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NONCONFORMING VECTOR FINITE

ELEMENTS FOR H(curl;Ω) ∩ H(div;Ω)

JEAN-MARIE MIREBEAU

Abstract. We present a family of nonconforming vector finite elements of

arbitrary order for problems posed on the space H(curl; Ω)∩H(div; Ω), where
Ω ⊂ R2. This result was first stated as a conjecture by Brenner and Sung
in [1]. In contrast an extension of the same conjecture to domains of R3 is

disproved.

Let Ω be a domain of R
d where d ∈ {2, 3}. As explained in [1] several problems

involving the space H(curl; Ω)∩H(div; Ω), such as the cavity resonance problem and
the acoustic fluid-structure interaction problem, can be solved using nonconforming
finite element methods. In contrast conforming finite element methods cannot
capture the solution of these problems under certain conditions.

The accuracy of the approximate numerical solution of these problems can be
improved if one uses finite elements which are not piecewise linear, but piecewise
quadratic or of higher degree. For that purpose a quadratic nonconforming vector
finite element for H(curl; Ω) ∩ H(div; Ω) was introduced in [1], in the case of a
bidimensional domain Ω ⊂ R

2. The paper [1] also contains a conjecture which
suggests a way of constructing nonconforming vector finite elements of arbitrary
degree k for H(curl; Ω) ∩ H(div; Ω), for domains of R

2 and of R
3.

In order to state this conjecture and to formulate our results, we need to in-
troduce some notations. We use boldfaced letters to represent vectors. The space
of polynomials of total degree ≤ k in d variables is denoted by Pk(Rd), and the
space of homogeneous harmonic polynomials of degree k in d variables is denoted
by Hk(Rd). For each k ≥ 1 and d ∈ {2, 3} we define a space Pk,d of vector fields on
R

d as follows

(1) Pk,d := [Pk(Rd)]d ⊕
(

∇Hk+2(R
d) ⊕ · · · ⊕ ∇H2k(Rd)

)

For any triangle T if d = 2 (resp. tetrahedron T if d = 3) we consider the set
Nk,d(T ) of linear functionals on Pk,d defining the moments on the d+1 edges (resp.
faces) of T up to order k − 1 and the moments on T up to order k − 2, for the d

components of the vector fields.
Brenner and Sung formulated in [1] a series of conjectures, which depend on two

parameters d ∈ {2, 3} and k ≥ 1.

(2)
Conj(k, d) : For any T the elements of Pk,d are uniquely determined

by the linear functionals in Nk,d(T ).

The conjectures Conj(1, 2) and Conj(1, 3) are true and correspond to the noncon-
forming Crouzeix-Raviart P1 vector finite element. It was established in [1] that
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Conj(2, 2) is true, thus defining piecewise quadratic nonconforming vector finite
elements in two space dimensions.

The purpose of this paper is to establish the following result :

Theorem. For any k ≥ 3 the conjecture Conj(k, 2) holds. In contrast the conjecture
Conj(2, 3) does not hold.

Our result therefore validates the construction of bi-dimensional vector finite
elements of arbitrary degree proposed in [1]. On the contrary the three-dimensional
quadratic vector finite element is invalid. Our result does not completely close the
conjecture as the cases of three-dimensional vector finite elements of cubic or higher
degree remain unsolved.

It was established in [1] that for all d ∈ {2, 3}, all k ≥ 1 and all T , one has

dimPk,d = #Nk,d(T ).

Hence the conjecture Conj(k, d) is equivalent to the following property :

(3)
For all T and all v ∈ Pk,d,

if (l(v) = 0 for all l ∈ Nk,d(T )) then v = 0.

In the first section of this paper we establish this property in the bi-dimensional
case d = 2 and for an arbitrary k ≥ 1, while the second section gives a counter
example in the three-dimensional case d = 3 and k = 2.

1. Proof of the bi-dimensional result

In this section the integer k ≥ 1 is arbitrary but fixed. If v = (v1, v2) ∈ Pk,2 we
remark that

∇× v =
∂v2

∂x1
−

∂v1

∂x2
∈ Pk−1(R

2) and ∇ · v =
∂v1

∂x1
+

∂v2

∂x2
∈ Pk−1(R

2).

Our first lemma extends to degree k an argument used in the initial paper [1].

Lemma. Let v ∈ Pk,2. Let T be a triangle and let us assume that l(v) = 0 for all
l ∈ Nk,2(T ). Then

(4) ∇·v = ∇×v = 0.

Proof. We first notice that ∇·v and ∇×v are polynomials of degree k − 1, and
that the components of ∇ × (∇ × v) and of ∇(∇ · v) are polynomials of degree
k − 2. In view of Green’s theorem and the vanishing moments of v, we have

∫

T

(∇× v)(∇× v) dx =

∫

∂T

(n × v)(∇× v) ds +

∫

T

v · ∇ × (∇× v) dx = 0

where n is the outer unit normal along ∂T . Similarly, we have
∫

T

(∇ · v)(∇ · v) dx =

∫

∂T

(n · v)(∇ · v) ds −

∫

T

v · ∇(∇ · v) dx = 0.

The results follow. ⋄

We now rephrase the conjecture (2) in terms of complex functions, and for that
purpose we introduce some definitions.

Definition. For any pair v = (v1, v2) of real valued functions we define a complex
valued function Pv as follows

Pv(x + iy) := v1(x, y) − i v2(x, y) for all (x, y) ∈ R
2.
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We now notice that the equations ∇ · v = ∇×v = 0 are equivalent to the
Cauchy-Riemann equations of Pv, namely

∂ ℜ(Pv)

∂x
=

∂ ℑ(Pv)

∂y
and

∂ ℜ(Pv)

∂y
= −

∂ ℑ(Pv)

∂x

where ℜ : C|| → R and ℑ : C|| → R respectively refer to the real and imaginary part.
These equations characterize holomorphic functions. Let us introduce for all m ≥ 1
the space C|| m of polynomials in the complex variable z = x + iy and of degree less
or equal to m

C|| m :=

{

P =

m
∑

r=0

arz
r ; (a0, · · · , ar) ∈ C|| m

}

.

If v ∈ Pk,2 satisfies l(v) = 0 for all l ∈ Nk,2, then Pv satisfies the Cauchy-Riemann
equations according to (4), and therefore Pv ∈ C|| 2k−1.

Definition. For any continuous function P : C|| → C|| and any z1, z2 ∈ C|| we define

(5) Iz1,z2
(P ) =

∫ 1

t=0

P (z1 + t(z2 − z1))(z2 − z1)dt =

∫

S

P (z)dz

where S ⊂ C|| is the oriented segment from z1 to z2.

Let S be an edge of a triangle T with endpoints (x1, y1) and (x2, y2) and let
z1 = x1+iy1 and z2 = x2+iy2 be their complex coordinates. Let v = (v1, v2) ∈ Pk,2

be such that l(v) = 0 for all l ∈ Nk,2(T ), and let Q(x + iy) := R1(x, y) + iR2(x, y)
where R1, R2 ∈ Pk−1(R

2) are arbitrary. Since v has vanishing moments up to order
k − 1 on the edges of T we have

(6) Iz1,z2
(PvQ) = (z2−z1)

∫ 1

t=0

(

(v1R1+v2R2)+i(v1R2−v2R1)
)

(x(t), y(t))dt = 0,

Where we used the notations x(t) := x1 + t(x2 − x1) and y(t) := y1 + t(y2 − y1).
We now define a bilinear function which is related to our conjecture.

Definition. For all Z = (z1, z2, z3) ∈ C|| 3 we define a bilinear form qZ : C|| 2k−1 ×
(C|| k−1 × C|| k−1) → C|| as follows

qZ(P, (Q1, Q2)) := Iz1,z2
(PQ1) + Iz1,z3

(PQ2).

Let T be a triangle and let z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3 be the
complex coordinates of the vertices of T . If v ∈ Pk,2 is such that l(v) = 0 for all
l ∈ Nk,2(T ) then Pv ∈ C|| 2k−1 as previously noticed. Furthermore, specializing (6)
to polynomials Q ∈ C|| k−1 we obtain

(7) qZ(Pv, (Q1, Q2)) = 0 for all (Q1, Q2) ∈ C|| k−1 × C|| k−1.

The purpose of the rest of this section is to show that the bilinear form qZ is
nondegenerate. It then follows from (7) that Pv = 0 and therefore that v = 0
which concludes the proof of the conjecture Conj(k, 2).

We denote by B := (1, z, · · · , z2k−1) the canonical basis of C|| 2k−1, and by B∗ :=
((1, 0), (z, 0) · · · , (zk−1, 0), (0, 1), · · · , (0, zk−1)) the canonical basis of C|| k−1×Ck−1.
We denote by M(Z), or M(z1, z2, z3), the matrix of qZ in the basis B and B∗. Hence
for all 1 ≤ i ≤ 2k and all 1 ≤ j ≤ k we have

M(Z)i,j = Iz1,z2
(zi−1zj−1) and M(Z)i,j+k = Iz1,z3

(zi−1zj−1)
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It follows that

(8) M(Z)i,j =
z

i+j−1
2 − z

i+j−1
1

i + j − 1
and M(Z)i,j+k =

z
i+j−1
3 − z

i+j−1
1

i + j − 1
.

For example if k = 2 we have

(9) M(Z) =













z2 − z1
z2

2
−z2

1

2 z3 − z1
z2

3
−z2

1

2
z2

2
−z2

1

2
z3

2
−z3

1

3
z2

3
−z2

1

2
z3

3
−z3

1

3
z3

2
−z3

1

3
z4

2
−z4

1

4
z3

3
−z3

1

3
z4

3
−z4

1

4
z4

2
−z4

1

4
z5

2
−z5

1

5
z4

3
−z4

1

4
z5

3
−z5

1

5













Our next proposition gives an explicit expression of detM(Z), therefore showing
that qZ is non-degenerate. In the following Z always refers to the triplet of complex
variables Z = (z1, z2, z3).

Proposition. One has

det M(Z) = α(z1 − z2)
k2

(z2 − z3)
k2

(z3 − z1)
k2

where α =
(

Q

0≤i≤k−1
i!)

5

Q

0≤i≤k−1
(2k+i)! > 0. Therefore qZ is non-degenrate whenever z1, z2 and

z3 are pairwise distinct.

Proof. We denote by S the collection of all permutations σ of the set {1, · · · , 2k},
and by ε(σ) be the algebraic signature of such a permutation. We recall that

(10) det M(Z) :=
∑

σ∈S

ε(σ)

2k
∏

j=1

M(Z)σ(j),j .

For any permutation σ ∈ S one has

k
∑

j=1

(j + σ(j) − 1) +

k
∑

j=1

(j + σ(k + j) − 1) = 3k2.

It follows from (8) that detM(Z) is a homogeneous polynomial in the variables
z1, z2, z3 and of degree 3k2. We also note for future use that

(11)
k

∑

j=1

(j + σ(j) − 1) ≥ k2

with equality if and only if σ leaves invariant the sets {1, · · · , k} and {k+1, · · · , 2k}.
For any c ∈ C|| we define two 2k×2k triangular matrices P (c) and P ∗(c) associated
with the following changes of basis on C|| 2k−1 and C|| k−1 respectively

P (c)B = ( 1, z + c, · · · , (z + c)2k−1)

P ∗(c)B∗ = ( (1, 0), · · · , ((z + c)k−1, 0), (0, 1), · · · , (0, (z + c)k−1) )

One easily sees that the matrices P (c) and P ∗(c) are lower-triangular and have ones
on the diagonal, hence detP (c) = det P ∗(c) = 1.

Since

Iz1+c,z2+c(z
izj) = Iz1,z2

((z + c)i(z + c)j)

we obtain

M(z1 + c, z2 + c, z3 + c) = P (c)TM(Z)P ∗(c).
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Recalling that detP (c) = detP ∗(c) = 1 and choosing c = −z1 we obtain

det M(0, z2 − z1, z3 − z1) = detM(Z)

For example if k = 2,

M(0, z2 − z1, z3 − z1) =











z2 − z1
(z2−z1)

2

2 z3 − z1
(z3−z1)

2

2
(z2−z1)

2

2
(z2−z1)

3

3
(z3−z1)

2

2
(z3−z1)

3

3
(z2−z1)

3

3
(z2−z1)

4

4
(z3−z1)

3

3
(z3−z1)

4

4
(z2−z1)

4

4
(z2−z1)

5

5
(z3−z1)

4

4
(z3−z1)

5

5











It follows from (10) and (11) that the polynomial detM(Z) is a multiple of (z2 −

z1)
k2

. Similarly, detM(Z) is a multiple of (z3 − z1)
k2

.
Substracting column k + i from column i, for all 1 ≤ i ≤ k, we find that

det M(z3, z2, z1) = (−1)k det M(Z)

and therefore detM(Z) is also a multiple of (z3 − z2)
k2

. Since detM(Z) is a

polynomial of degree 3k2 in the complex variables z1, z2, z3, and since (z1 − z2)
k2

,

(z2 − z3)
k2

and (z3 − z1)
k2

have no common factors, there exists a constant α ∈ C||

such that

det M(Z) = α (z1 − z2)
k2

(z2 − z3)
k2

(z3 − z1)
k2

.

In order to compute the constant α, and to show that α 6= 0, we remark that it is

the coefficient of zk2

in the polynomial detM(0, z, 1) = α(−z)k2

(z − 1)k2

. If k = 2
this matrix has the following form

M(0, z, 1) =











z z2

2 1 1
2

z2

2
z3

3
1
2

1
3

z3

3
z4

4
1
3

1
4

z4

4
z5

5
1
4

1
5











The contribution of a permutation σ ∈ S to det M(0, z, 1) is a monomial which
has degree k2 if and only if (11) is an equality. Denoting by S

∗ the collection of
permutations of the set {1, · · · , k}, we obtain that detM(0, z, 1) equals




∑

σ1∈S∗

ε(σ1)

k
∏

j=1

M(0, z, 1)j,σ1(j)









∑

σ2∈S∗

ε(σ2)

k
∏

j=1

M(0, z, 1)j+k, σ2(j)+k



+O(zk2+1).

Hence using (8)

det M(0, z, 1) = zk2

det

(

1

i + j − 1

)

1≤i,j≤k

det

(

1

i + j + k − 1

)

1≤i,j≤k

+ O(zk2+1)

This expression gives the value of α as the product of two Cauchy determinants,
which can be computed using the formula, established in [2] §I.1.3,

det

(

1

ai + bj

)

1≤i,j≤k

=

∏

1≤i<j≤k

(ai − aj)
∏

1≤i<j≤k

(bi − bj)

∏

1≤i,j≤k

(ai + bj)
.

This concludes the computation of detM(Z). ⋄
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2. A counter example in three space dimensions

Let T0 be the simplex of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and let P0

be the harmonic polynomial of degree 4

P0 := 3x + 10x3 − 15x4 + 3y − 18xy − 15x2y + 30x3y − 15xy2 + 45x2y2 + 10y3

+30xy3 − 15y4 + 3z − 18xz − 15x2z + 30x3z − 18yz + 240xyz − 180x2yz

−15y2z − 180xy2z + 30y3z − 15xz2 + 45x2z2 − 15yz2 − 180xyz2 + 45y2z2

+10z3 + 30xz3 + 30yz3 − 15z4.

We define
u0 := ∇P0 ∈ P2,3.

One can easily check using a formal computing program that all the linear func-
tionals in N3,3(T0) vanish on u0, which shows that the conjecture Conj(2,3), on
quadratic vector fields in three dimensions, is not valid. The interested reader can
download on the website www.ann.jussieu.fr/˜ mirebeau/ a Mathematica R© file that
contains these verifications.

It thus remains an open question to find a quadratic vector finite element for
H(curl; Ω) ∩ H(div; Ω) in dimension 3. Let us finally mention that, up to a multi-
plicative constant, u0 is the only element of P2,3 on which all the linear functionals
N3,3(T0) vanish.
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