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EPO - PLS
External Parameter Orthogonalisation of PLS
Application to temperature-independent measurement of sugar con-
tent of intact fruits
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Abstract

NIR spectrometry would present a high potential for online mea-
surement if the robustness of multivariate calibration was improved.
The lack of robustness notably appears when an external parameter
varies - e.g. the product temperature. This paper presents a prepro-
cessing method which aims at removing from the X space the part
mostly influenced by the external parameter variations. This method
estimates this parasitic subspace by computing a PCA on a small set
of spectra measured on the same objects, while the external parameter
is varying. An application to the influence of the fruit temperature on
the sugar content measurement of intact apples is presented. Without
any preprocessing, the bias in the sugar content prediction was about
8° Brix for a temperature variation of 20°C. After EPO preprocessing
the bias is not more than 0.3° Brix, for the same temperature range.
The parasitic subspace is studied by analysing the b-coefficient of a
PLS between the temperature and the influence spectra. Further work
will be achieved to apply this method to the case of multiple external
parameters and to the calibration transfer issue.

1 Introduction

Near Infrared spectrometry (NIR) is a powerful analytical tool widely used in
routine laboratory in applications as various as food processing, pharmaceu-
tical products ([1]), chemical industry ([2]). Although on-line applications
are much fewer, NIR spectroscopy offers numerous advantages for on-line
implementation ([3]) : there is no sampling and no sample preparation, NIR
radiations can penetrate through thick samples ; ultrafast measurements are
possible thanks to multichannel detectors and last, optical components and
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instrumentation are low-cost. However, NIR spectra are made up of harmon-
ics and combinations of fundamental absorption bands of the Mid Infrared
(MIR) range and therefore, are very encumbered with numerous overlap-
ping bands. As a consequence, multivariate data processing is often the only
way for building a calibration : a model exhibits relations between spec-
tra (X matrix of predicting values) and the quantities to be predicted, also
called “reference values”, which are in general concentrations (Y matrix of
responses) [4]. The multivariate calibration technique most used for pro-
cessing NIR data is undoubtedly Partial Least Square Regression (PLS) [5],
because it handles full spectra or continuous parts of spectra.

1.1 Robustness of NIR models

However, the models generated by PLS generally suffer from a lack of ro-
bustness with regard to “influence quantities”, which hinder their use in
industrial conditions. Influence quantities also called “external parameters”
are quantities different from the measurand but which affect the result of a
measurement ([6]). Whereas external parameters are well controlled in rou-
tine laboratories, they can vary greatly in industrial conditions and alter the
measured spectra. From a mathematical point of view, if the model is linear
and if the external parameter level is stable during the test, a bias appears
in the predicted values. A systematic alteration of the spectrum, when pro-
cessed by the model, causes a systematic value to be added to the prediction.
If the external parameter is correlated to the response, the trend line join-
ing the actual values to the predicted values presents a slope different from
the unity. If the influence parameter is not stable, the parasitic information
could appear like a noise and results in higher variance of the prediction error
(pure scattering).

Product temperature, spectrometer temperature, stray light, wavelength
shifts (in particular when model must be transferred from one instrument to
another) are most common disturbing external parameters. Other influencing
phenomena are embedded into the product as for instance, fruit variety, oil
origin, crop season, etc. Product temperature is certainly the most studied
parameter in NIR and MIR calibrations ([7], [8], [9], [10], [11], [12]).
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1.2 Correcting strategies

Correcting strategies - i.e. strategies to reduce the effect of external parame-
ters - vary depending on the availability - or not - of the external parameter
value. If it is known or measured, two options are possible : (i) the spectrum
is corrected as a function of the parameter level, as proposed by [13] or the
model is chosen according to the external parameter level ; this is called a
priori correction, or (ii) the value of the predicted response is corrected on
the basis of the external parameter level, and therefore, this method is called
a posteriori correction. If the external parameter value is unknown, which
is the most common case, the only solution is to build a so-called “robust
model”. In that case again, two major ways are available to make the model
robust : (i) the optimisation of the calibration sample basis and (ii) the
preprocessing techniques.

The first way, i.e. optimisation of the calibration sample basis, is also
the most straightforward one. ”Robust calibration” is based on the use of
an exhaustive calibration set covering all the variations both of the response
of interest but also of the external parameters, influence of which must be
eliminated. During the calibration phase, the model is built automatically to
be as insensitive as possible to the external parameter influence ([8]). This
smart building of the calibration set can be improved by experimental designs
([14]) or even by more refined methods based on a ruggenedness test such as in
[15]. Waulfert et al ([12]) also tried to improve this method by simultaneously
predicting the response value and the external parameter value, based on the
PLS2 algorithm ([5]). However, results were disappointing because external
parameter values and response values were not correlated, therefore reducing
the performance of the PLS2 algorithm.

The second way, i.e. preprocessing methods, includes very classical meth-
ods, such as the derivatives (for instance using the Savitsky Golay algorithm
as in [16]) or geometric transformations, as SNV ([17] et [18]) and Mul-
tiplicative Scattering Correction ([4]) developed to address the problem of
scattering and its multiplicative effects ; data can also be filtered as in vari-
able selection ([19], [20], [21]) ; whatever the method, variable selection aims
at making the model more parcimonious ([22]). Reducing the number of
variables has a positive effect on error propagation in the model ([23]). More
generally, reducing the dimensionality of X matrix before any calibration is
a major pre-processing step to make the model more robust.
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1.3 EPO : A method to reduce the space dimension-
ality with regard to external parameters

The method proposed here, External Parameter Orthogonalisation (EPO),
deals with the case where the external parameter can not be measured on-
line. Spectra are pre-processed by projection onto the orthogonal to the space
in which alterations induced by the external parameter variations occur. As
seen above, the most straightforward way is to select variables, but a recent
trend in chemometrics is devoted to reducing the X dimensionality by or-
thogonal projection. The general principle, which is the theoretical basis, is
that the column space of X is made up of the sum of two subspaces, among
which only one contains information useful to the model. By an adequate
projection of X, the model is therefore created using the useful subspace only.
By the way, selecting variables is a particular case of subspace projection, in
the canonical basis. The parasitic subspace can be estimated in two ways,
either by finding the space which is orthogonal to Y, or by finding the space
in which the influence of external factors occurs.

Various papers describe the first way. Several projection methods have
been recently proposed for improving the PLS performance. In [24], the
orthogonal signal correction (OSC) is described as a filtering method. At each
step of the NIPALS algorithm, the score vector t is corrected from its part
orthogonal to Y, giving t*. This processing is said to be very efficient as soon
as the spectrum contains systematic variations. In [21], the OSC algorithm is
altered in order to build t* into the column space of X. Orthogonal projection
to Latent Structures (O-PLS) [25] uses the NIPALS algorithm to built the
subspace orthogonal to Y. This subspace is then split up by a PCA. Principal
components are then removed one by one from the X matrix.

The second way is less studied. Hansen ([26]) built a data set using a very
large number of spectra having the following specificity : all the spectra came
from samples having the same level for the response of interest but showing
very large variations of the external parameters. The parasitic subspace is
determined by PCA on such sample sets. The pre-processing technique deals
with projecting the spectra onto the orthogonal of this subspace.

The EPO method also belongs to this “second way”. The parasitic sub-
space is estimated, not by orthogonalising with regard to Y, but by taking
into account the effects of the major external parameter. Although being
close to Hansen’s method, this method only needs a small sample set and
does not require the response of interest to be constant. It is particularly
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fitted to improving the robustness of an existing calibration - i.e. to take
advantage of an existing data base - with regard to a particular external pa-
rameter. In addition to finding the adequate subspace, this method makes it
possible to interpret the influence of the external factor on the spectrum. In
this paper, the method is first introduced by a theoretical part. Second, it is
applied to robustness enhancement in a real case : reducing the temperature
influence on sugar content prediction in fruits. Results are presented and
discussed and tracks are explored for tuning and refining this method.

2 Theory and notations

Capital bold characters will be used for matrices, e.g. X ; small bold charac-
ters for column vectors, e.g. x; will denote the i column of X ; row vectors
will be denoted by the transpose notation, e.g. X;F will denote the j** row of
X ; non bold characters will be used for scalars, e.g. matrix elements x;; or
indices .

Let C be the property to predict (e.g. a chemical concentration) ; G an
external parameter, the effect of which has to be eliminated (e.g. the tem-
perature of the product). Let S be the p-dimensional space of the measured
spectra. The space S can be split up into three subspaces : c spanned by the
chimical spectral responses independent from G ; G generated by the per-
turbations caused by GG and independent from C'; and R containing the rest
of the spectral information. The dimensions of these subspaces are resp. ¢, g
and r and p = c+g+r. If C and G are independent, R contains independent
residuals (measurement noise). In practice, R contains the data correlated to
both C' and G (the co-variant part). The EPO proposes to remove a part of
the perturbations caused by G by projecting the spectra onto the subspace
orthogonal to é; i.e. onto C @ R. If the influence of G on the spectra was
perfectly known (e.g. if a temperature increase caused an absorbance shift),
one should be able to build the space G. This knowledge is rarely available,
and the subspace decomposition must be calculated by a calibration process.

A set of spectra X can be written as :

X =XP+XQ+R (1)

where P and Q are the matrices of the projection operators onto C and
G, and R is a residual matrix. Normally, when GG does not vary, an inverse
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calibration model (e.g. a linear regression) is invoked to separate the matrices
P and R. The EPO processing aims at separating XP from XQ. In other
words, X will be split up into a useful part X* = XP and a parasitic part
X' =XQ. R

If it is possible to calculate an estimation G(g x p) of a basis of the space

—

G, an estimation of Q will be given by :
PO SURPUNES Y
Q- G(GTG) G”
The EPO preprocessing will then transform X into X* by :

X' =X (1-Q)

Let (X% Y?) be a set of n’ samples, aquired while G was remaining con-
stant. This set is used to calibrate a PLS model which has to be robustified
with respect to G. Let {X!, X2 ... X*} be k matrices (n x p) of n spectra
by p wavelengths acquired on another set of n samples for k values of G
{g', 9% -+, g*}. These values do not need to be known, but they must be
representative of the G space. Let M be the matrix (k X p) of the k spectra
averaged on {X'},_i.x :

Jj=n

T
Z X;

Jj=1

T _

S|+

Or, by using the equation 1 splitting :
132
T _ T T iT
m; =m, P+ m; Q+Eer
7j=1
Let D be the matrix (k x p) of the k influence spectra, defined by d! =
m! — m? (dT = 0). From the dimensionnality point of view, this operation

is equivalent to a mean centering, but it allows us to clearly view the effect
of G if ¢ are ordered. D is calculated as :

132
a7 = (an? )P+ (! — Q-+ L S (7 i)
j=1
Since all m! are the mean spectra of the same chemicals, m!P = mfP,
and consequently (m} — m!)P = 0. Then :

6
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1 F”
d7 = (m? — -
7 (mz In1 Q + n )
]:1
Finally, in a matrix form :
D=AQ+R

Since R’ is the mean value of residuals, we propose to estimate G by
computing the PCA of D, thus writting :

i=g
D=> tg +R
=1

Each column g; is a vector of the basis G. Since the g; vectors are the
pr1nc1pal components of a PCA, they are orthogonal and of unitary length.

Then, g/'g; = 0 for i # j and g/'g; = 1. Thus G’G =1 and Q = GGT.
Finally, X% is calculated as :

X0 — X0 (1 _ GGT)

Once g is chosen and G is identified, a calibration is computed between
X% and Y°. A new example X,.,, will be preprocessed like X°, i.e. by :

xT —xI (1 - GGT>

From D, it is possible to calculate at the most k—1 principal components.
Then, the EPO preprocessing can be applied with a number of components
g varying from 1 up to k — 1. Determining the optimal value of g may be
donne using several methods. Two of them are proposed below.

A cross validation on {X'},_;.;, with %k splits defined according to G
values, produces an error as a function of EPO component number and PLS
latent variable number : SECV (g,npy). It should be noted that this method
obviously requires knowing the responses corresponding to {X‘};—;..,. This
condition is not at all needed by the EPO preprocessing itself.

Another way, which does not require to know the values of the responses,
adresses the effect of the EPO preprocessing on the similarity between all the
spectra of the same sample. Without preprocessing, the model fails because

7
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the spectra of the same sample measured at two different values of G can mis-
match more than the spectra of two different samples measured at the same
value of G. From a classification point of view, the n clusters of k spectra of
the same chemical sample do not well separate. This cluster separation can
be measured by the Wilks” A which expresses the ratio between inter-group
variance and total variance. Wilks’” A can be calculated with several formula.
If the number of individuals is less than the number of variables (which is
often the case in spectrometry), one has to chose a calculation which is resis-
tant to the rank deficience. For example : A = trace(B)/trace(T), where B
is the inter-group variance-covariance matrix (each group is replaced by its
centre of mass weighted by its size) and T is the total variance-covariance
matrix. A value of 1 for A expresses a perfect separation (each group exactly
matches its center of mass). A value of 0 for A reveals a null separation
(all the centers of mass are confounded). We thus propose to observe the
evolution of the Wilks’” A as a function of g, to select the optimal g value.

3 Material and methods

3.1 Building the data basis

The fruits used in this study were apples, of Golden Delicious variety. They
all came from the same cultivar and the same harvest. NIR spectra were
collected at a precise location of apple surface using a NIR spectrometer
(MMS1, ZEISS, Germany). These spectra covered the range from 300 to
1100 nm, using p = 256 equally spaced wavelengths. At each fruit surface
location, a sample of the juice was collected and its sugar content level was
measured by refractometry (Refractometer EUROMEX RD 645, precise at
+0.2 Brix). In order not to interfere with the method presented here, no
pre-processing has been carried out on the spectra. For instance, the whole
wavelength range has been used. No optical reference was used in order to
avoid any other external influence. Therefore, the study was carried out on
intensity spectra.

Three data sets S°, S', S? were used in this study.

S was made up of n® = 80 fruits measured at ambient temperature
(25°C), providing a (n° x p) matrix X of spectra, and a (n°® x 1) vector y°,
containing sugar content values.

S1 and S? were made up of n = 10 fruits measured at k¥ = 8 different



Roger, J.M. ; Chauchard, F. ; Bellon Maurel, V., Chemometrics and intelligent laboratory system, vol. 66, n° 2, p. 191-204

author-produced version of the final draft post-refeering
the original publication is available at www.elsevier.com

temperatures: t = { 5, 10, 15, 20, 25, 30, 35, 40 }°C. Initially kept at 4°C,
the fruits were taken to these temperatures as follows : A water bath was set
at t' = 5°C and the fruits were immersed in it for 30 minutes. Then, the ten
fruits were measured one by one by the spectrometer, as quickly as possible,
in order to avoid any temperature variation. They were then plunged back
into the water bath, temperature of which was increased by 5°C-steps; the
operation described above was repeated for each temperature step. After
this series of measurements, the fruits was let for 30 minutes and their sugar
content levels were measured. Therefore, S* and S? both contained k (n X p)
matrices, respectively {X1¢},_; ; and {X*},_;. x and both a (n x 1) vector,
resp. y! and y?, of sugar content levels. Let z* be the (nk x 1) vector in
which the y? vector is concatenated k times. S! was used to carry out the
orthogonalisation, using the EPO algorithm and S? for the test.
S0, S and S? sets were acquired on separate days.

3.2 Mathematical processing

First, a sugar PLS model was calibrated using S°, without any pre-processing.
The number of latent variables, (npyg), was determined by leave-one out
cross-validation. This model was applied onto 52, in order to provide a
(rough) non-corrected estimate z2.

Then EPO was applied. To determine the appropriate number of compo-
nents, g and npy, the two methods described in section 2, i.e. cross-validation
and Wilks’ A have been applied to S'. The number g has been used for the
S% and S? spectra preprocessing gl\ld nry has been used during the prediction
of the EPO-corrected estimate z?*. The RMSEP and the biases have been
calculated for the raw and the corrected prediction, as follows :

RMSEP, =2 (2 - 2)" (2 - 2)

]_ ~
Bias,a(t;) = — (z? — z?)

n.

RMSEP,,,,

I
=
S
/N
)
¥
|
N
[\
N—
~/
N
[\
*
N
V)
N——
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1 —_
Biaseom (t;) = - Z (z?* — z?)

j=(i—1)n+1

4 Results and discussion

4.1 Results without any correction

In order to show the typical peaks of a fruit in a NIR spectrum, the second
derivative of the average spectrum of X° has been computed (figure 1) using
the Savitsky Golay algorithm, with a 21 point-width window and a poly-
nomial of degree 3. The chlorophyll peak clearly appears at 680 nm, water
peaks are visible at 760 and 960 nm, and at 838 nm appears a peak typical for
water and sugar and related to combinations of O-H bond vibration modes.
The evolution of the SECV computed on S° is reported in figure 2. As the
SECV really drops when 10 latent variables are used, nryo was set to 10.

The RMSFEP,,, computed with the non corrected spectra is as high as
4.68°Brix. This huge error is mainly due to bias depending on the temper-
ature as shown in figure 3. For each temperature, the prediction values are
well aligned in parallel to the first bisecting line but they are shifted by a
bias value. This bias value linearly varies with the temperature level (figure
4). It can be as high as 8° Brix and the Root Mean Square of the bias is
4.63° Brix. The lowest bias (—0, 14° Brix) was obtained for an experimental
test temperature close to the calibration temperature.

Influence spectra (D matrix) show the effect of temperature onto the
spectrum (figure 5). There is no direct relationship between the temperature
t; and the height of the influence spectrum d?. In order to analyse the in-
fluence of the temperature on the spectra - and since we knew the values of
{t;} - a PLS regression was carried out between the influence spectra D and
the temperature t. The b-coefficient spectrum (figure 6) outlines the influ-
ence of the temperature on the main bands of the influence spectrum : the
major b-coefficient feature is a pseudo-sinusoid centred at 760 nm and cov-
ering the [700, 820] region. In spectrometry, pseudo-sinusoid are very typical
b-coefficient features : when convoluted to the spectrum, they enhance the
effect of the horizontal translation of the spectrum bands (figure 7). There-
fore, this pseudo-sinusoid clearly shows that the effect of the temperature on
fruit NIR spectra is a translation of the band at 760nm, i.e. of the water
band. Such a translation of the water peak, due to the alteration of vibration

10
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energy of the water molecular bonds, has already been described by Osborne
and Fearn (]27]). The same feature occurs in the 860 — 1000 nm range, and is
centred on 915 nm. This absorption band, that may be related to CH bonds,
is typical of the sugar and more generally of carbohydrates ([28]) ; it is not
clearly seen in the fruit spectra. Last, a negative peak is centred at 838 nm
in the b-coefficient spectrum. This peak indicates a relationship between the
temperature and the area of the negative peaks centred at 838 nm (typical
for OH combination bands) in the influence spectra (figure 5).

4.2 Results of the EPO preprocessing

The SECVs obtained using S' with various g, nry combinations are plotted
in figure 8. A low-SECV basin, with SECV level inferior to 1° Brix, is
described by (g, nzy) couples roughly following equation : nyy+¢g > 16. This
relationship between (g, nry) combinations and the SECV level is described
more in detail in Table 1. The optimal SECV, close to 0.5° Brix is seen for
g=2and nyy = 16.

When these values are applied, the prediction obtained on S? gives a
RMSEP,,, equal to 0.65° Brix, with a major reduction of the bias of each
temperature data set (figure 9a). Moreover, bias are no longer correlated to
the temperature (figure 9b). They oscillate between —0.35 and +0.39° Brix,
which is much better than the bias level obtained without correction. The
Root Mean Square of bias is now only 0.25° Brix instead of 4.63° Brix.

The other way to find the best (g,nzy) couple is to study the Wilks
A evolution as a function of g, using the EPO-corrected S'* data set. The
higher the Wilks A, the tighter the grouping of identical samples measured at
different temperatures. The optimum is found at ¢ = 4, because A reaches a
maximal plateau for this number (Table 2). The effect of the EPO correction
using g = 4 is demonstrated in figure 10, plotting the first factorial map of a
PCA calculated on the spectra of S'. Without any correction (figure 10a),
identical samples measured at various temperature are spread along straight
lines, whereas after EPO correction (figure 10b), the samples are more tightly
grouped together. Applying a cross-validation PLS process on EPO-corrected
S%* enabled us to find an optimal ny, = 12. Prediction carried out using
EPO-corrected S?* (with g = 4 and nry = 12) are shown in figure 11. The
RMSEP.,,.,(4,12) is very low (0.52° Brix) and the bias are less important
than with the first method. The Root Mean Square of bias is now only 0.19°
Brix.

11
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5 Conclusion

This paper is dedicated to presenting a new method, named External Pa-
rameter Orthogonalisation (EPO), for defining the useful space in which pre-
diction models must be found, when external parameters alter the spectrum.
An orthogonalisation is carried out with regard to the influence of an external
parameter onto the spectrum. The power of such a method is proven through
an application, i.e. the reduction of the temperature influence on NIR spec-
tra used to predict sugar content in fruits. EPO only requires to measure a
small set of appropriate samples measured at different levels of the external
parameter. The projection matrix which is generated from EPO can then
be applied to any existing calibration basis. Orthogonalising with regard
to external parameter is an original alternative to the method developed by
Hansen ([26]), which needs from the beginning a very large data set including
all the expected external parameter variations. This point is clearly a major
advantage of the EPO method.

Next step will be to apply this method to other external factors. EPO
could also be applied to the issue of calibration transfer, with the appara-
tus change taken as the external parameter. The combination of different
external parameter effects will also be considered.
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RMSECV nryv
°Brix 1 - 8 9 10 11 12 13 14 15 16 17 18

1 143 .-+ 1.30 222 252 223 1.73 158 139 121 0.88 0.83 0.97
2 143 --- 097 1.13 093 099 088 0.74 0.68 0.62 0.56 0.57 0.82

g 3 124 --- 097 1.11 1.28 096 087 081 0.75 0.71 0.69 0.73 0.90
4 131 --- 091 1.19 092 082 0.78 0.69 0.65 0.66 0.74 0.73 0.85
5 1.22 ... 101 1.10 0.82 080 0.73 0.65 0.64 0.62 0.65 0.70 0.83
6 1.26 --- 097 1.02 0.79 0.76 0.69 0.65 0.62 0.61 0.62 0.64 0.82

Table 1: Evolution of the Cross-Validation Error (RMSECV) computed using
S1, with regard to the EPO component number, g, and with the number of
latent variables of the PLS, nyy .

A
0.625
0.935
0.958
0.969
0.981
0.980
0.982
0.983

N O Uk W N~ Ol

Table 2: Evolution of the Wilks’ Lambda as a function of g; ¢ = 0 corresponds
to no EPO preprocessing.
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Figure 1: Second derivative of the mean spectrum of S° data set.
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Figure 2: Evolution of the calibration error (RMSEC) and of the cross-
validation error (RMSECV) calculated on the data set S, as a function of

the number of latent variables nyq.
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Figure 3: Predicted sugar contents (zA2 as a function of actual sugar contents
z?). The same sample set was measured at different temperatures, and the
prediction model has been calibrated at one temperature (25° C).
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Figure 4: Evolution of the bias as a function of the temperature for the test
set S?, using a prediction model calibrated at 25° C (Bias,quw(t;)).
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Figure 5: Temperature influence spectra calculated with regard to the refer-
ence spectrum measured at 5°C (D matrix).
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Figure 6: b-coefficient spectra of a PLS regression carried out between the
temperature influence spectra and the temperature.
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Figure 7: Example of convolutions between a peak and a sinusodal profile.
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Figure 8: Cross-validation error on S*, as a function of the number of EPO
components (g) and of the number of latent variables used in the PLS re-

gression (npy ).
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Figure 9: Results of the test on S?, with EPO preprocessing (g = 2 compo-

nents) and PLS regression (npy = 16 latent variables). Left (a) :

fonction of z%). Right (b) : Bias..,, as a function of ;.
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Figure 10: Two first component scores of a PCA calculated on the spectra

of S?; Left (a) :
at ¢ = 4 components.
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Figure 11: Results of the test on S?, with EPO preprocessing (¢ = 4 com-

ponents) and PLS regression (npy = 12 latent variables). Left : z2* as a
function of z?). Right : Biasse., as a function of ¢;.
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