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Introduction

The question of holding a convex body has been often considered in the literature. In [8], Coxeter asked about the minimal total length of edges of a cage holding the unit ball. Besicovitch [START_REF] Besicovitch | A cage to hold a unit-sphere[END_REF] and Valette [START_REF] Valette | À propos des cages circonscrites à une sphère[END_REF] investigated this question. Analogous problems of caging are still widely studied, see e.g. [START_REF] Pipattanasomporn | Caging rigid polytopes via finger dispersion control, Robotics and Automation[END_REF][START_REF] Rimon | Caging planar bodies by one-parameter two-fingered gripping systems[END_REF][START_REF] Vahedi | Caging Polygons with Two and Three Fingers, Internat[END_REF]. Concerning circumscribing polyhedra, Besicovitch and Eggleton show in [START_REF] Besicovitch | The total length of the edges of a polyhedron[END_REF] that the polyhedron with minimal total length of edges enclosing the unit ball is a cube. In [START_REF] Besicovitch | A net to hold a sphere[END_REF], Besicovitch determines the minimal length of a net holding the unit ball. F. Caragiu asked whether convex bodies exist that can be held by a very simple instrument such as a circle. T. Zamfirescu gives the answer in [START_REF] Zamfirescu | How to hold a convex body?[END_REF]: not only such convex bodies exist, but they form a huge majority. More precisely, they form a subset with dense interior among all convex bodies, with respect to the Hausdorff-Pompeiu distance. Whether this subset is open or not is unclear up to my knowledge.

In the whole article, K denotes a convex body of R 3 which admits holding circles; to shorten we say a holdable convex body. Let w denote the width of K (i.e. the minimal distance between two parallel planes enclosing the body), D the minimal diameter of a circumscribing cylinder and d the minimal diameter of a holding circle. We will also consider the supremum, denoted δ, of diameters of holding circles (in the article, the word "diameter" refers sometimes to a segment, sometimes to its length).

Several quantities may measure how large or small are holding circles: e.g. the ratios 2 3 is sharp: there are convex bodies with d w as close to 2 3 as desired. The surprising Item (b) gives a negative answer to a question of Joël Rouyer, who wondered if d would always be greater than or equal to w. See Figure 3 for a family of bodies satisfying (b). The same result holds for the ratio δ w , see Section 3.6. In Section 3 we also discuss the higher dimensional case (Section 3.1), the case of few-vertex polyhedra (3.2 and 3.3), the cases of "asymptotic" equality (3.5) and related topics in the literature (3.9).

Proof of Theorem 1

We first have to deal briefly with an aspect of planar convexity. Given a non-horizontal strip in Proof of Lemma 2. Observe that A∩B is a segment of R×{0}. We obviously have w h (A∩B) ≤ min w h (A), w h (B) and w h (A ∪ B) ≥ max w h (A), w h (B) . In order to prove that these are equalities, consider two support lines of A ∪ B at each end of A ∩ B, see Figure 1. If these lines can be chosen parallel, then we have w h (A ∩ B) = w h (A ∪ B). Otherwise they cross, say above, and then A is included in a triangle of horizontal width w h (A ∩ B). This proves the first equality. For the second one, consider a strip of minimal horizontal length containing B. The boundary of this strip contains (at least) two points of the boundary of B at the same altitude on each side, and which are not in A ∩ B (remind that we are in the case where there are no parallel support lines of A ∪ B at each end of A ∩ B). Therefore such a strip must contain A, yielding w h (B) = w h (A ∪ B).

R 2 S = {(x, y) ∈ R 2 ; ay + b 1 ≤ x ≤ ay + b 2 } the horizontal width of S is w h (S) = b 2 -b 1 . Given a convex compact subset B of R
w h (A ∩ B) = min w h (A), w h (B) and w h (A ∪ B) = max w h (A), w h (B) . - R A B w h (B) Support line -
We now fix a holdable convex body K and a holding circle C of minimal diameter d in a horizontal position.

Let H denote the plane containing C. This plane cuts K in two convex bodies: K + above and K -below. Let K 0 denote their intersection: K 0 = K + ∩K -= K ∩H. We call a horizontal slice of K + the intersection of K + with a horizontal plane.

For any θ ∈ [0, π[, let V θ denote the vertical plane making an angle θ with 0x. Let A θ , resp. B θ denote the orthogonal projection of K + , resp. K -in V θ . Notice that the orthogonal projection of the holding circle, which is a segment of length d, must contain the segment A θ ∩ B θ . Definition 3 . With the above notation, we call K an iceberg if there exists a holding circle and an orientation of its axis such that w h (A θ ) < w h (B θ ) for all θ ∈ [0, π[. At a first glance it seems that icebergs cannot exist: if A θ is narrower than B θ for any direction θ, then it seems that the circle could be released through A. Nevertheless, as shows Figure 3, icebergs do exist. In Section 3.3, we prove that tetrahedra and five-vertex polyhedra cannot be icebergs.

Notice that the width

w of K satisfies w ≤ w 2 (A θ ∪ B θ ) ≤ w h (A θ ∪ B θ ) for all θ ∈ [0, π[. It follows from Lemma 2 that, if K is an iceberg, then w ≤ w h (B θ ) for all θ ∈ [0, π[. Notice also that, if w h (B θ ) < w h (A θ ) for all θ ∈ [0, π[, then K is an iceberg: it suffices to change the orientation of C.
Proof of Theorem 1 . (a) Two cases occur. Firstly, if K is not an iceberg, this means that for some values of θ we have w h (A θ ) ≤ w h (B θ ) and for some other ones we have w h (A θ ) ≥ w h (B θ ). By continuity, there is a value θ 0 ∈ [0, π[ for which w h (A θ 0 ) = w h (B θ 0 ). Then we obtain from Lemma 2

w ≤ w h (A θ 0 ∪ B θ 0 ) = w h (A θ 0 ∩ B θ 0 ) ≤ d. (1) 
By the way, this shows that, if d < w then K is necessarily an iceberg.

Secondly, if K is an iceberg with d w < 1 (otherwise there is nothing to prove), then we have d < w ≤ w h (B θ ) for all θ. Since C holds K, there is a horizontal slice K h of K + whose circumscribing circle C h has a diameter d h larger than d, otherwise C could be released by a translation along the (continuous) curve of circumscribing centers of horizontal slices. Let ∆ denote the straight line joining the centers of C and C h . Let Π denote the -a priori non orthogonal -projection of direction ∆ into H (we recall that H is the horizontal plane containing C). Let ϕ denote the homothety of center the center of C and of ratio d d h ; in this manner, we have C = ϕ(Π(C h )). Given a ∈ C h , let P a denote the plane tangent to C h at a and parallel to ∆ and set P ′ a = ϕ(P a ); hence P ′ a is a plane parallel to ∆ and tangent to C at ϕ(Π(a)), see Figure 2.

For each a ∈ C h ∩K h , consider the cone of vertex a and generatrix C. This cone contains K - because two points of K + and K -are joined by a segment which crosses the disk of boundary C. It follows that the closed half-space, denoted by E a , containing C and delimited by P ′ a contains K -\ K 0 in its interior. This means that K -\ K 0 is in the interior of the intersection, denoted by I, of the half-spaces E a for all a ∈ C h ∩ K h . Since d < w h (B θ ) for all θ, the width w h (B θ ) is not attained close to the plane H in the following sense: there exists ε = ε(θ) > 0

P a P ′ a ∆ a - C h C a P a P ′ a C h C Figure 2:
On the left, the two circles and the straight line ∆ joining their centers, the cone with vertex a ∈ C h ∩ K h and the two planes P a and P ′ a . On the right, the images of P a , P ′ a , C and C h by Π ; in bold, the boundary of I ∩ H. such that w h (B θ ) = w h B θ ∩ {z ≤ -ε} (in fact, by compactness a single ε is available for all θ, but this is not necessary). Since K -∩ {z ≤ -ε} is a compact subset of the interior of I, we obtain w h (B θ ) < w h (I θ ) for all θ ∈ [0, π[, where I θ denotes the orthogonal projection of I into V θ . The functions θ → w h (B θ ) and θ → w h (I θ ) are continuous on the compact set [0, π], hence reach their infimum. Since Π maps I into I ∩ H, we have min

θ∈[0,π[ w h (I θ ) = w 2 (I ∩ H), the planar width of I ∩ H. Because the circumscribing circle of C h ∩ K h is C h itself, the circumscribing circle of the points ϕ(Π(a)), a ∈ C h ∩ K h is C itself. Therefore C is the greatest circle inscribed in I ∩ H, hence satisfies d ≥ 2 3 w 2 (I ∩ H),
as is well-known since Blaschke [START_REF] Blaschke | Über den größten Kreis in einer konvexen Punktmenge[END_REF]. To sum up, we have

w ≤ min θ∈[0,π[ w h (A θ ∪ B θ ) = min θ∈[0,π[ w h (B θ ) < min θ∈[0,π[ w h (I θ ) = w 2 (I ∩ H) ≤ 3d 2 . ( 2 
)
(b) With the identification R 3 ≃ C × R and the notation j = exp 2πi 3 , choose a > 1 (close to 1) and h > 0 (large), and consider K the octahedron with vertices (a, 0), (ja, 0), (j 2 a, 0), (-2, -h), (-2j, -h), (-2j 2 , -h). It has a horizontal holding circle C of diameter d = 2a cos ϕ, where ϕ = arctan a-1 √ 3 , and of center 0, -ha 2 √

3 sin(2ϕ) . If a tends to 1 then d tends to 2 and if h tends to infinity, then w tends to 3. Hence the ratio d w is as close to 2 3 as desired. Notice that the orthogonal projection in the horizontal plane shows K as a hexagon close to an equilateral triangle and C as its largest inscribed circle, see Figure 3. Observe also that three of the lateral faces are almost vertical. 3

Remarks and examples 1. As suggested by the referee, Theorem 1 and its proof can be generalized in arbitrary dimension n ≥ 3: if a convex body K ⊂ R n of width w admits a holding sphere of dimension n -2 and diameter d, then necessarily

d w > C(n) where C(n) = 1 √ n-1 if n is even and C(n) = √ n+1 n
if n is odd. The proof is the same, replacing the word "circle" by "(n -2)-sphere" and "plane" by "hyperplane", and using the Steinhagen inequality [START_REF] Steinhagen | Über die größte Kugel in einer konvexen Punktmenge[END_REF]: the width w n-1 (K) and the inradius r n-1 (K) of a convex body K ⊂ R n-1 satisfy r n-1 (K)

w n-1 (K) ≥ C(n) 2 , see e.g. [START_REF] Eggleston | Convexity[END_REF] pp. 112-114 for a short proof.

To see that the constant C(n) is sharp, we consider R n euclidean with coordinates x 1 , . . . , x n and split it in R n-1 × R. In R n-1 , consider the regular simplex, denoted S a , centered at the origin and with a vertex at (a, 0, . . . , 0), where a > 1 is close to 1. Its side-length is a 2n n-1 . Put this simplex in the hyperplane x n = 0; this is denoted S a × {0}. With the same notation, consider the simplex S 1-n and put it in the hyperplane x n = -h with h > 0 large. Then the convex hull of S a ×{0} ∪ S 1-n ×{-h} has a width close to 2 C(n) and a holding (n-2)-sphere of diameter 2a 1 + (a-1)

2 n 2 -2n -1/2
, hence close to 2.

2.

There is a short proof that w ≤ d for tetrahedra: if K is a polyhedron with a holding circle C of minimal diameter d, then C contains at least two points of K on two non-intersecting edges, hence the diameter of C is at least the distance between these edges, i.e. the distance between the two parallel planes that contain each of these edges. In the case of a tetrahedron, all the vertices, hence the whole tetrahedron, are in the closed spatial strip between these planes. 2 has the minimal number of vertices required for an iceberg, because neither tetrahedra nor five-vertex polyhedra can be icebergs. Actually, assume by contradiction that a five-vertex polyhedron is an iceberg (the proof is similar for a tetrahedron). With the notation above Definition 3, among K + and K -, one contains at most two vertices of K, say K + . Let the five vertices be labelled a, b ∈ K + and c, e, f ∈ K -and let θ 1 be such that the vertical plane V θ 1 contains the direction of the edge ab. Then in this direction we have w h (B θ 1 ) ≤ w h (A θ 1 ), because otherwise the circle C could be released by a translation along the axis joining its center to the middle of a, b. However, there is another direction θ 2 such that A θ 2 is a triangle, yielding w h (B θ 2 ) ≥ w h (A θ 2 ): indeed if the vertices a and b are at the same altitude, then choose θ 2 = θ 1 + π 2 mod π. Otherwise if a is heigher than b, assume that, for the value θ = 0, the projection of b on V θ is, say, on the left of the polygon of the projections of a, c, d, e. Then this projection of b is on the right for the value θ = π. Therefore by continuity it has to cross this polygon for some θ 2 ∈ [0, π]. In conclusion, the inequalities w h (B θ 1 ) ≤ w h (A θ 1 ) and w h (B θ 2 ) ≥ w h (A θ 2 ) yield the contradiction.

The example in Figure

4.

For general holdable convex bodies that are not icebergs, necessary conditions for equality w = d can be derived from (1): the first equality w = w h (A θ 0 ∪ B θ 0 ) implies that the strip measuring w h (A θ 0 ∪ B θ 0 ) has to be vertical; secondly K 0 = K ∩ H must contain all diameters of C corresponding to the directions θ where w

h (A θ ) = w h (B θ ) = d.
In particular, if K is a tetrahedron such that w = d, then by projection in H, the four edges joining each vertex of K + to each vertex of K -form a rhombus: they are tangent to C and the points of tangency are on diameters, see e.g. Figure 4, right. Because the distances between these points of tangency and the vertices of the rhombus are proportional to the distances between the plane H containing C and the vertices of the tetrahedron, it follows that the two other edges, one joining the vertices of K + , and one joining those of K -, are horizontal, orthogonal one to the other, and joined by their common orthogonal straight line in their middle. To sum up, tetrahedra which satisfy w = d are those with two non-intersecting orthogonal edges, joined by a common orthogonal straight line in their middle. One can see that they form a 3-dimensional submanifold of the 6-dimensional space of congruence classes of tetrahedra in R 3 .

5.

The case of "asymptotic equality" for Theorem 1 (a) can be described as follows. For convenience, we use the framework of Nonstandard Analysis (NSA for short) but this is not essential: instead of one nonstandard convex body K, the reader who is not acquainted with NSA may consider a whole sequence (K n ) n∈N . Then expressions such as "a(K) is i-close to b" (notation a(K) ≃ b), resp. "a(K) is i-large" have to be replaced by "there exists a subsequence (n k ) k∈N such that a(K n k ) tends to b, resp. a(K n k ) tends to +∞, as k → +∞.

If K is a convex body with d = 2 and w i-close to 3, then all inequalities in (2) have to be almost equalities, i.e. equalities up to i-small numbers. The last one w 2 (I ∩H) ≃ 3d 2 implies that I ∩H is i-close to an equilateral triangle of height 3 (with the Hausdorff-Pompeiu distance). Here we use a well-known result due to Blaschke [START_REF] Blaschke | Über den größten Kreis in einer konvexen Punktmenge[END_REF]: given a planar convex set A with planar width w 2 (A) and inradius r(A), equality w 2 (A) = 3r(A) holds only if A is an equilateral triangle. We now assume that I ∩ H is i-close to the triangle of vertices (-2, 0), (-2j, 0) and (-2j 2 , 0) where j = exp 2πi 3 . We can also describe the position of points of K + that prevent the holding circle to escape from the body. Given any horizontal slice K h of K + with circumscribing circle C h of diameter d h > d, we have that d h ≃ d, that the segment joining the centers of C and C h is almost vertical, and that all points of K h out of the horizontal circle of diameter d and same center as C h must project on C to points i-close to one of the three points (1, 0), (j, 0), (j 2 , 0).

6. We now discuss other ratios than d w . Concerning the ratio δ w , one has the same result: this ratio, too, can be as close to 2 3 as desired. To see this, we have to slightly modify the example of Figure 3, however, because this octahedron has also large holding circles. Actually, let α = α(a), β = β(a) ∈ ]0, 1[, A = (z A , 0), A ′ = (z A ′ , 0) on two upper edges with z A = aα + ja(1 -α), z A ′ = aα + j 2 a(1 -α) and B = (z B , -h), B ′ = (z B ′ , -h) on two lower edges with z B = -2β -2j(1 -β), z B ′ = -2β -2j 2 (1 -β) be such that z A , z A ′ , z B , z B ′ form a rectangle with diagonals orthogonal to the aforementioned edges (i.e. such that Im z A = Im z B ′ and arg(z A -z B ) = π 3 ). Then the segments AB and A ′ B ′ are diameters of a common holding circle. Nevertheless, it a possible to avoid these circles, either by moving slightly some vertices or by adding a seventh vertex, say (0, 1), in such a manner that there are no other holding circles than those close to C; in particular holding circles of this seven-vertex polyhedron have diameters less than 2a, yielding a ratio δ w close to 2 3 . 7. Concerning the ratio d D , Tudor Zamfirescu presented in conferences the following "bevelled cylinder": with R > 0 arbitrarily large, let x 1 = (-R, -1, 0), x 2 = (-R, 1, 0), x 3 = (R, 0, -1) and x 4 = (R, 0, 1), let C 1 and C 2 be unit circles with axis the 0x axis, one centered at (1-R, 0, 0) and the other at (R -1, 0, 0); then consider the convex hull of {x 1 , x 2 , x 3 , x 4 } ∪ C 1 ∪ C 2 . One can see that any circle with diameter [-R, R] × {0} × {0} which does not cross the interior of the body (i.e. with axis far enough from the planes y = 0 and z = 0), is a holding circle of minimal diameter, hence d = R whereas D = 1.

A simple example with ratio d

D as small as desired is the following one. Given ε > 0 arbitrarily small, the tetrahedron with vertices (0, ±ε, 0) and (±1, 0, 1) has a holding circle C with diameter d = 2 sin α where α is given by ε = tan α. This is easily seen by orthogonal projection in a horizontal plane. This circle is horizontal, centered on the 0z axis at altitude d 2 /4, see Figure 4.

One can verify that the axis of the minimal circumscribing cylinder is the straight line x, 0, 1-ε 2 2 ; x ∈ R and its diameter is D = 1 + ε 2 , yielding d D arbitrarily small. Of course (-1, 0, 1)

(1, 0, 1) (0, -ε, 0) (0, ε, 0) this tetrahedron has also large holding circles, e.g. any circle of diameter [(0, 0, 0), (0, 0, 1)] which does not cross the interior of the tetrahedron (i.e. with axis far enough from the planes x = 0 and y = 0), but if we add the vertex (0, 0, -ε 2 ) we obtain a five-vertex polyhedron with the same holding circle and with holding circles only close to C, thus with δ D arbitrarily small. There exist also tetrahedra with δ D arbitrarily small, e.g. the one with vertices A 1 = (-2, -1, ε), A 2 = (-1, 0, 0), A 3 = (2a, a, ε), A 4 = (a, 0, 0) with ε > 0 arbitrarily small and a = ε 2 . It is easy to verify that the circle in the plane x = 0 of diameter ε and center 0, 0, ε 2 is actually a holding circle. Indeed, the edges A 1 A 3 and A 2 A 4 have the axis 0z as a common orthogonal straight line and the edges A 1 A 4 and A 2 A 3 cross the plane x = 0 at 0, -a a+2 , aε a+2 and 0, a 2a+1 , ε 2a+1 , hence in the interior of the circle since a < 2ε 2 . One can also verify that holding circles must be close to the origin and of small diameter. 9. As a conclusion, we briefly describe related topics of the literature. The first one is the problem of immobilization of convex bodies, a notion first introduced by W. Kuperberg in [START_REF] Kuperberg | DIMACS workshop on polytopes[END_REF]. In [START_REF] Czyzowicz | Immobilizing a shape[END_REF], Czyzowicz, Stojmenovic and Urrutia prove that two-dimensional convex figures -except circular disks -can be immobilized by at most four points. In [START_REF] Bracho | Immobilization of smooth convex figures[END_REF], Bracho, Montejano and Urrutia show that three points suffice for convex figures bounded by a curve of class C 2 . Mayer gives additional results and extensions in [START_REF] Mayer-Foulkes | Immobilization of smooth convex figures: some extensions[END_REF]. The three-dimensional case is studied by Bracho, Mayer, Fetter and Montejano in [START_REF] Bracho | Immobilization of solids and mondriga quadratic forms[END_REF]: a necessary condition for four points to immobilize a C 2 convex body is that the four normal lines belong to one ruling of a quadratic surface. These questions of immobilization are motivated by grasping problems in robotics, see e.g. [START_REF] Markenscoff | Optimal grip of a polygon[END_REF][START_REF] Markenscoff | The geometry of grasping[END_REF].

A second related problem is to look for convex bodies passing through holes. Zindler [START_REF] Zindler | Über konvexe Gebilde[END_REF] already considered an affine image of a cube passing through fairly small holes. In [START_REF] Itoh | Simplices passing through a hole[END_REF], Itoh and Zamfiresu look for the shape of a hole of minimal diameter and width through which can pass the regular unit tetrahedron T . They find a hole of diameter √ 3/2, the width of a face of T , and of width √ 2/2, the width of T . In [START_REF] Itoh | Tetrahedra passing through a circular or square hole[END_REF], Itoh, Tanoue and Zamfiresu study the same tetrahedron passing through a circular and a square hole. Triangular holes are considered by Bárány, Maehara and Tokushige in [START_REF] Bárány | Tetrahedra passing through a triangular hole[END_REF] and higher dimensional holes in [START_REF] Maehara | Regular simplices passing through holes Geom[END_REF].

Another related topic is known as Prince Rupert's problem, see [START_REF] Croft | Unsolved problems in geometry[END_REF], problem B4. The original question is to cut a hole in the unit cube, large enough to let a larger cube passing through it. See also [START_REF] Jerrard | Prince Rupert's rectangles[END_REF] for generalizations to rectangles.

  d D , d w , δ D and δ w . Of course we have d D ≤ d w ≤ δ w and d D ≤ δ D ≤ δ w . In Section 3.7, we provide an example, due to T. Zamfirescu, where all these ratios are as large as desired. Section 3.8 contains examples with ratios d D and δ D as small as desired. Concerning the ratio d w , our main result is the following. Theorem 1 . (a) For any holdable convex body K, we have d w > 2 3 . (b) The constant

Figure 1 :

 1 Figure 1: The subsets A, B, two support lines of A ∪ B intersecting A ∩ B and a strip of minimal horizontal width containing A ∪ B.

Figure 3 :

 3 Figure 3: an octahedral iceberg and its smallest holding circle; here a = 1.38 and h = -5.

Figure 4 :

 4 Figure 4: a tetrahedron with small ratio d D ; here ε = 0.2.
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