgy [7].

Another algorithm is a stochastic gradient method which is suggested by
the fact that the L2-quantization distortion function is differentiable at any
N -tuple having pairwise distinct components and a PX -negligible Voronoi tes-
sellation boundary and has an integral representation. The algorithm is deeply
investigated in [17].

Equation (4) shows that any Voronoi quantizer associated with a critical
point of DX

N is a stationary quantizer. In the case of one dimensional distribu-
tions, as the Gaussian distribution, the Hessian of the distortion is known and
can be represented by a tridiagonal matrix. Hence, it is easy to invert and a
Newton method can be implemented. It is completely detailed in [17] in the
Gaussian case. It is still the fastest way to compute L2-optimal quantizers of
one-dimensional Gaussian variables.

1.5 Application to numerical integration

Let X be an integrable E-valued random vector. The quantization method
for numerical integration consists in approximating the distribution PX by the

distribution of a quantizer Y , valued on Γ = {y1, · · · , yN} ⊂ E. PY =
N∑
i=1

piδyi
,

where pi = P[Y = yi] and δyi
is the Dirac mass at yi.

Then, one approximate the quantity E[φ(X)] =
∫
E
φ(ξ)PX(dξ) by E[φ(Y )] =

∫
E φ(ξ)PY (dξ) =

N∑
i=1

piφ(xi), where φ is a Lipschitz continuous function on E.

Remark. If one supposes that Y is X-measurable, there is a measurable parti-

tion of E, C = {C1, · · · , CN} such that Y =
N∑
i=1

yi1Ci
(X), hence pi = P(Y =

yi) = PX(Ci).

Error control for numerical integration:
In [17], Pagès and Printems have established error control inequalities when

doing this approximation.
• The Lipschitz case
When φ is Lipschitz continuous, the resulting error is controlled by:

|E[φ(X)]− E[φ[Y ]]| ≤ [φ]Lip‖X − Y ‖1 ≤ [φ]Lip‖X − Y ‖p (p ≥ 1).

• The Lipschitz derivative case

9



If φ is continuously differentiable with a Lipschitz continuous differentialDφ.
Taylor’s formula gives |φ(X)− (φ(Y ) +Dφ(Y ).(X − Y ))| ≤ [Dφ]Lip|X − Y |2,

so that
∣∣∣E[φ(X)]− E[φ(Y )]− E[Dφ(Y ).(X − Y )]

∣∣∣ ≤ [Dφ]Lip‖X − Y ‖22

Now, the stationnarity (3) of Y ensures

E[Dφ(Y ).(X − Y )] = E[Dφ(Y ).E[(X − Y )|Y ]] = 0,

hence |E[φ(X)]− E[φ[Y ]]| ≤ [Dφ]Lip‖X − Y ‖22 = O(N−2/d).
In other words, stationarity of a quantizer makes us reach an order in the

convergence rate of approximation of the expectation.
• The convex case
When φ is a convex function and Y is a stationary quantizer, Jensen in-

equality yields E
[
φ(Y )

]
= E

[
φ
(
E[X |Y ]

)]
≤ E[φ(X)]. Hence E[φ(Y )] is always a

lower bound for E[φ(X)].

1.6 Quantization of Gaussian processes

1.6.1 Quantization

From now on, as in section 1.3.2, we will assume thatX is a bi-measurable Gaus-
sian process defined on the probability space (Ω,A,P) satisfying E[|X |2

L2
T

] =

T∫
0

E[X2
s ]ds <∞, so that it can be viewed as an L2

T -valued random vector.

We have seen in section 1.3.4 that in this context, as soon as one knows
the Karhunen-Loève system (eXn , λX

n )n∈N∗ of the covariance operator of X , the
problem of the L2-optimal quantization of the process X comes to the quantiza-

tion of the Gaussian vector
m⊗
j=1

N (0, λX
j ). ((λX

n )n∈N∗ is sorted in the decreasing

order. )
Once we have computed an optimal quantizer of the finite dimensional Gaus-

sian vector
m⊗
j=1

N (0, λX
j ) given in equation (7), we have an optimal quantizer of

the underlying Gaussian process at our disposal. The companion parameters
of the functional quantizer are easily deduced from the ones of the quantizer of
m⊗
j=1

N (0, λX
j ) we use.

All this is true for any Gaussian process X , except that one needs to know
explicitly its Karhunen-Loève Basis to compute the optimal quantizer. Common
Gaussian processes have explicit Karhunen-Loève expansions, like the Brownian
motion and the Brownian bridge. The Ornstein-Uhlenbeck process admits a
semi-closed form for its Karhunen-Loève expansion. (The formula is derived for
standard parameters in the stationary case in [12]. ) In section 7, (annex about
the Ornstein-Uhlenbeck Karhunen-Loève basis), the computation of Karhunen-
Loève decomposition of the Ornstein-Uhlenbeck process is detailed. The general
case where r0 ∼ N (m0, σ

2
0) is handled. As far as we know, the K-L expansion

of the fractional Brownian motion is not known.
Later in the paper, numerical illustrations will be given for the following

cases:
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1. The Brownian motion (Wt)t∈[0,T ],

eWn (t) :=

√

2

T
sin

(

π(n− 1/2)
t

T

)

, λW
n :=

( T

π(n− 1/2)

)2

, n ≥ 1. (9)

2. The Brownian bridge on [0, T ],

eBn (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

( T

πn

)2

, n ≥ 1. (10)

3. The Ornstein-Uhlenbeck process on [0, T ], starting from 0, (See section 7.)

eOU
n (t) :=

( 1
√

T
2
−

sin(2ωλn
T )

4ωλn

)

sin(ωλnt), λOU
n :=

σ2

ω2
λn

+ θ2
, n ≥ 1,

(11)
where ωλn are the (sorted) strictly positive solutions of the equation

θ sin(ωλnT ) + ωλn cos(ωλnT ) = 0.

4. The stationary Ornstein-Uhlenbeck process on [0, T ]. (See section 7.)

On figure 2, one can see a N -optimal L2-quantizer of the standard Brownian
motion.
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Figure 2: Optimal quantizer of a standard Brownian motion on [0, 1].

1.6.2 Product quantization

Thanks to equations (7) and (8), product quantization of the finite dimensional

Gaussian vector ξ ∼
m⊗
j=1

N (0, λX
j ) yields a stationary quantizer of the process

X . In this context, let us give the following notations:

11



The quantizer of X is X̂t =
∑
n≥1

√
λX
n ξ̂ne

X
n (t), where ξ̂n = ProjΓ(Nn)(ξn) is

an optimal Nn-quantization of ξn and N1 × · · · × Nn ≤ N, N1, · · · , Nn ≥ 1.
(Hence for large enough n, Nn = 1 so that ξ̂n = 0.)

The paths of anN1×· · ·×Nn-quantizer χ and a multi-index i = {x1, · · · , xn, · · · }
that produces this quantization are of the form

χi(t) =
∑

n≥1

√
λX
n xNn

in
eXn (t). (12)

A quantizer χ defined by equation (12) is called a K-L product quantizer.
Furthermore, one denote by Opq(X,N) the set of the K-L product quantizers
of size at most N of X .

In the case of a product quantization, the counterpart of equation (7) is

E[min
i
|X − χi|2] =

dx∑
n=1

λX
n E

[
min

1≤in≤Nn

|ξn − x
(Nn)
in
|
]
+

∑
n≥dx+1

λX
n

=
dx∑
n=1

λX
n E

[
min

1≤in≤Nn

|ξn − x
(Nn)
in
|
]
+ E[|X |2

L2
T

]−
dx∑
n=1

λX
n .

(13)

1.6.3 Product decomposition blind optimization

As a consequence, the lowest quadratic quantization error induced by a K-L-
product quantizer having at most N codebooks is obtained as a solution of the
minimization problem

min
{
e(χ), χ ∈ Opq(X,N)

}
, (14)

that is, thanks to equation (13)

min
{ d∑

n=1

λX
n min

RNn

‖ξ − ξ̂(Nn)‖22 +
∑

n≥d+1

λX
n , N1 × · · · ×Nn ≤ N, d ≥ 1

}
. (15)

A solution of (14) is called an optimal K-L product quantizer.
The blind optimization procedure consists of computing the criteria for every

possible decomposition N1 × · · · × Nn ≤ N . For a given Gaussian process X ,
results can be kept off-line for a future use. Optimal decompositions for a
wide range of values of N for both Brownian bridge and Brownian motion are
available on the web site www.quantize.maths-fi.com [15] for download. The
blind optimization procedure is more thoroughly described in [14].

Some values of the optimal decomposition for the standard Brownian motion
are given in figure 3.

Proceeding in this article, we will be confronted with other similar optimiza-
tion problems (with an other criteria than the quadratic distortion). The blind
optimization procedure will be the way to compute optimal product decompo-
sition databases.

In figure 4, one can see examples of optimal product quantizers of the Brow-
nian motion and the Brownian bridge on [0, 1]. In figure 4, one can see opti-
mal product quantizers of the centred Ornstein-Uhlenbeck process starting from
r0 = 0 and a stationary Ornstein-Uhlenbeck on [0, 3].

12



N Nrec Quantization Error Nrec decomposition

1 1 0.70711 1
10 10 0.31376 5 - 2
100 96 0.22644 12 - 4 - 2
1000 966 0.18760 23 - 7 - 3 - 2
10000 9984 0, 16259 26 - 8 - 4 - 3 - 2 - 2

Figure 3: Record of optimal product decomposition values of the standard Brow-
nian motion.

0

0

0.2 0.4 0.6 0.8 1

1

−2.5
−2
−1.5
−1
−0.5

0.5

1.5

2

2.5

−0.2
−0.4
−0.6
−0.8
−1

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 4: Optimal product quantizer of a standard Brownian motion (left) and
a standard Brownian bridge (right) on [0, 1].
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Figure 5: Optimal product quantizer of a centred Ornstein-Uhlenbeck process,
starting from r0 = 0 (left) and stationary (right) given by drt = −rtdt + dWt,
on [0, 3].

1.6.4 Rate of decay for the quantization error

In [13], H. Luschgy and G. Pagès have established a precise link between the
rate problem and Shannon-Kolmogorov’s entropy of X . This allowed them to
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compute the exact rate of convergence of the minimal L2-quantization error
under rather general conditions on the eigenvalues of the covariance operator.
Typical rates are O(log(n)−a), a > 0. This conditions are fulfilled by a large
class of processes as the Ornstein-Uhlenbeck process and the Brownian motion.

2 Quantization as a control variate: a first at-

tempt to quantization based variance reduc-

tion

This method has been initially proposed in [14].

2.1 Quantization as a control variate variable

Let X : (Ω,A,P) → E be a square integrable random vector, N ∈ N
∗ and

Γ = {y1, · · · , yN} a N -codebook. We suppose that we have access to a Γ-valued

quantizer Y = Proj(X) =
N∑
i=1

yi1Ci
(x) where C = {C1, · · · , CN} is a partition

of E. At this step, we do not suppose that Proj is a nearest neighbour projection
on Γ.

Let F : E → E be a Lipschitz continuous function such that F (X) ∈ L2(P).
In order to compute E[F (X)], one writes:

E[F (X)] = E
[
F (Proj(X))

]
+ E

[
F (X)− F (Proj(X))

]

= E
[
F (Proj(X))

]
︸ ︷︷ ︸

(a)

+
1

M

M∑

m=1

F (X(m))− F (Proj(X(m)))

︸ ︷︷ ︸
(b)

+RN,M ,

(16)
where X(m), 1 ≤ m ≤ M are M independent copies of X , and RN,M is a
remainder term defined by equation (16).

Here, term (a) can be computed by quantization and term (b) can be com-
puted by a Monte-Carlo simulation. Now

‖RN,M‖2 = σ(F (X)−F (Proj(X)))√
M

≤ ‖F (X)−F (Proj(X))‖2√
M

≤ [F ]Lip
‖X−Proj(X)‖2√

M
.

Furthermore,
√
MRN,M →L N

(
0,Var

(
F (X)− F (Proj(X))

))
.

Consequently, in the d-dimensional case, if F is simply a Lipschitz
function and if (Yn)n∈N = (ProjN (X))N∈N is a rate optimal sequence of quan-
tizers of X ,

‖F (X)− F (ProjN (X))‖2 ≤ [F ]Lip
CX

N1/d

and

‖RN,M‖2 ≤ [F ]Lip
CX

M1/2N1/d
.

In a similar way, in the case of the Brownian motion, if (ŴN )N≥1

is a rate optimal sequence of product quantization of the Brownian motion, if
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F is simply a Lipschitz functional, then

‖F (W )− F (ŴN )‖2 ≤ [F ]Lip
CW

log(N)1/2

and

‖|RN,M |L2
T
‖2 ≤ [F ]Lip

CW

M log(N)1/2
.

2.2 Practical implementation: the problem of fast nearest

neighbour search

• The complexity of the projection: Concerning practical implementation,
one notices in equation 16 that for every step of the Monte-Carlo method, one
has to compute the projection Proj(X(m)). This is the critical part of the
algorithm when dealing with optimal quantization. Hence, the efficiency of the
quantization as a control variate variable is conditioned by the efficiency of the
projection procedure. When dealing with Voronoi quantization, this projection
is simply the nearest neighbour projection.

In a more general setting, the problem of nearest neighbor projection, known
as the post office problem has been widely investigated in the area of computa-
tional geometry. It is encountered for many applications, as pattern recognition
and information retrieval.

The problem has been solved near optimally for the case of low dimensions.
Algorithms differ on their practical efficiency on real data sets. For large di-
mensions, most solutions require storage space exponential in the dimension, or
require a bigger query time than the obvious brute force algorithm. In fact for
dimension d > logN , a brute force algorithm is usually the best choice. This
effect is known as the curse of dimensionality. Still, even in low dimension, fast
nearest neighbour search is a critical part of the algorithm.

Concerning vector quantization, the speed of the projection can also be
increased by relaxing the hypothesis within the projection on the quantizer
is a nearest neighbour projection. It can be done by designing other kind of
partitions of the state space. See [5] for more details.

• The functional case: One other drawback of the method, when dealing
with the functional case is that one does not simulate the whole trajectory
of the stochastic process but only its marginals at discretes dates. Hence it
is not possible to compute its projection. This problem finds its solution in
the simulation scheme for Gaussian processes derived in 4.2 for the functional
stratification.

3 Application of quantization to stratification

3.1 Introduction to stratification

The base idea of stratification is to localize the Monte-Carlo method on the
element of a measurable partition of the state space of a L2 random vector
X : (Ω,A)→ (E, ε).
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• Let (Ai)i∈I be a finite ε-measurable partition of E. The sets Ai are called
strata. Assume that the weights pi = P(X ∈ Ai) are known for i ∈ I and
strictly positive.

• Let us define the collection of independent random variables (Xi)i∈I with
distribution L(X |X ∈ Ai).

Remark:

• One assumes that one can write Xi = φi(U) where U is uniformly dis-
tributed on [0, 1]ri and φ : [0, 1]ri → R is an easily computable function.
(One has ri ∈ N ∪ {+∞}, the case ri = +∞ occurs for example in the
case of the acceptance-rejection method.) This condition simply means
that the random variables Xi ∼ L(X |X ∈ Ai) are easy to simulate on a
computer.

• It is a major constraint for practical implementation of stratification meth-
ods. This simulability condition usually has a strong impact on the possi-
ble design of the strata. In the following, one will come back several times
on this condition.

Let F : (E, ε)→ (R,B(R)) such that E[F 2(X)] < +∞.

E[F (X)] =
∑
i∈I

E[1{Xi∈Ai}F (X)] =
∑
i∈I

piE[F (X)|X ∈ Ai]

=
∑
i∈I

piE[F (Xi)].

The stratification concept comes into play now. Let M be the global budget
allocated to the computation of E[F (X)] and Mi = qiM the budget allocated
to compute E[F (Xi)] in each stratus. One assumes that

∑
i∈I

qi = 1. This leads

to define the (unbiased) estimator of E[F (X)]:

F (X)
I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F (Xk
i ), (17)

where (Xk
i )1≤k≤Mi

is a L(X |X ∈ Ai)-distributed random sample.

Proposition 3.1. With the same notations:

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2i
qi
σ2
F,i, (18)

where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)) ∀i ∈ I.

Proof: Let us denote Zi =
1
Mi

Mi∑
k=1

F (Xk
i ). For i 6= j, Zi is independent

from Zj .

One has F (X)
I

M =
∑
i∈I

piZi. Hence, by independence,

Var(F (X)
I

M ) =
∑
i∈I

p2i Var(Zi) =
∑
i∈I

p2i
1
Mi

Var(F (Xi)) =
1
M

∑
i∈I

p2
i

qi
σ2
F,i.
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Optimizing the simulation allocation to each stratus amounts to solving the
following minimization problem:

min
(qi)∈PI

∑

i∈I

p2i
qi
σ2
F,i where PI =

{
(qi)i∈I ∈ R

I
+

∣∣∣
∑

i∈I

qi = 1
}
. (19)

3.1.1 Sub-optimal choice

The first natural choice is to set qi = pi, i ∈ I. The two motivations for this
choice are the facts that the weights pi are known and because it always reduces
the variance.

∑
i∈I

p2
i

qi
σ2
F,i =

∑
i∈I

piσ
2
F,i =

∑
i∈I

E

[(
F (X)− E[F (X)|X ∈ Ai]

)2
1Ai

(X)
]

= ‖F (X)− E[F (X)|σ({X ∈ Ai}, i ∈ I)]‖22.

Consequently
∑
i∈I

p2
i

qi
σ2
F,i ≤ ‖F (X)− E[F (X)]‖22 = Var(F (X)).

Remark. When dealing with empirical distributions, in the opinion pool world,
this corresponds to the so-called quota method.

3.1.2 Optimal choice

The optimal choice is the solution of the constrained minimization problem 19.
The Schwartz inequality yields

N∑

i=1

piσF,i =

N∑

i=1

piσF, i√
qi

√
qi ≤

( N∑

i=1

p2iσF, i
2

qi

)1/2( N∑

i=1

qi

︸ ︷︷ ︸
=1

)1/2
.

As a consequence, the solution of the minimization problem corresponds to
the equality case into the Schwartz inequality.

Hence the solution of the minimization problem is given by q∗i =
piσF,i

N∑

j=1

pjσF,j

,

and the corresponding minimal variance is given by
( N∑

i=1

piσF,i

)2
.

At this point, the problem is that one does not know the local inertia σ2
F,i.

Still, using the fact that Lp norms are decreasing with p, one sees that

σF,i ≥ E

[∣∣F (X)− E[F (X)|{X ∈ Ai}]
∣∣
∣∣∣{X ∈ Ai}

]
,

so that

( N∑

i=1

piσF,i

)2
≥
∥∥∥F (X)− E

[
F (X)|σ({X ∈ Ai}, i ∈ I)

]∥∥∥
2

1
.

In [6], Etoré and Jourdain proposed an algorithm for adaptively modify the
proportion of further drawings in each stratum, that converge to the optimal
allocation. This can be used in a general framework.

In section 3.2.1, one will see that the problem of designing good strata, in
term of Variance reduction is linked with the problem of optimal quantization.
Moreover, the case of quantization based strata have two other advantages:
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• The weights pi are already known, what saves us for evaluation their values
during the Monte-Carlo evaluation, when dealing with the ”sub-optimal”
choice.

• What concerns the optimal choice for the allocation parameters qi, one
shows that weights can be chosen such that stratification has a uniform ef-
ficiency among the class of Lipschitz continuous functionals. This weights
have an explicit expression in the case of quantization based stratification.

3.2 Stratification and quantization

3.2.1 Quantization based stratification

The main drawback of using quantization as a control variate variable is that it
requires repeated computations of projections on the quantizer. (That is nearest
neighbour search in the case of a Voronoi quantizer.) The point when dealing
with stratification is that one does not have to use a projection procedure.

The critical point now is the cost of the simulation of conditional distribution
L(X |X ∈ Ai).

Theorem 3.2 brings together previous results about stratification and high-
lights the relationships with the notions of local inertia and intraclass inertia.
The other point is that it shows that stratification has a uniform efficiency
among the class of Lipschitz continuous functionals.

Theorem 3.2 (Universal stratification). Let A = (Ai)i∈I be a partition (strati-
fication) of E. (Keep in mind the notation ProjA,Z for the centroidal projection
of the distribution Z on a partition A, defined in definition 1.2).

1. For every i ∈ I, consider the local inertia of the random vector X,

σ2
i = E

[
|X − E[X |X ∈ Ai]|2

∣∣∣X ∈ Ai

]
.

Then, for every Lipschitz continuous function F : E → R,

∀i ∈ I, σF,i ≤ [F ]Lipσi so that sup
[F ]Lip≤1

σF,i ≤ σi. (20)

2. In the case of the sub-optimal choice (see section 3.1.1),

sup
[F ]Lip≤1

( ∑
i∈I

piσ
2
F,i

)
≤ ∑

i∈I

piσ
2
i =

∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]
∥∥∥
2

2

=
∥∥∥X − ProjA,X(X)

∥∥∥
2

2
.

(21)

3. In the case of the optimal choice (see section 3.1.2),

sup
[F ]Lip≤1

(∑

i∈I

piσ
2
F,i

)
≤
(∑

i∈I

piσi

)2
, (22)

and ( ∑
i∈I

piσi

)2
≥

∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]
∥∥∥
2

1
,

=
∥∥∥X − ProjA,X(X)

∥∥∥
2

1
.
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4. If one considers vector valued Lipschitz continuous functions F : E → E,
then inequalities (20), (21) and (22) hold as equalities.

Proof: One has

σ2
F,i = Var(F (X)|X ∈ Ai)

= E

[∣∣F (X)− E[F (X)|X ∈ Ai]
∣∣2
∣∣∣X ∈ Ai

]

≤ E

[∣∣F (X)− F (E[X |X ∈ Ai])
∣∣2
∣∣∣X ∈ Ai

]
.

Now using that F is Lipschitz, it follows that

σ2
F,i ≤ [F ]2Lip

1

pi
E

[∣∣X − E[X |X ∈ Ai]
∣∣21{X∈Ai}

]
= [F 2]Lipσ

2
i .

Items 2 and 3 easily follow from item 1. Claim 4 is obvious by considering
F = IdE . �

The general case:
The idea is now to use the partition {A1, · · · , AN} and the N -codebook

Γ = {y1, · · · , yN} associated with our projection

Proj(x) =
N∑

i=1

yi1Ai
(x).

In the case of a Voronoi quantization, this amounts to setting I = {1, · · · , N}
and Ai = slabA(xi).

Then for every i ∈ {1, · · · , N}, there exists a Borel function φ(xi, .) :

[0, 1]q → E such that φ(xi, U) ∼ L(X |X ∈ Ci) =
1Ci

PX(dξ)

P[X∈Ci]
, where U ∼

U([0, 1]q).
Remark. Note that the dimension q is arbitrary: one may always assume that
q = 1 by the fundamental theorem of simulation, but in order to obtain some
closed forms for φ(xi, .), we are led to consider situations where q ≥ 2 or even
infinite when considering a Von Neumann acceptance-rejection method.

Now let (ξ, U) be a couple of independent random variables such that ξ has
the distribution of Y = Proj(X) and U ∼ U([0, 1]q). Then one checks that
φ(ξ, U) has the same distribution as X , so that one may assume without loss of
generality that X = φ(Proj(X), U) and which in turn implies that ξ = Proj(X)
i.e.

X = φ(Proj(X), U), U ∼ U([0, 1]q), U,Proj(X) independent.

In terms of implementation as mentioned above, one needs a simple form
for the function φ (in term of computational complexity) which induces some
stringent constraints on the choice of the strata.

3.3 Closed forms for hyper-rectangles strata in the inde-

pendent Gaussian case.

Consider a random variable X ∼ N (0, Id), d ≥ 1.
Let (e1, · · · , ed) be an orthonormal basis of E = R

d. We set N1, · · · , Nd ≥ 1
the number of strata in each direction. So we consider for 1 ≤ i ≤ d, −∞ =
xi
0 ≤ xi

1 ≤ · · · ≤ xi
Ni

= +∞.
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The strata are

Ai =

d∏

l=1

{
x ∈ R

d such that 〈el, x〉 ∈ [ylil−1, y
l
il
]
}
, i ∈

d∏

l=1

{1, · · · , Nl}.

Then for every multi-index i ∈
d∏

l=1

{1, · · · , Nl},

L(X |X ∈ Ai) =

d⊗

l=1

L(Z|Z ∈ [xl
il−1, x

l
il ]),

where Z ∼ N (0, 1).

Then pi = P(Ai) =
d∏

k=1

(
N (xik )−N (xik−1

)
)
, and for −∞ ≤ a ≤ b ≤ ∞,

L(Z|Z ∈ [a, b]) = N−1
((
N (b)−N (a)

)
U +N (a)

)
, U ∼ U([0, 1]). (23)

4 Functional stratification of a Gaussian process

In the functional case, the state space of the random values are functional spaces.
What is usually done is to simulate a scheme to approximate marginals of the
underlying process.

In this section, we assume that X is a R-valued Gaussian process on [0, T ].
We are interested in the value of V := E[F (Xt1 , · · · , Xtn)] where 0 ≤ t1 <
· · · , < tn ≤ T are n dates of interest for the underlying process.

(For example, X can be a standard Brownian motion on [0, T ], and V the
risk-neutral expectation of a path-dependent payoff of a diffusion based on X .)

What is done in this section can be easily generalized to multi-dimensional
processes in the case where their coordinates are independent. (For example,
when dealing with multi-factor Brownian diffusions, it does not matter how the
Brownian motions are being correlated afterward.) Still we restrict ourselves to
the one dimensional setting for clarity.

Let us assume that χ ∈ Opq(X,N) is a K-L quantizer of X . The codebook
associated with this product quantizer is the set of the paths of the form

χi(t) =
∑

n≥1

√
λX
n x

(Nn)
i eXn , i = {x1, · · · , xn, · · · }.

with the same notation as in section 1.6.2.
We now need to be able to simulate the conditional distribution

L(X |X ∈ Ai)

where Ai is the slab associated with χi in the codebook.
To simulate according to the distribution L(X |X ∈ Ai) , one will :

• First, simulate the first K-L coordinates and X , using (23).

• Then simulate the conditional distribution of the marginals of the Gaus-
sian process, its first coordinates being settled.
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4.1 Simulation of marginals of the Gaussian process, its

first K-L coordinates being settled.

In this setting, the aim is to simulate the conditional distribution

L
(
Xt1 , · · · , Xtn

∣∣∣
∫ T

0

Xse
X
1 ds,

∫ T

0

Xse
X
2 (s)ds, · · · ,

∫ T

0

Xse
X
d (s)ds

)
(24)

where (Xt)t∈[0, T ] is a L2
R-valued Gaussian process, and (eXk , λX

k )k∈N∗ is the
Karhunen-Loève system associated with the process X .

As X is a Gaussian process, the random vector

(
Xt1 , · · · , Xtn ,

∫ T

0

Xse
X
1 (s)ds,

∫ T

0

Xse
X
2 (s)ds, · · · ,

∫ T

0

Xse
X
d (s)ds

)

is a Gaussian vector. Hence, the conditional distribution (24) is given by the
transition kernel ν(y,A) = N (Af1(y)), cov(X−Af1(Y ))), where Af1 : Rd → R

n

is an affine function corresponding to the linear regression ofX on Y . Af1(Y ) :=
E[X |Y ].

One has
((

cov(Yi, Yj)
))

1≤i,j≤d
=
((

λX
i δij

))
1≤i,j≤d

, and cov(Xti , Yk) =

E[Xti

∫ T

0 Xse
X
k (s)ds] = λX

k eXk (ti), for 1 ≤ i ≤ n and 1 ≤ k ≤ d.

The linear part R1 of Af1 is then given by R1 =
((

eXj (ti)
))

1≤i≤n,1≤j≤n
.

As a consequence, the conditional expectation writes

Af1(Y ) = E[X ] +




eX1 (t1) · · · eXd (t1)
...

. . .
...

eX1 (tn) · · · eXd (tn)







Y1

...
Yd


 .

K1 := cov(X −Af1(Y )) = E

[
(X −R1Y )(X −R1Y )

]

= cov(X)− 2 cov(X,R1Y ) + cov(R1Y ),

with E[YiYj ] = λiδ
j
i , ∀(i, j) ∈ {1, · · · , d}, and

cov(R1Y )kl =
d∑

i=1

λie
X
i (tk)e

X
i (tl) =

d∑
i=1

λiR1kiei(tl)

=
d∑

i=1

R1kiE[XlYi] = E[XY ]kl.

Hence, K1 is given by K1lk = cov(Xl, Xk)−
d∑

i=1

λie
X
i (tl)e

X
i (tk).

Now, one is able to simulate according to this probability distribution, using
a square root of this matrix.

The easiest way of doing this in the definite positive case is to compute
the Cholesky factorization of the matrix K1, but in this case, the simulation
of a simple path requires a n × n matrix multiplication, whose complexity is
quadratic. This solution is not satisfactory for our purpose.
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4.2 Faster simulation of conditional paths - Bayesian sim-

ulation

The natural method to simulate L(X |Y ) requires for each path a multiplication
by a square root of K1 whose cost is O(n2). This cost is to high.

• Yet, in the context of this paper, d is the quantization dimension of the
process. It is close to log(N) if N is the number of strata, and n, the num-
ber of time steps in the simulation attempts to be very large in comparison
to d.

• Moreover, we make the assumption that the simulation of (Xt1 , · · · , Xtn)
is O(n). (It is the case for the Brownian motion, the Ornstein-Uhlenbeck
process and the Brownian bridge. )

• The idea here is that the conditional distribution L(X,Y ) is determined
through the Bayes lemma, by the conditional distribution L(Y,X) and
the two marginal distributions L(X) and L(Y ). The simulation cost of
L(Y,X), L(X), L(Y ) are respectively O(d2), O(n), O(d2).

One knows that X = E[X |Y ] + Z where Z ∼ N (Af1(Y ), cov(X − E[X |Y ]))
is independent of Y .

Hense one is able to simulate according to L(X |Y = y) if one can simulate
the distribution of Z, by writing

L(X |Y = y) = E[X |Y = y] + L(Z|Y = y)︸ ︷︷ ︸
=L(Z)

.

To simulate Z, one simulates the distribution of X and the conditional dis-
tribution L(Z|X). This yield the following steps :

• Simulate X . (cost of O(n)).

• Simulate L(Z|X) ∼ L(X − E[X |Y ]|X) ∼ X − L(E[X |Y ]|X)

– L(E[X |Y ]|X) = Af1L(Y |X).

L(Y |X) ∼ N (E[Y |X], cov(Y − E[Y |X]))

Let us denote Af2 the affine function corresponding to the regres-
sion of Y on X and R2 its linear part.

cov(Y − E[Y |X ]) = cov(Y ) + cov(E[Y |X ])− 2 cov(Y,E[Y |X ])
= cov(Y )−R2 cov(X)tR2.

– This yields Z = Af1(G) where G ∼ N (Af2(X), cov(Y ) −
R2 cov(X)tR2).

– This simulation complexity is O(d× n).

• The random variable T = Af1(y) + Z satisfies T ∼ L(X |Y = y).

In the general case, the matrix R2 needed by the method can be computed
by performing a least square regression.
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Still, in the case of the Brownian motion, the matrix R2 is explicitly com-
puted. Indeed, one has cov(X) = ((min(ti, tj)))0≤i,j≤n. If t0 < t1 < · · · < tn,

it is invertible and R2 = cov(Y,X) cov(X)−1. If tj = jT
n , 0 ≤ j ≤ n = jh, this

yields R2 = ((αij))1≤i≤d,1≤j≤n, with

• for j /∈ {1, n}, αij = λW
i

heWi (tj)−heWi (tj−1)−heWi (tj+1)
h2 ,

• αi0 = λW
i

(
eWi

′
(t0)− eWi (t1)−eWi (t0)

h

)
,

• αin = λW
i

(
eWi (tn)−eWi (tn−1)

h − eWi
′
(tn)

)
.

The proof is available in section 6. The case of a non uniform subdivision is
also handled.

Now, we have a very fast and easy way to simulate the conditional distribu-
tion (24) at our disposal.

In figures 6 and 7, we plot a few paths of the conditional distribution of
various Gaussian processes knowing that they belong to the L2 Voronoi cell
of one of the curve. The appearance of the drawing suggests to consider the
method as a ”guided Monte-Carlo simulation”.

0
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1
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−1
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Figure 6: Plot of a few paths of the conditional distribution of the Brownian
motion, knowing that its path belong to the L2 Voronoi cell of the highlighted
curve in the quantizer.
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Figure 7: Plot of a few paths of the conditional distribution of the Brownian
bridge (left) and the stationary Ornstein-Uhlenbeck process (right), knowing
that its path belong to the L2 Voronoi cell of the highlighted curve in the
quantizer.

4.3 Blind optimization procedures

4.3.1 Universal stratification criteria

We have seen in section 3.2.1 that the quantity d(χ) =
( ∑

χi∈Γ

piσi

)2
is an

upperbound of the Variance of the estimator, given in equation (17) in the case
where the functional is 1-Lipschitz continuous. Hence one may want to minimize
this criteria instead of the L2-quantization error.

This yields the minimization problem

min
{
d(χ), χ ∈ Opq(X,N)

}
(25)

instead of the minimization problem (14).
The same kind of blind optimization procedure as in section 1.6.3 can be per-

formed. Some values of the optimal decomposition for the standard Brownian
motion are given in figure 8.

N Nrec d(χ) Nrec decomposition

1 1 0.5 1
10 10 9.75689 · 10−2 5 - 2
100 96 5.10548 · 10−2 12 - 4 - 2
1000 966 3.51289 · 10−2 23 - 7 - 3 - 2
10000 9984 2.63721 · 10−2 26 - 8 - 4 - 3 - 2 - 2

Figure 8: Record of optimal product decomposition record values of the stan-
dard Brownian motion with respect to the criteria (25).

Optimal product decompositions for both Brownian bridge and Brownian
motion and for a wide range of values of N are available on the web site
www.quantize.maths-fi.com [15] for download. One can notice that the ob-
tained optimal decompositions for this criterium are the same than in table 3.
Comparing all the decompositions obtained for a quantizer size smaller than
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11000, one notices that in the case of the Brownian motion, the optimal decom-
positions for both criteria are ”almost” always the same. The only values when
decompositions differ are the ranges 270− 271 and 3328− 3359.:

In the case of the Brownian motion, the two criteria do not have a very
different values for the two decompositions, hence one can use the same decom-
position database for the two applications. Concerning the Brownian bridge, one
notice that there are more differing values between the optimal decompositions
for the variance and the optimal decomposition for the L2-distortion.

4.3.2 Composition with the dimensionality

The problem of the simulation complexity
When performing a Monte-Carlo simulation, one makes the number of sim-

ulations that is needed to reach a given accuracy, which is given by a confidence
interval. Hence, when the number of simulation goes to infinity, as the con-
vergence rule is driven by the Central Limit Theorem, the number of needed
simulation M is proportional to the Variance of the simulated random variable.

M ∝
(
Var(X)

)
. (26)

Now, if κ is the simulation complexity of a path of X , the complexity C of
the whole Monte-Carlo simulation is proportional to the product κ×Var(X).

C ∝
(
κ×Var(X)

)
. (27)

Hence if one knows an other random variable X ′ having the same expecta-
tion, but an other variance X ′ and an other simulation cost κ′, one will choose
to use X ′ instead of X only if

C′ =
(
κ′ ×Var(X ′)

)
<
(
κ×Var(X)

)
= C. (28)

As a consequence, the criteria that has to be minimized in any Variance
reduction method is the quantity C′, and not only the variance.

The case of functional stratification
In our case, one acknowledged in section 4.2 that the simulation complexity

of a conditional path is proportional to

(C1 + d)× n+ (C2 × d2 + C3 × d),

where n is the number of dates, d is the quantization dimension and C1, C2

and C3 are constants independent of d and n. The quantity C1×n corresponds
to the cost of the simulation of the first unconditioned path (first step in the
algorithm), and is related to the random number generator that is used.

Assuming that the number of dates is much bigger than the quantization
dimension (one reaches a quantization dimension of 9 with a quantizer size of
104 with the two criteria (14) and (25)), one has to minimize the quantity
(C1 + d)× n× d(χ) in the case of the optimal weights, and (C1 + d)× n× e(χ)
in the case of the standard weights.

To compute the corresponding optimal decomposition, one propose to eval-
uate the constant C1 in the case of the user implementation, and perform an
other blind optimization procedure to obtained the corresponding optimal de-
composition.

In the case of the author’s implementation (with a Mersenne Twister pseudo
random generator), the constant C1 is close to 3.0.
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5 Application to option pricing

Now, one is able to simulate the conditional law of a Gaussian process, knowing
it’s Voronoi cell in a product quantizer. One condition is to know an orthonor-
mal Hilbert basis that diagonalizes its covariance operator. The cases of the
Brownian motion, the Brownian bridge and the Ornstein-Uhlenbeck process
have been handled.

The particular case of the Brownian motion allows to use functional strat-
ification as a generic Variance reduction method for the case of functional of
Brownian diffusions. Even in the multi-dimensonal case, no matter how the
independent Brownian motions are correlated or used afterwards ; no matter if
it is used for diffusing the underlying stock, a stochastic volatility process or an
actualization factor. It can be used as a variance reduction method.

Hence, this is a very interesting variance method to be used ”in production”
when using Monte-Carlo simulations in a industrial way, independently of the
path-dependent payoff or the model (as soon as it uses Brownian diffusions or
one of the other proposed Gaussian processes). User does not have to set up
complicated adjustment when using it.

In the following of this section, the method is used to illustrate its perfor-
mance on simple one dimensional cases. One begins with the case of a continuous
time Up-In Call in the Black and Scholes model, for which a closed formula is
known, and used as a Benchmark.

Benchmark with a Up-In-Call pricing in the Black and Sc-

holes model.

Here, one benchmarks the numerical method for a path dependent option in
a case where a theoretical value is known : a barrier option in the Black and
Scholes Model.

For simplicity’s sake, consider a log - normal Black and Scholes diffusion
with no drift (no interest rate and no divident).

One has a closed form for the continuous barrier option. A numerical cor-
rection proposed by Broadie and Glasserman [4] is done to get the theoretical
price to be compared to. The number of Monte-Carlo Simulation is 100000 in
every case.

One prices a Up-In-Call with different values of the initial spot S, the strike
K, the barrier H , the volatility σ, the maturity T , and the number of fixing
dates for the discrete barrier n. In every case, a 95% confidence interval is given.
So is the variance of the estimator.

The numerical results are given in table 9 when using the method with 20
stratas and table 10 when using the method with 100 stratas.

6 Annex: Special case of the Brownian motion

for R2 computation.

In this section, we give the closed form of the matrix R2 := ((αij))1≤i≤d,1≤j≤n ∈
Md,n(R) corresponds to the affine function Af2 defined by E[Y |X ] = Af2(X).
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Parameters Theoritical Simple Strat. Estimator Strat. Estimator Strat. Estimator
value Estimator sub-optimal weights Lip.-optimal weights Optimal weights

S = 100, K = 100 14.0379 13.9281 13.9283 13.9617
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8491, 14.0071] [13.8519, 14.0047] [13.9069, 14.0165]
T = 1.5, n = 365 Var = 729.2518 Var = 162.4650 Var = 151.9481 Var = 78.1973
S = 100, K = 100 1.4206 1.3659 1.3510 1.35828
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.3106, 1.4211] [1.3039, 1.3981] [1.3460, 1.3706]
T = 1, n = 365 Var = 151.6366 Var = 79.5118 Var = 57.7425 Var = 3.9550

Figure 9: Numerical results for the Up In Call option, with 20 stratas.

Parameters Theoritical Simple Strat. Estimator Strat. Estimator Strat. Estimator
value Estimator sub-optimal weights Lip.-optimal weights Optimal weights

S = 100, K = 100 14.0379 13.9382 13.9511 13.9450
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8720, 14.0043] [13.8874, 14.0150] [13.9012, 13.9888]
T = 1.5, n = 365 Var = 729.2518 Var = 114.0634 Var = 105.8760 Var = 50.0103
S = 100, K = 100 1.4206 1.3296 1.3493 1.3563
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.2825, 1.3768] [1.3093, 1.3893] [1.3461, 1.3664]
T = 1, n = 365 Var = 151.6366 Var = 57.8899 Var = 41.6666 Var = 2.6831

Figure 10: Numerical results for the Up In Call option, with 100 stratas.

Consider t0 = 0 ≤ t1 ≤ · · · ≤ tn = T a subdivision of [0, T ].

E

[ ∫ T

0

Wse
W
i (s)ds|Wt1 , · · · ,Wtn

]
=

n−1∑

j=0

E

[ ∫ tj+1

tj

Wse
W
i (s)ds

∣∣∣Wtj ,Wtj+1

]

︸ ︷︷ ︸
=fi

j
(Wtj

,Wtj+1
)

,

where f i
j is an affine function.

If tj 6= tj+1, f
i
j(x, y) = E

[ ∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y−x)+(Y
B,tj+1−tj
s−tj )

)
eWi (s)ds

]

(where Y
B,tj+1−tj
s−tj is a standard Brownian bridge)

= x
( ∫ tj+1

tj

tj+1 − s

tj+1 − tj
eWi (s)ds

)

︸ ︷︷ ︸
:=Aj

+y
(∫ tj+1

tj

s− tj
tj+1 − tj

eWi (s)ds
)

︸ ︷︷ ︸
:=Bj

= xAi
j + yBi

j.

Simple computations lead to:

∫ tj+1

tj

eWi (s)ds =

√
2

T

T

π(i− 1
2 )

(
cos
(
π(i − 1

2
)
tj
T

)
− cos

(
π(i − 1

2
)
tj+1

T

))
,

and

∫ tj+1

tj
seWi (s)ds =

√
2
T

T
π(i− 1

2 )

(
tj cos(π(i − 1

2 )
tj
T )− tj+1 cos(π(i − 1

2 )
tj+1

T )
)

+
√

2
T

(
T

π(i− 1
2 )

)2(
sin(π(i − 1

2 )
tj+1

T )− sin(π(i − 1
2 )

tj
T ))
)
.

Hence E
[ ∫ T

0 Wse
W
i (s)ds|Wt1 , · · · ,Wtn

]
=

n−1∑
j=0

Ai
jWtj+Bi

jWtj+1 =
n∑

i=0

αijWti

with, for every 1 ≤ j < n, αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1.

Finally one gets the following closed forms for R2 := ((αij))1≤i≤d,1≤j≤n.
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• If tj−1 < tj < tj+1,

αij = λW
i

(tj+1 − tj−1)e
W
i (tj)− (tj+1 − tj)e

W
i (tj−1)− (tj − tj−1)e

W
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1,

αij = λ
W
i

((

−
eWi (tj+1)

tj+1 − tj
+

eWi (tj)

tj+1 − tj

)

+ e
W
i

′
(tj)

)

.

If tj−1 < tj = tj+1,

αij = λ
W
i

(

− e
W
i

′
(tj ) +

( eWi (tj )

tj − tj−1
−

eWi (tj−1)

tj − tj−1

))

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 = Ai
0 =





λW
i

(
eWi

′
(t0)− eWi (t1)−eWi (t0)

t1−t0

)
if t1 6= t0,

0 in the other case.

• αin = Bi
n−1 =





λW
i

(
eWi (tn)−eWi (tn−1)

tn−tn−1
− eWi

′
(tn)

)
if tn 6= tn−1,

0 in the other case.

7 Annex: Computation of the Karhunen-Loève

decomposition the Ornstein-Uhlenbeck process

7.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is defined by the SDE

drt = θ(µ− rt)dt+ σdWt, with σ ≥ 0 and θ > 0. (29)

The equation is solved by applying Itô’s formula to the process Ut := rte
θt.

One gets

rt = r0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dWs. (30)

If one assumes that r0 is Gaussian (r0 ∼ N (m0, σ0)) and is independent
from

∨
s∈R+

σ{Wt, t < s}, the process (rt)t>0 is Gaussian.
One has

E[rt] = m0e
−θt + µ(1− e−θt)

and

cov(rs, rt) =
σ2

2θ
e−θ(s+t)(e2θmin(s,t) − 1) + σ2

0e
−θ(s+t).

One easily sees that lim
t→∞

Var(rt) =
σ2

2θ (the long term variance). If the initial

variance σ2
0 is equal to long term variance σ2

2θ , the process is stationary and the

covariance writes cov(rs, rt) =
σ2

2θ e
−θ|s−t|.

The total variance of the process on [0, T ] is

‖r2‖22 =

∫ T

0

Var(rs)ds =
σ2T

2θ
+
(
σ2
0 −

σ2

2θ

)( 1

2θ
− e−2θT

2θ

)
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7.2 The Ornstein-Uhlenbeck covariance operator:

The Ornstein-Uhlenbeck covariance operator is given by

TOUf(s) =

∫ T

0

σ2

2θ
e−θ(s+t)

(
e2θmin(s,t)−1

)
f(s)ds+

∫ T

0

σ2
0e

−θ(s+t)f(s)ds. (31)

Computing the Karhunen-Loève decomposition of the Ornstein-
Uhlenbeck process

TOU is a compact Hermitian positive operator on the separable Hilbert space
L2([0, T ]). Hence there is an orthonormal basis of V consisting of eigenvectors
of TOU and each eigenvalue is real and strictly positive. Moreover ‖TOU‖2 ≤
σ2T
2θ + σ2

4θ2

(
e−2θT − 1

)
.

One has

TOUf(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds

+

∫ T

0

(σ2
0 −

σ2

2θ
)e−θ(s+t)f(s)ds.

Proposition 7.1. If f ∈ C([0, 1]), and if g = TOUf , then

g′′ − θ2g = −σ2f, (32)

with
σ2
0g

′(0) =
(
σ2 − θσ2

0

)
g(0) and g′(T ) = −θg(T ) (33)

Proof:

g(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(σ2
0 −

σ2

2θ
)e−θ(s+t)f(s)ds.

g′(t) = −
σ2

2

∫ t

0

eθ(s−t)f(s)ds+
σ2

2

∫ T

t

eθ(t−s)f(s)ds− (θσ2
0 −

σ2

2
)

∫ T

0

e−θ(s+t)f(s)ds

g′′(t) =
σ2θ

2

[

∫ t

0

f(s)eθ(s−t)ds+

∫ T

t

f(s)eθ(t−s)ds
]

+ θ

∫ T

0

(θσ2
0 −

σ2

2
)e−θ(s+t)f(s)ds− σ2f(t).

One gets g′′(t) = θ2g(t)− σ2f(t). Moreover, equation (33) comes when identifying

expressions with t = 0 and t = T . �

Proposition 7.2. Conversely, if g ∈ C2([0, T ]) and if f satisfies equations (32)
and (33) then g = TOUf .

Proof: Computing TOUg′′ yields:

TOUg′′ =
∫ t

0
σ2

2θ e
θ(s−t)g′′(s)ds+

∫ T

t
σ2

2θ e
θ(t−s)g′′(s)ds+

∫ T

0

(
σ2
0 − σ2

2θ )g
′′(s)ds

An integration by parts twice yields

TOUg′′ = −σ2
0g

′(0)e−θt − σ2g(t) + σ2

2 g(0)e−θt −
(
θσ2

0 − σ2

2

)
g(0)e−θt + θ2TOUg(t)

= −σ2g(t) + θ2TOUg(t) thanks to equation (33).
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Now, by necessary conditions, TOUf = λf ⇔ σ2g = λ(θ2g − g′′). One
obtains

λg′′ + (σ2 − λθ2)g = 0. (34)

�

Hence the solution of the ordinary differential equation (34) on [0, T ] has the

form g(t) = A cos(ωt) +B sin(ωt), with ω =
√

σ2−λθ2

λ ⇔ λ = σ2

ω2+θ2 .

Equation (33) yields ωBσ2
0 = (σ2 − θσ2

0)A. Hence, function g(x) writes

g(t) = K
(
ωσ2

0 cos(ωt) + (σ2 − θσ2
0) sin(ωt)

)
.

Hence g′(T ) = −θg(T ) yields

ωσ2 cos(ωT ) +
[
− ω2σ2

0 + θσ2 − θ2σ2
0

]
sin(ωT ) = 0. (35)

Conversely, by the same computation, one sees that λn ∈]0, ‖TOU‖2] is an
eigenvalue of TOU if and only if equation (35) is fulfilled.

Proposition 7.3. Finaly, if one knows the sorted increasing sequence (ωn)
of the stricly positive solutions of equation (35), the Karhunen-Loève basis
(λOU

n , eOU
n ) of the Ornstein-Uhlenbeck covariance operator TOU are given by:

λOU
n = σ2

ω2
n+θ2 , and

eOU
n (t) = Kn

(
ωnσ

2
0 cos(ωnt) + (σ2 − θσ2

0) sin(ωnt)
)
,

where Kn is the normalization constant. If (σ, σ0) 6= (0, 0), Kn is given by

1/K2
n =

1

2wn
σ2
0(σ

2 − θσ2
0)[1− cos(2ωnT )] +

1

2
σ4
0ω

2
n

(
T +

1

2ωn
sin(2ωnT )

)

+
1

2
(σ2 − θσ2

0)
2
(
T − 1

2ωn
sin(2ωnT )

)
. (36)

Case of a deterministic start point: In this case (σ0 = 0), one has

eOU
n (t) =

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt).

Stationary case: In the stationary case, σ2
0 = σ2

2θ , one has

eOU
n (t) = Cn

(
ωn cos(ωnt) + θ sin(2ωnt)

)
,

where Cn is the normalization constant. Cn is given by

1/C2
n =

θ

2

(
1− cos(2ωnT )

)
+

ω2
n

2

(
T +

sin(2ωnT )

2ωn

)
+

θ2

2

(
T − sin(2ωnT )

2ωn

)
.

7.3 Numerical computation of the Karhunen-Loève de-

composition of the Ornstein-Uhlenbeck process

As we have seen in previous section, everything comes to evaluate numerically
the stritly positive solutions of equation (35).
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7.3.1 Deterministic start point

In this case, (σ0 = 0), one can check that elements of {π2 + k π
T |k ∈ N} are not

solutions of equation (35), thus the equation comes to

θ tan(ωT ) = −ω. (37)

The case where θ = 0 comes to the case of the Brownian motion, hence one
assumes that θ 6= 0. Solutions of this equation are illustrated in figure 11. One

can easily show that a unique solution wn lies in each interval
]
nπ
T − π

2T ,
nπ
T

[
,

for n ∈ N
∗.

lim
n→∞

ωn −
(nπ
T
− π

2T

)
= 0.

ω1 ω2 ω3 ω4

0

0

tan(ωT )
−ω/θ

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 11: (Deterministic start point). Solutions of equation (37).
(Ornstein-Uhlenbeck process starting from a determined point r0, σ0 = 0.)
Values for this figure are T = 3, σ = 1 and θ = 3.

7.3.2 Non deterministic start point

Let us assume now that σ0 6= 0 and consider equation (35) again.
The term −ω2σ2

0 + θσ2− θ2σ2
0 never vanishes one ]0,+∞[ if θ2σ2

0 − θσ2 ≥ 0.
First case: θ2σ2

0 − θσ2 ≥ 0.
Here, everything comes to the equation

tan(ωT ) =
ωσ2

ω2σ2
0 + θ2σ2

0 − θσ2
. (38)

Solutions of this equation are illustrated in figure 12.

One can easily show that ∀n ∈ N
∗, ∃!ω ∈

]
nπ
T , nπ

T + π
2T

[
, that is solution of

equation (35). Moreover a solution lies in ]0, π
2T [ if and only if (θ2σ2

0 − θσ2)T −
σ2 < 0.

Second case: θ2σ2
0 − θσ2 < 0.
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ω1 ω2 ω3 ω4

0

0

tan(ωT )
ωσ2

ω2σ2
0+θ2σ2

0−θσ2

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 12: (Non deterministic start point, θ2σ2
0 − θσ2 ≥ 0). Solutions

of equation (37). (Ornstein-Uhlenbeck process starting from r0 ∼ N (0, σ2
0),

σ0 6= 0.) Values for this figure are T = 3, σ = 1, θ = 3 and σ2
0 = 0.4.

Here, the term −ω2σ2
0+θσ2−θ2σ2

0 vanishes for ω = V :=
√
θ σ2

σ2
0
− θ2. If V is

not a solution of equation (35), (that is if V does not belong to { π
2T +k π

T |k ∈ N}),
no other value of this set is a solution, and everything comes again to the same
equation (38).

Solutions of this equation are illustrated in figure 13 a One can then easily

show that ∀n ∈ N
∗∩]V,+∞[, ∃!ω ∈

]
nπ
T , nπ

T + π
2T

[
, that is solution of equation

(35). Moreover, in every non empty interval
]
kπ
T − π

2T ,
kπ
T + π

2T

[
∩
]
0, V

[
, k ∈ N

∗

there is an other solution of the equation.

7.3.3 Pseudo-Code for computing Ornstein-Uhlenbeck eigenvalues

A pseudo-code for the computation of the n-th eigenvalue of the Ornstein-
Uhlenbeck covariance operator is given in algorithm 1. We point out the fact
that, in this pseudo-code, eigenvalues indexes start at 1 what is consistent with
previous notations. In the practical implementation, one prefer to start indexing
at 0. In this code, the function search(a, left, right) stands for a root finding
method. It fills argument a with the root of equation (35) that is bracketted by
[left, right].

In the author’s implementation, one uses the Brent method as reliable root
finding method for equation (35). As Newton-likes method, Brent method can
take advantage of a guess of the value of the root as soon as one has a bracketting
method. (The idea is to start from a small interval arround the guess that is
geometrically expanded, until the limiting range [left, right] is reached. )

In section 7.3.4, an accurate numerical guess of ωn for the deterministic start
point is proposed.
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Algorithm 1 OUEigenvalue(θ, σ, σ0, T, n)

Require: θ > 0, σ ≥ 0, σ0 ≥ 0, T ≥ 0, n ≥ 1.
if σ0 = 0 then
{There is a unique solution wn of (35) in the interval ]nπT − π

2T ,
nπ
T [. }

search(wn,
nπ
T − π

2T ,
nπ
T ).

else
Here σ0 > 0.
if (θ2σ2

0 − θσ2) ≥ 0 then
{The vertical asymptote of the right hand of equation 38 lies on the left
of 0. }
if (θ2σ2

0 − θσ2)T − σ2 < 0 then
{There is a unique solution wn of (35) in the interval ]0, π

2T [. }
search(wn , (n−1)π

T , (n−1)π
T + π

2T ).
else
{The smaller stricly positive solution w1 of equation (35) lie in the
interval ] π

2T ,
π
T [.}

search(wn,
nπ
T ,nπT + π

2T ).
end if

else
{The vertical asymptote of the right hand of equation 38 lies on the right
of 0. }
if (n−1)π

T − π
2T >

√
θ σ2

σ2
0
− θ2 then

search(wn,
(n−1)π

T , (n−1)π
T + π

2T ).

else if (n+1)π
T − π

2T <
√
θ σ2

σ2
0
− θ2 then

search(wn,
nπ
T − π

2T ,
nπ
T ).

else if nπ
T − π

2T <
√
θ σ2

σ2
0
− θ2 and (n+1)π

T − π
2T >

√
θ σ2

σ2
0
− θ2 then

search(wn,
nπ
T − π

2T ,
√
θ σ2

σ2
0
− θ2).

else
search(wn,

√
θ σ2

σ2
0
− θ2,nπT − π

2T ).

end if
end if

end if
λn ← σ2

ω2
n+θ2 .

Return λn.
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0+θ2σ2
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π
2T + 2π

T
π
2T + 3π

T

Figure 13: (Non deterministic start point, θ2σ2
0 − θσ2 < 0). Solutions

of equation (37). (Ornstein-Uhlenbeck process starting from r0 ∼ N (0, σ2
0),

σ0 6= 0.) Values for this figure are T = 3, σ = 1, θ = 3 and σ2
0 = 0.3.

7.3.4 A numerical guess for the value of ωn.

As one has seen, one uses a root finding method for evaluating numerically the
value of ωn. In this section, one proposes a numerical guess for this quantity,
that can be used as a starting point in the root finding method.

The starting point is to approximate function tan on interval ]− π
2 ,

π
2 [ by the

rational fraction tanapprox(x) :=
4(8−π2)x3

π4 +x

1− 4x2

π2

, which is a good uniform approx-

imation of tan on ] − π
2 ,

π
2 [. One has ‖ tan− tanapprox‖∞,]−π

2 ,π2 [ =
1
2
10−π2

π ≈
0.02075310.

Now, in the case of the Ornstein-Uhlenbeck eigenvalue computation, for a
deterministic start point, equation 37 can be approximated by

θ tanapprox(ωnT + nπ) = −ωn n ≥ 1. (39)

This comes to a polynomial equation of degree 3 for every n > 0 which has a
unique solution wguess

n ∈]nπT − π
2T ,

nπ
T [.

Using this numerical guess yields a good accuracy for approximating the real
value of ωn.
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