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In this paper we deal with the following family of exponential maps (f λ :

)

2 , then there exists λ0 > 1 such that d(λ) < d(1) for any λ ∈ (1, λ0).

1. An overview of the problem. In this paper we deal with maps of the form f λ : z → λ(e z -1), for λ ≥ 1. As long as λ is strictly greater than 1, 0 is a repelling fixed point and there exists an attracting fixed point q λ < 0. Those two points collapse to 0 for λ = 1, and 0 becomes parabolic. We are interested in J λ , the set of points that do not escape to ∞ under iterations of f λ . The Hausdorff dimension of this set, that we denote d(λ), is an element of (1,[START_REF] Ur | [END_REF], and is called the Hyperbolic Dimension of the map f λ . While for any λ the Julia set of f λ has Hausdorff dimension constant equal to 2, cf.

[ McMu 1 ], the Hyperbolic Dimension varies with λ. Moreover, any invariant probability measure gives full mass to J λ , and d(λ) is, in the hyperbolic case, equal to the first zero of the pressure of the map t → -t log |f ′ λ |1 , cf. [Ma, Ur 1 ].

Variations of λ → d(λ) with respect to λ, is an interesting feature that reflects changes in geometry after perturbation of a dynamical system. The philosophy is that d behaves smoothly, and even real analytically, if we perturb a conformal hyperbolic dynamical system, in a real analytic way.

This philosophy was proposed in 1981 Rio de Janeiro's conference by Sullivan [Su]. The same year Ruelle [Ru] proved that it was true for a class of Hyperbolic Conformal Repellers. His strategy, used since then in other contexts, see [Ur,Zd 1 ] for the exponential family and [Ma, Ur 2 ] for meromoprhic functions, was the following : prove a Bowen's formula that identifies the dimension as the zero of a pressure function, prove that this pressure is the logarithm of a simple and isolated eigenvalue of a Perron-Frobenius(-Ruelle) operator, then use some results about perturbation theory of operators.

When approaching the boundary of an Hyperbolic components one can not expect any smoothness. Nevertheless there still exists some paths along thus we still have continuity of the Hausdorff dimension. This was first proved by Bodart and Zinsmeister in [Bo,Zi] for the quadratic family, z → z 2 + c, for c ∈ R approaching 1 4 from the left. Then it has been proved for other parameters c, [Ri], or other rational maps, [McMu 4 ], [Bu,Le], or in other situations see [McMu 3 ] for Kleinian Groups, [Ur,Zd 2 ] for the exponential family. The strategy for such results is to control conformal measures, or Patterson-Sullivan measures, in order to prove that they converge towards the "good" conformal/Patterson-Sullivan-measure. This usually boils down in proving that any limiting measure is non-atomic. Note that this strategy may also be used to proved discontinuity of the Hausdorff dimension, or more precisely to prove convergence towards something bigger than the Hausdorff dimension of the "limit set", [Do,Se,Zi], [Ur, Zi 1 ] and [Ur, Zi 2 ].

The problem of the derivative of the Hausdorff dimension is, to our knowledge, investigated in two other papers than the present one. In [Ha,Zi 1 ] for the quadratic family it is proved that d ′ (c), the derivative of d(c) := Hdim(J c ), diverges towards +∞ as c converges towards 1 4 from the left. In [Ja 1 ], still for the quadratic family, but this time for c converging from the right towards -3 4 , and under the realistic hypothesis that d(-3 4 ) < 4 3 , it is proved that d ′ (c) converges towards -∞. In order to control the derivative the starting point in all those papers is first to get an exact formula for the derivative. This is done using thermodynamic formalism by differentiating the Bowen's formula. Then some uniform estimates of distorsion in a neighborhood of the fixed point are used in order to control measures of fondamental annuli. Conclusions then comes from a precise analysis of a certain integral. This is that last point that explains why such a study has not been yet done in a more general setting. In the present paper, as well as in [Ha,Zi 1 ] and [Ja 1 ], some very particular properties of the case studied are used to conclude. 1.2. Main result. When one notes that if τ λ denotes the translation by -λ, then we have f λ • τ λ = τ λ • g λ , with g λ (z) = α(λ)e z and α(λ) = λe -λ , this philosophy (real analyticity of d) is in [Ur,Zd 1 ] proved to be the case. More precisely, it is proved there that d : λ → d(λ) is real-analytic on (1, +∞), and in [Ur,Zd 2 ], that it is continuous on [1, +∞). In this paper we study the asymptotic behavior of the function λ → d ′ (λ), and we prove the following.

Theorem 1.1. There exist λ 0 > 1 and K > 1 such that ∀λ ∈ (1, λ 0 )    -1 K (λ -1) 2d(1)-2 ≤ d ′ (λ) ≤ -K(λ -1) 2d(1)-2 if d(1) < 3 2 , |d ′ (λ)| ≤ K(λ -1) log 1 λ-1 if d(1) = 3 2 , |d ′ (λ)| ≤ K(λ -1) if d(1) > 3 2 .
In particular the function

λ → d(λ) is C 1 on [1, +∞), with d ′ (1) = 0.
Remark : As already mentioned, conjugating f λ by the translation τ λ , we get the family

g λ := τ λ • f λ • τ -1
λ , with g λ (z) = λe -λ e z . Changing variable to ε := λe λ-1 -1, we get the family g ε : z → (1 + ε)e -1 e z with ε ∼ (λ -1). Let D(ε) be the hyperbolic dimension of g ε , then

   D ′ (ε) ∼ ε 2D(0)-3 if D(0) < 3 2 , |D ′ (ε)| log 1 ε if D(0) = 3 2 , |D ′ (ε)| K if D(0) > 3 2 .
Note in particular that, in case D(0) < 3 2 , we get exactly the same asymptotic as the one in [Ha,Zi 1 ] for the family c → z 2 + c, with c < 1 4 . For this last family we were able to prove that d( 14 ) < 3 2 , see [Ha,Se,Zi]. Inequality that we do not know for the exponential family.

Note also that if d(1) < 3 2 then we have a control on the sign of the derivative in a right neighborhood of 1. It asserts that d(1 + ) is a local maximum of the Hyperbolic Dimension.

Remark : There is to our knowledge no algorithm to compute accurately Hausdorff dimension of parabolic Julia sets. In [Ha,Se,Zi] an estimate of the Hausdorff dimension of the cauliflower (the Julia set of z → z 2 + 1 4 ) is given using by calculating, with a computer, the first terms of a sum, then by estimating its tail. This method uses strongly particular properties of the map. More generally, one could build an infinite iterated function system whose limit set would have Hausdorff dimension equal to the hyperbolic dimension of the Julia set. Then, using results from [He,Ur], one could approximate this Hausdorff dimension by finite subsystems keeping track of the error. Finally, there are algorithms to calculate Hausdorff dimension of finite IFSs with any desired accuracy [McMu 2 ], [Je,Po]. However, to realize such program would be a tedious extremely time consuming task.

The proof of the main result will follow exactly the same lines as the one of [Ha,Se,Zi], but will make an extensive use of the Thermodynamic Formalism for Meromorphic Functions, as developed by, Urbański, Urbański and Kotus, Urbański and Zdunik, and Urbański and Mayer. The reader will find in [Ma, Ur 2 ] all proofs of results we need in this paper, as well as a complete bibliography on the subject. 1.3. Organization of the paper. In the first part we use Chapter 8 of [Ma,Ur 2 ] to get a formula for d ′ (λ), for any λ ∈ (1, +∞). This mainly consists of conjugating the dynamics and differentiating the pressure.

In the second part we collect some estimates of the distortion around the fixed point 0. They are crucial since the formula obtained in the first part of this paper involves two integrals with respect to an invariant measure that has unbounded Radon-Nikodym derivative with respect to the Hausdorff measure, in any neighborhood of 0.

In the third part we use those estimates to control the integrals and to prove the main result.

In the first appendix we prove the estimates used in the second part of this paper in a more general setting than needed in this paper. Namely, we allow the repelling fixed point to converge towards a parabolic fixed point with several petals. The second appendix is devoted to the study of partial sums of some sequences that will be needed several times in the paper.
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A formula for the derivative of the function λ → d(λ)

Before giving and proving the formula of the derivative, this is done below in Proposition 2.1, we introduce some notations and recall some results concerning the thermodynamical formalism for that family of exponential maps.

2.1. Thermodynamic formalism. Let P be be the cylinder {z ∈ C | -π < Im z < π}. As it is done in [Ur,Zd 1 ] we associate to f λ the map F λ : P → P defined by

F λ • π = π • f λ ,
with π being the natural projection on the cylinder

P = C/ ∼, with z 1 ∼ z 2 if and only if (z 1 -z 2 ) = 2ikπ, for some k ∈ Z.
In particular for any z ∈ P we have f λ (z) = F λ (z), and

F λ (z) = F λ (z ′ ) if and only if there exists k ∈ Z such that f λ (z) -f λ (z ′ ) = 2ikπ
. This tells us that for any z ∈ P , we have

F -1 λ (z) = {z k ∈ P | f λ (z k ) = z + 2ikπ, k ∈ Z}.
We also see that

J(F λ ) = π(J(f λ )) = J(f λ ) ∩ P .
Let us now introduce some notation and collect some results, where we mainly refer to [Ma, Ur 2 ], see also [Ur,Zd 1 ], [Ur,Zd 2 ], [Ur].

-For any λ ≥ 1 we define L λ,t , the Perron-Frobenius operator associated with the potential -t log |F ′ λ |. It acts on H λ α , the set of bounded α-Hölder functions defined on J(F λ ), in the following way, let g ∈ H λ α , and z ∈ J(F λ )

L λ,t (g)(z) = F λ (y)=z 1 |(F λ ) ′ (y)| t g(y) = k∈Z 1 |z + λ + 2ikπ| t g(z k ), with z k ∈ P such that f λ (z k ) = z + 2ikπ• -The only d(λ)-conformal measure supported on J λ is denoted m λ 2 .
-The only equilibrium measure for the potential -d(λ) log |F ′ λ | and the dynamical system (J λ , F λ ) is denoted µ λ .

-The pressure of the potential -t log |F ′ λ | is denoted P (λ, t), and is defined by P (λ, t) = sup{h µtχ µ }, 2 We refer to section 3 of this paper for a definition and more details about conformal measures.

where the supremum is taken over all invariant probability measures µ supported on J(F λ ), such that χ µ < +∞, where h µ denotes the metric entropy of the measure µ, and χ µ = log |F ′ λ |dµ is its Lyapunov exponent. We will derive our formula for d ′ (λ) starting from Bowen's formula that asserts that for any λ > 1, d(λ) is the only real number so that P (λ, d(λ)) = 0 (see [Ur,Zd 1 ]). We want to differentiate this formula with respect to λ, and in order to do so we need to appropriately conjugate the dynamics of F λ .

-Let λ 0 > 1 be fixed. For any λ > 1, we denote h λ the conjugating map from J λ 0 to J λ such that

F λ • h λ = h λ • F λ 0 . -We then set : ϕ λ,t := -t log |F ′ λ • h λ |.
It is a potential which is defined on J λ 0 . We then use Corollary 8.10 in [Ma, Ur 2 ] that tells us that (λ, t) → P 0 (ϕ λ,t ) is real analytic for λ close enough to λ 0 3 . Bowen's formula then implies that ∂ ∂λ P 0 (ϕ λ,d(λ) ) = 0. It is this calculation that leads to the desired formula.

2.2. The formula and its proof. In this section we prove the following formula Proposition 2.1. For any λ ∈ (1, +∞) we have

(2.1) d ′ (λ) = - d(λ) χ µ λ 1 - 1 λ J λ +∞ k=1 Re 1 (F k λ ) ′ dµ λ •
, where µ λ is the only equilibrium measure for the potential -d(λ) log |F ′ λ |. Let λ 0 > 1 be fixed and let h λ denote the conjugating map : F λ • h λ = h λ •F λ 0 . Since µ λ is the equilibrium measure for the potential -d(λ) log |F ′ λ |, we deduce that the potential ϕ λ,d(λ) has a unique equilibrium measure which is μλ := h λ * (µ λ ). We shall now use Theorem 6.14 in [Ma, Ur 2 ] which asserts that given a tame function ϕ and a weakly tame function ψ we have

∂ ∂t P 0 (ϕ + tψ) | t=0 = ψdµ ϕ , (2.2)
with µ ϕ the equilibrium measure for the potential ϕ. We refer to chapter 4 of [Ma,Ur 2 ] for definition of tame and loosely tame functions. By Lemma 8.9 in [Ma, Ur 2 ], we know that for R > 0 small enough, there exists β > 0 such that ∀λ ∈ (λ 0 -R, λ 0 + R) ϕ λ,t is β-tame. We then deduce from (2.2) that

0 = ∂ ∂λ P 0 (ϕ λ,d(λ) ) = J λ 0 ∂ ∂λ ϕ λ,d(λ) d μλ . (2.3) We thus have to compute ∂ ∂λ ϕ λ,d(λ) . Note that ϕ λ,d(λ) = -d(λ) log |F ′ λ • h λ | = -d(λ)(log λ + Re h λ ).
Differentiating with respect to λ we get

∂ ∂λ ϕ λ,d(λ) = -d ′ (λ) log |F ′ λ • h λ | -d(λ) 1 λ + Re ∂ ∂λ h λ • (2.4) Lemma 2.2.
For any λ ∈ (1, +∞) and any z ∈ J λ 0 we have

(2.5) ∂ ∂λ h λ (z) = 1 - 1 λ +∞ k=1 1 (F k λ ) ′ (h λ (z)) - 1 λ •
In order to prove this formula we use two results from [Ur], Lemma 13.2 and Proposition 13.4, that we give in the following Lemma Lemma 2.3. For any λ 0 ∈ (1, +∞) one can find R > 0, K > 0, and α > 0 such that

(2.6) ∀λ ∈ B(λ 0 , R) ∀n ∈ N ∀z ∈ J λ |(F n λ ) ′ (z)| ≥ K(1 + α) n • (2.7) ∀λ ∈ B(λ 0 , R) ∀z ∈ J λ ∂ ∂λ h λ (z) < K•
We can now prove Lemma 2.2.

Proof. In order to simplify notation, we write ḣλ instead of ∂ ∂λ h λ , and we drop z. We start with the conjugating formula : 1), that we differentiate with respect to λ. We thus get, ḣλ

h λ • F λ 0 = F λ • h λ = λ(e h λ -
• F λ 0 = Ḟλ • h λ + ḣλ F ′ λ • h λ . So that we have ḣλ = ḣλ • F λ 0 F ′ λ • h λ - Ḟλ • h λ F ′ λ • h λ •
Iterating this formula we end up for n ∈ N with

ḣλ (z) = ḣλ • F n λ 0 (F n λ ) ′ • h λ - n k=1 Ḟλ • F k-1 λ • h λ (F k λ ) ′ • h λ • Using Lemma 2.3 we deduce that ḣλ (F n λ 0 (z)) (F n λ ) ′ (h λ (z)) is converging towards 0• On the other hand, since Ḟλ (z) = e z -1 = 1 λ F ′ λ (z) -1, for any k we have Ḟλ • F k-1 λ (F k λ ) ′ = 1 λ 1 (F k-1 λ ) ′ - 1 (F k λ ) ′ • This leads to n k=1 Ḟλ • F k-1 λ (F k λ ) ′ = 1 λ - 1 (F n λ ) ′ + 1 λ -1 n-1 k=1 1 (F k λ ) ′ • Using (2.6) in Lemma 2.
3 we get that the series on the left above is converging towards

+∞ k=1 1 (F k λ ) ′ , which finishes the proof.
Using (2.4) andLemma 2.2 in (2.3) we get

(2.8)

-d ′ (λ) J λ 0 log |F ′ λ |dμ λ -d(λ) 1 - 1 λ J λ 0 Re k≥1 1 (F k λ ) ′ • h λ = 0•
For any function g continuous on J λ we have μλ (g • h λ ) = µ λ (g). We deduce from (2.8) that Proposition 2.1 is true.

Local dynamic and uniform estimates

In this section we introduce some notations and collect estimates proved in the appendix in a more general setting 4 . We then use these estimates in order to control uniformly conformal measures (m λ ) and equilibrium measures (µ λ ).

3.1. Notation. We know that J λ ∩ P ⊂ {z ∈ C | -π 2 < Im z < π 2 }. Given 0 < θ < π 2 we denote S θ the sector {re iα | r > 0, -θ < α < θ }. For r 0 << 1 we fix 0 < θ < π
2 to be such that J 1 ∩ B(0, r) ⊂ S θ . Then we choose ε 0 > 0 small enough so that for any 0

≤ λ = 1 + ε ≤ λ 0 = 1 + ε 0 we have f -1 λ (S θ ) ⊂ S θ and J λ ∩ B(0, r) ⊂ S θ . We then set γ 0 = {r 0 e it | t ∈ ]-θ, θ[}, γ 1 (λ) = f -1
λ (γ 0 ). Joining r 0 e iθ with f -1 λ (r 0 e iθ ) by a line, and doing the same with r 0 e -iθ and its image by f -1 λ , we get a cell C 0 (λ). It is a simply connected domain. A compactness argument tells us that if 1 ≤ λ ≤ λ 0 , then there exists a simply connected domain V ⊂ S θ such that the closure of ∪ λ C 0 (λ) is a subset of V . In particular, Koebe distorsion Theorem gives us a constant K > 1, only depending on r 0 and λ 0 , such that for any univalent function h on V and any point x and

y in ∪ λ C 0 (λ) we have 1 K ≤ |h ′ (x)| |h ′ (y)| ≤ K.
We will use later on this fact with inverse branches of f n λ . They are well defined on V since the post-singular set of the f λ 's, i.e. the orbit -λ under f λ , is a subset of (-∞, 0).

We then define for each integer n the set

C n (λ) := f -n λ (C 0 (λ)), with f -n λ
being the n th iterates of the inverse branch of f λ defined on B(0, r 0 ) that fixes 0. In the following we are working with respect to measures concentrated on J λ of dimension strictly greater to 1. One checks easily in that context that with respect to such measure (C n (λ)) n∈N∪{0} is a partition of B(0, r 0 ). Moreover the set C 0 (λ) is mapped univalently by f -n λ to C n (λ). 4 We deal in the appendix with a family of germ of holomorphic in a neighborhood of a repelling fixed point which degenerates into a parabolic fixed point with p petals.

Let N ε be an integer5 and defined the sequence (a n,ε ) n∈N as a

n,ε = 1 n , if n ≤ N ε , and a n,ε = ε(1 + ε) -n , if n ≥ N ε . Note that a n,ε → 0.
In order to simplify notations, we let a n := a n,ε . We consider now the one parameter familly of sequences, (a n (α)) n∈N , defined for n ∈ N by a n (α) := a α n . We are also interested in partial sums of a n (α). For k ≤ n we let S k,n (α) := n l=k a l (α). The sequence (a n (α)) will describe, for different values of α, the distorsion around 0, the conformal measure of partition sets of a neighborhood of 0, and the partial sums S k,n (α) will play a role in controlling the invariant measure of the same partition sets, as well as evaluating the integral which is crucial in order to get our main result. Those estimates are easy and we use them in this section but we postponed their proofs to the appendix.

Uniform estimates of the distorsion.

In this section we give uniform estimates depending on λ for the local dynamics next to the repellingparabolic fixed point 0. We recall that the family we are studying is given for λ := 1 + ε ≥ 1 by f λ (z) = λ(e z -1). In particular, in a neighborhood of 0, the local dynamic is given by the following Taylor expansion

F λ (z) = f λ (z) = λz + z 2 + z 3 g λ (z)•
With g λ (z) uniformly bounded, independently of λ, as soon as a neighborhood of zero has been fixed. Note in particular that for ε = 0 , the point 0 is a parabolic fixed point with one petal.

We apply the general results of the first appendix of this paper to this special family f λ . In the remaining of the paper we set λ = 1 + ε and we denote the relevant quantities by indexing them equally well either by ε or λ. Moreover, in the remainder of this section F -n λ will be the inverse branch of F -n λ that fixes 0. From Proposition 5.7 we deduce that Proposition 3.1. Let 0 < r 0 , 1 < λ 0 being fixed. Then there exists

K > 1 such that ∀λ ∈ (1, λ 0 ), ∀z ∈ C 0 (λ), and ∀n ∈ N 1 K a n (2) ≤ |(F -n λ ) ′ (z)| ≤ Ka n (2)•
The following result is technical but will be crucial in order to control the sign of the derivative d ′ (λ).

Lemma 3.2. Let 0 < r 0 , 1 < λ 0 being fixed. There exists an integer

N such that ∀n > N , ∀k ∈ N ∩ [1, n -N ], ∀λ ∈ (1, λ 0 ) and ∀z ∈ C n (λ) √ 3 2 |(F k λ ) ′ (z)| ≤ Re (F k λ ) ′ (z)• Proof. Let z ∈ C n and θ k (z) = arg(F k λ ) ′ (z). The Lemma boils down to proving that |θ k (z)| ≤ π 6 . One computes that (F k λ ) ′ (z) = k-1 j=0 F ′ λ (F j λ (z)) = λ k exp( k-1 j=0 F j λ (z)). So that we have θ k (z) = n-1 j=0 Im (F j λ (z))
. Since F j λ (z) belongs to C n-j we may use Corollary 5.8 which asserts that |Im (Z)| 1 (n-j) 2 for any Z ∈ C n-j . We thus have

|θ k (z)| n-k j=1 1 (n -j) 2 ≤ +∞ j=N 1 j 2 .
This is less than π 6 if N is big enough and we are done.

We end this section with two more estimates of the distorsion. The first one needs the following observation on the localization of J(f λ ).

Lemma 3.3. For every R > 0 there exists ∆ > 0 such that for all λ > 1,

J(f λ ) \ +∞ n=-∞ B(2πni, R) ⊂ {z ∈ C : Re z ≥ ∆}. Proof. First notice that f λ ({z ∈ C : Re z < 0}) = B(-λ, λ) ⊂ {z ∈ C : Re z < 1-λ} ⊂ {z ∈ C : Re z < 0}. Thus (3.1) {z ∈ C : Re z < 0} ⊂ F(f λ ) := Fatou set of f λ . Now write z = x + iy. Then Re (f λ (z)) = Re (λ(e x cos y + ie x sin y -1)) = λ(e x cos y -1).
Note that there exists ∆ 1 > 0 so small that if 0 < x < ∆ 1 and x + iy / ∈ +∞ n=-∞ B(2πni, R), then dist(y, {2πni : n ∈ Z}) > R/2, and consequently, cos y < cos(R/2). Hence, Re (f λ (z)) < λ(e ∆ 1 cos(R/2) -1). Take now 0 < ∆ ≤ ∆ 1 so small that e ∆ cos(R/2) < 1. So Re (f λ (z)) < 0 and, by (3.1), f λ (z) ∈ F(f λ ). Therefore we have proved that

{z ∈ C \ +∞ n=-∞ B(2πni, R) : Re z < ∆} ⊂ F(f λ ). We are done. Now notice that if Re z ≥ ∆, then |f ′ λ (z)| = λe Re z ≥ λe ∆ > 1.
Combining this and Lemma 3.3, we obtain the following.

Lemma 3.4. For every R > 0 there exists γ > 1 such that for every z ∈

J(F λ ) \ B(0, R), |F ′ λ (z)| ≥ γ.
Using Proposition 5.7, Lemma 3.4 and the same reasoning as for the proof of Lemma 3.6 in [Ha, Zi 1 ] we prove the following result Lemma 3.5. There exist 0 < r 0 , 1 < λ 0 and 1 < K such that ∀λ ∈ (1, λ 0 ) and ∀z ∈ J λ , λ) . This means that for any measurable set A on which f λ is 1-1 we have

F n λ (z) / ∈ B(0, r 0 ) ⇒ Kn 2 ≤ |(F n λ ) ′ (z)|. 3.3. Conformal measures. Let us recall that a probability measure m λ is called conformal if its strong Jacobian is equal to |F ′ λ | d(
(3.2) m λ (F λ (A)) = A |F ′ λ | d(λ) dm λ •
Those measures are usually a powerful tool to study Hausdorff dimension of Julia sets. In fact their definition is dynamical but they very often carry a geometrically significant information about the Julia set. In many of cases they coincide (up to a multiplicative constant) with Hausdorff or packing measures on the Julia set. Using Proposition 5.7 and the notation introduced below we get the following.

Proposition 3.6. Let 0 < r 0 , 1 < λ 0 being fixed. Then there exists K > 1 such that ∀λ ∈ (1, λ 0 ), and ∀n ∈

N 1 K a n (2d(λ)) ≤ m λ (C n (λ)) ≤ Ka n (2d(λ))
Proof. This is not difficult when one observes that for each λ the function

F n λ is univalent on C n (λ).
In particular using the definition of a conformal measure we deduce that :

(3.3) m λ (C 0 (λ)) = m λ (F n λ (C n (λ))) = Cn(λ) |(F n λ ) ′ | d(λ) dm λ .
We then use estimates of Proposition 3.1, since

|(F n λ ) ′ | on C n (λ) is com- parable with |(F -n λ ) ′ | -1 on C 0 (λ).
We deduce that there exists a constant K > 0 such that for any z ∈ C 0 (λ)

(3.4) 1 K |(F n λ ) ′ (z)| -d(λ) ≤ m λ (C n (λ)) ≤ K|(F n λ ) ′ (z)| -d(λ) •
We can now conclude the proof by using again Proposition 5.7.

Remark : Let m ∞ be any accumulation point of the family of probability measures (m λ ) λ>1 . Let (λ n ) be a sequence of real numbers converging from above towards 1 such that the sequence (m λn ) converges weakly to m ∞ , and (d(λ n )) converges to some d ≥ 0. For any r > 0 small enough one may find

N (r) such that ∀n ≥ N (r) B(0, r) ∩ J λn ⊂ {0} ∪ k≤N (r) C k (λ n )
And in particular we conclude if r > 0 is such that m ∞ ({|z| = r}) = 0, that we have

m ∞ (B(0, r)) = lim n→∞ m λn (B(0, r)) ≤ lim n→∞ k>N (r) m λn (C k (λ n )) ≤ K N (r) 2d(λn)-1 •
So that we conclude that m ∞ has no atom at 0. And it is one of the main point in order to conclude that d(λ) → d (1) 

when λ → 1, see [Ur,Zd 2 ]. Lemma 3.7. There exists 0 < α < β such that ∀M ≥ 2, ∀λ ∈ [1, λ 0 ], with λ 0 < π 3 , ∀r ∈]0, π 3 -λ 0 ] and ∀A ⊂ B(0, r) measurable, we have (3.5) αm λ (A) ≤ m λ (F -1 λ (A) ∩ B r ) ≤ βm λ (A)
. and

(3.6) m λ (F -1 λ (A) ∩ B r,M ) ≤ m λ (F -1 λ (A) ∩ B r ) ≤ 54βm λ (F -1 λ (A) ∩ B r,M ). Proof. Let B k be the connected component of F -1 λ (B(0, r)) such that f λ (B k ) = B(2ikπ, r). For any z ∈ B k we have : (3.7) |F ′ λ (z)| = |f ′ λ (z)| = |f λ (z) + λ| = |λ + 2ikπ + ae iθ |
, with a < r and 0 ≤ θ < 2π. With our assumptions this leads, for |k| ≥ 1, to

(3.8) 2|k|π - π 3 ≤ |F ′ λ (z)| = |f ′ λ (z)| ≤ 2|k|π + π 3 • Since |f ′ λ (z)| = λ exp(Re z), we also get, for any |k| ≥ 1, that ∀z ∈ B k log 5 ≤ Re z•
As a consequence we see that

F -1 λ (B(0, r)) ∩ B r = ∪ |k|≥1 B k . The measure m λ being conformal we have m λ (A) = m λ (F λ (A k )) = A k |F ′ λ | d(λ) dmλ, with A k := F -1 λ (A) ∩ B k . From (3.8) we deduce that (3.9) m λ (A) (2|k|π + π 3 ) d(λ) ≤ m λ (A k ) ≤ m λ (A) (2|k|π -π 3 ) d(λ) , so that (3.10) 2m λ (A) k≥1 1 (2kπ + π 3 ) d(λ) ≤ m λ (F -1 λ (A)∩B r ) ≤ 2m λ (A) k≥1 1 (2kπ -π 3 ) d(λ) •
The function λ → d(λ) being continuous on [1, λ 0 ] one may consider its minimum δ which is strictly greater than 1. With α = 2 k≥1

1 (2kπ+ π 3 ) 2 and β = 2 k≥1 1 (2kπ-π 3 )δ we have : αm λ (A) ≤ m λ (F -1 λ (A) ∩ B r ) ≤ βm λ (A). This is (3.5).
Note that (3.8) tells us that for any z ∈ B 1 we have Re z ≤ log(2π + π 3 ) < 2 ≤ M . This implies that B 1 ⊂ B r,M . In particular we have

m λ (A 1 ) ≤ m λ (F -1 λ (A) ∩ B r,M )• We then deduce from (3.9) that m λ (A) (2π + π 3 ) 2 ≤ m λ (F -1 λ (A) ∩ B r,M )•
Together with (3.5) we conclude that

m λ (F -1 λ (A) ∩ B r ) ≤ (2π + π 3 ) 2 βm λ (F -1 λ (A) ∩ B r,M )•
Since (2π + π 3 ) 2 ≤ 54 we conclude that the left hand side inequality of (3.6) holds. The right hand side being obvious the proof is finished.

3.4. Invariant measures. Let us first recall that µ λ = ρ λ m λ is the unique F λ -invariant probability measure equivalent with m λ . This measure is also the unique equilibrium state for the potential

-d(λ) log |F ′ λ | i.e. h µ λ -d(λ) log |F ′ λ |dµ λ = sup{h µ -d(λ) log |F ′ λ |dµ},
where supremum is taken over all F λ -invariant ergodic probability measures such that log |F ′ λ |dµ < +∞. The function ρ λ is obtained in [Ma, Ur 2 ] as the limit of the sequence L n λ (1). The main results of this section is Proposition 3.8. Let 0 < r 0 , 1 < λ 0 being fixed. Then there exists K > 1 such that ∀λ ∈ (1, λ 0 ), and ∀n ∈

N i-1 K a n (2d(λ) -1) ≤ µ λ (C n (λ)) ≤ Ka n (2d(λ) -1) if n ≤ N ε . ii- 1 K an(2d(λ)) ε ≤ µ λ (C n (λ)) ≤ K an(2d(λ)) ε if n ≥ N ε .
Proof. Let B r := P \ B(0, r). We know that µ λ (B r ) > 0 so that the first return time N λ,r (z

) := inf{n ≥ 1 | F n λ (z) ∈ B r } is finite µ λ -almost-surely. Let B λ,n := {N λ,r = n}.
We recall that the sets (C n ) are introduced at the beginning of this section. Note that for r small enough we have B λ,n ∩ B(0, r) = C n-1 (λ). Since µ λ is F λ -invariant its restriction to B r is invariant for the first return map in B r , that we denote T λ . Moreover, µ λ can be built from this T λ -invariant measure and this leads, for any measurable set A, to the formula

µ λ (A) = n≥1 n-1 k=0 µ λ (F -k λ (A) ∩ B λ,n ∩ B r ).
We are interested in the sets C l for which we get

µ λ (C l ) = n≥1 n-1 k=0 µ λ (F -k λ (C l ) ∩ B λ,n ∩ B r ). Note now that the set F -k λ (C l ) ∩ B λ,n ∩ B r is empty unless n > l + 1 and k = n -l -1. In this case we have F -(n-l) λ (C l )∩ B λ,n ∩ B r = F -1 λ (C n-2 )∩ B r . We thus conclude that µ λ (C l ) = n≥l µ λ (F -1 λ (C n ) ∩ B r )•
In Corollary 3.10, that we admit for the moment, we show that there exists K 1 > 0, independent of λ, such that for any A ⊂ B(0, r) we have 1

K 1 m λ (A) ≤ µ λ (F -1 λ (A) ∩ B r ) ≤ K 1 m λ (A)• So, 1 K 1 n≥l m λ (C n ) ≤ µ λ (C l ) ≤ K 1 n≥l m λ (C n ).
From Proposition 3.6 we deduce that there exists

K 2 > 0 such that 1 K 2 n≥l n≥l a n (2d(λ)) ≤ µ λ (C l ) ≤ K 2 n≥l a n (2d(λ)).
With the notations used in the appendix this is exactly 1

K 2 S l,+∞ (2d(λ)) ≤ µ λ (C l ) ≤ K 2 S l,+∞ (2d(λ))•
We then use Corollary 5.10 to finish the proof.

Lemma 3.9. There exists K > 0 such that for all λ = 1 + ε, with ε > 0 small enough, all r > 0 small enough, and all M > 0 big enough we have,

1 K ≤ ρ λ ≤ K on B r,M , and ρ λ ≤ K on B r •
From this Lemma and Lemma 3.7 we easily conclude this.

Corollary 3.10. There exists K > 0 such that for all λ = 1 + ε, with ε > 0 small enough, all r > 0 small enough, and for any measurable set A ⊂ B(0, r) we have

1 K m λ (A) ≤ µ λ (F -1 λ (A) ∩ B r ) ≤ Km λ (A)• Proof.
Let r > 0 and ε > 0 be small enough so that the assertions of Lemmas 3.7 and 3.9 hold. Let K > 0 coming from Lemma 3.9 be larger than max{β, α -1 }, both α and β coming from Lemma 3.7. By Lemma 3.7 we know that for any A ⊂ B(0, r) we have

1 K m λ (F -1 λ (A) ∩ B r ) ≤ m λ (A) ≤ Km λ (F -1 λ (A) ∩ B r )
• From the right hand side inequality in Lemma 3.9 we know that

µ λ (F -1 λ (A) ∩ B r ) ≤ Km λ (F -1 λ (A) ∩ B r )• These two inequalities give us µ λ (F -1 λ (A) ∩ B r ) ≤ K 2 m λ (A)•
For the other inequality we first note that Lemma 3.7 also asserts that

1 K m λ (F -1 λ (A) ∩ B r,M ) ≤ m λ (F -1 λ (A) ∩ B r ) ≤ Km λ (F -1 λ (A) ∩ B r,M )• Since Lemma 3.9 implies that 1 K m λ (F -1 λ (A) ∩ B r,M ) ≤ µ λ (F -1 λ (A) ∩ B r,M ) ≤ Km λ (F -1 λ (A) ∩ B r,M ),
we conclude that

m λ (A) ≤ Km λ (F -1 λ (A)∩B r ) ≤ K 2 m λ (F -1 λ (A)∩B r,M ) ≤ K 3 µ λ (F -1 λ (A)∩B r,M )• We easily deduce that m λ (A) ≤ K 3 µ λ (F -1 λ (A) ∩ B r )
• This is the left hand side inequality of the Corollary and its proof is finished.

Proof. Before starting the proof of Lemma 3.9 we sketch the strategy. We first use a result of Urbański and Zdunik, Lemma 3.4 in [Ur,Zd 1 ], that asserts that as long as we stay far away from the post-singular set, iterates of L λ are uniformly bounded from above by a constant that does not depend on λ. This gives us that ρ λ is bounded from above in some B r . And this allows us to prove that for r and ε small enough, and for M big enough we have

1 2 ≤ µ λ (B r,M ) ≤ 1.
In order to control ρ λ on B r,M we use Koebe's distortion Theorem on B r,M and prove that the measures m λ have the bounded distortion property on B r,M , with a constant which only depends on r and M . This implies, see [Ma] (compare [Ha] Propositions 1.2.7 and 1.2.8), that there exists an F λ -invariant measure ν λ which gives mass 1 to B r,M and which is equivalent with m λ . Its Radon-Nikodym derivative is such that 1 K ≤ dν λ dm λ ≤ K on B r,M , with some K > 0 independent of λ. Since m λ is ergodic and conservative, there is, up to a multiplicative constant, only one possible invariant measure equivalent to it. This means that µ λ = α λ ν λ . Integrating on B r,M we conclude that α λ = µ λ (B r,M ). This leads to 1 2K ≤ ρ λ ≤ K. We now go into further details. Note that the singular set of F λ is the one point -λ which sequence of iterates converges towards 0 from the left. In particular B r,M is a simply connected domain on which inverse branches of F λ are well defined. Since J λ is a subset of {-π 2 ≤ Im z ≤ π 2 } one may find an open simply connected domain U r,M such that : U r,M ⊂ B r 2 ,2M and J λ ∩ B r,M ⊂ U r,M . We have thus an annulus B r 2 ,2M \ U r,M and an associate Koebe constant K r,M . We conclude that for any λ and any n ∈ N we have

(3.11) ∀x ∈ U r,M ∀y ∈ U r,M 1 K r,M ≤ L n λ (1)(x) L n λ (1)(y) ≤ K r,M • Since for a measurable set A we have m λ (F -n λ (A)) = A L n λ (1)dm λ , we conclude, if A ⊂ U r,M , that 1 K r,M m λ (A) m λ (U r,M ) ≤ m λ (F -n λ (A)) m λ (F -n λ (U r,M )) ≤ K r,M m λ (A) m λ (U r,M ) •
This is precisely the bounded distortion property for m λ on U r,M as it is used in [Ha]. Since (J λ , F λ , m λ ) is ergodic and conservative there is, up to a multiplicative constant, only one invariant measure equivalent with m λ . Let ν λ be the one that gives mass 1 to B r,M . It follows from Propositions 1.2.7 and 1.2.8 in [Ha] that

m λ -almost surely on B r,M 1 K r,M ≤ dν λ dm λ ≤ K r,M •
The measures µ λ and ν λ only differ by a multiplicative constant which can be computed by integrating the function 1 over B r,M . We deduce that µ λ = µ λ (B r,M )ν λ and we conclude that

(3.12) m λ -almost surely on B r,M µ λ (B r,M ) K r,M ≤ ρ λ ≤ K r,M µ λ (B r,M ).
Using inequalities (3.11) one may now adapt the reasoning of Lemma 3.4 in [Ur,Zd 1 ] to our situation. Let M be large enough and r small enough so that : log M -1 We prove by induction that H n is true for all n with

H n ⇔ ||L n λ (1)χ Br || ∞ ≤ K r,M m λ (B r,M ) •
Notice that H 0 is obvious and assume that H n is true. Since

L λ (1)(z) ≤ k≥Re z 2 k d(λ) ,
and since d(λ) is converging towards d(λ 0 ), one deduces that L λ (1)(z) is, uniformly in λ, converging towards 0 as Re z → ∞. We deduce that ||L λ (1)χ Br || ∞ is achieved for some z 1 ∈ B r . An easy induction leads, for all integers n ≥ 0, to the existence of some z n ∈ B r such that

||L n λ (1)χ Br || ∞ = L n λ (1)(z n )• Consider z n+1
and assume that it lies in B r,M . Then we have

1 = L n+1 λ (1)dm λ ≥ L n+1 λ (1)χ B r,M dm λ ≥ L n+1 λ (1)(z n+1 ) K r,M m λ (B r,M )•
The last inequality is an application of (3.11) and we conclude that H n+1 is true. But z n+1 might be with a real part greater than M . In this case we have

L n+1 λ (1)(z n+1 ) = L λ (L n λ (1))(z n+1 ) ≤ L n λ (1)(z n )L λ (1)(z n+1 ) ≤ L n λ (z n )
• Those inequalities are implied by our assumptions on M and r that ensure us first, that any pre-image of z n+1 is in B r , and second, that L λ (1)(z n+1 ) ≤ 1. We may now apply our inductive assumption to conclude that H n+1 is true so that this hypothesis is true for any integer n. Let α r,M,λ 0 be defined as the infimum of the set (m λ (B r,M )) where λ ∈ [1, λ 0 ]. Since λ → m λ (B r,M is continuous on [1, λ 0 ], this infimum is achieved and is strictly greater than 0. Fix r small and choose M (r) such that all assumptions are fulfilled and set C r,λ 0 = K r,M (r) α r,M (r),λ 0 . We deduce from our analysis that lim n→∞ L n λ (1) = ρ λ ≤ C r,λ 0 on B r . We have thus proved the left hand side inequality of Lemma 3.9. In order to finish the proof of this Lemma we need to prove that 1 K ≤ ρ λ ≤ K on B r,M . By (3.12) this will be done if one can prove that µ λ (B r,M ) ≥ 1 2 for suitable r and M . Since we know that ρ λ ≤ C r,λ 0 on B r , we may already use the left-hand side inequalities of Proposition 3.8. In particular for any n we have

µ λ (C n ) ≤ C r,λ 0 n 2δ-1
with 1 < δ = inf{d(λ)}, well defined by continuity.

Let now N be big enough so that

n≥N 1 n 2δ-1 ≤ 1 4C r,λ 0 •
Chose r ′ small enough so that for any λ ∈ [1, λ 0 ] we have

B(0, r ′ ) ⊂ ∪ n≥N C n (λ)•
Such a choice is possible because of Proposition 5.7. We then easily conclude that µ λ (B(0, r ′ )) ≤ 1 4 . As a consequence, one may assume, without loss of generality, that we have started our analysis with r > 0 small enough so that µ λ (B(0, r)) ≤ 1 4 . By Lemma 4.1 in [Ur,Zd 2 ], we know that the sequence of measures (m λ ) is tight. In particular, if M is chosen large enough, then for any

λ ∈ [1, λ 0 ] we have m λ (P c M ) ≤ 1 4C r,λ 0
. From where we deduce that µ λ (P

c M ) ≤ 1 4 . Note now that µ λ (B r,M ) = 1 -µ λ (B(0, r)) -µ λ (P c M ) ≥ 1 2 .
As already mentioned this inequality finishes the proof of the Lemma.

Controlling the integrals

In this section we mainly reproduce the reasoning of [Ha,Zi 1 ]. Nevertheless there are some differences we would like to emphasize : the main being that we do not know whether the dimension of J(F 1 ) is less than 3 2 or not. Note also that the Markov partition used in [Ha,Zi 1 ] is replaced in the present article by the backward images of the fundamental domain C 0 . Finally, note that we work directly on J λ without conjugating the dynamics.

Before we start the proofs and in order to simplify some expressions and calculations, we introduce the following notation. Let

Ψ n = n k=1 1 (F k λ ) ′ , Φ n = n k=1 1 |(F k λ ) ′ | , Ψ = ∞ k=1 1 (F k λ ) ′ , and Φ = +∞ k=1 1 |(F k λ ) ′ | so that formula (2.1) may be written d ′ (λ) = - d(λ) χ µ λ 1 - 1 λ J λ Re (Ψ) dµ λ •
We will need the following equation which is an easy computation (4.1)

Ψ = 1 (F n λ ) ′ Ψ • F n λ + Ψ n , Φ = 1 |(F n λ ) ′ | Φ • F n λ + Φ n • 4.1. Lyapunov exponents.
In this paragraph we prove that the Lyapunov exponents do not play any role in our estimates of the derivative. In order to do this we only need to check that they are uniformly bounded above and separated away from zero. More precisely we prove the following.

Proposition 4.1. There exist r 0 > 0, λ 0 > 1 and K > 1 such that ∀λ ∈ (λ, λ 0 ) we have

1 K ≤ χ µ λ := J λ log |F ′ λ |dµ λ ≤ K• Proof. First note that ∀λ ≥ 1 and ∀z ∈ J λ we have |F ′ λ (z)| ≥ 1.
In particular we have

C 0 log |F ′ λ |dµ λ ≤ χ µ λ •
There is K 1 > 0 such that Re z ≥ K 1 for any z ∈ C 0 (λ) and any λ ∈ (1, λ 0 ), and by Proposition 5.5 there is

K 2 such that µ λ (C 0 ) ≥ K 2 . Since log |F ′ λ (z)| = log λ + Re z we deduce that 0 < K 1 K 2 ≤ C 0 log |F ′ λ |dµ λ ≤ χ µ λ •
This is the first part of the proof.

For the other part note first that continuity of λ → d(λ) and the fact that d( 1) > 1 imply that there exist α > 1 and β > 0 such that α + β ≤ d(λ) for any λ ∈ (1, λ 0 ). This implies in particular that ∀λ ∈ (1, λ 0 ) and ∀z

∈ J λ 1 |(F λ ) ′ (z)| d(λ) ≤ 1 |(F λ ) ′ (z)| α+β •
Consider now the following partition of the strip P :

(A n ) n∈N , with A n := {z ∈ P | n -1 < Re z ≤ n}. We have χ µ λ = +∞ n=1 An log |F ′ λ |dµ λ ≤ log λ 0 + +∞ n=1 An
Re zdµ λ (z)

≤ log λ 0 + +∞ n=1 nµ λ (A n )•
Lemma 3.9 implies that there exists

K 3 > 0 such that µ λ (A n ) ≤ K 3 m λ (A n ) for n ≥ 2. Note now that m λ (A n ) = J λ χ An dm λ = J λ L λ (χ An )dm λ •
For any z ∈ J λ and any k ∈ Z we let z k be the preimage of z for F λ such that f λ (z k ) = z + 2ikπ. We thus have λ) χ An (z k )• With α and β defined above, this gives that

L λ (χ An )(z) = k∈Z 1 |F ′ λ (z k )| d(
L λ (χ An )(z) ≤ k∈Z 1 |F ′ λ (z k )| α+β χ An (z k )• Since |F ′ λ (z k )| = λe Re z k = |z + λ + 2ikπ|, we have 1 |F ′ λ (z k )| α+β χ An (z k ) ≤ 1 |z + λ + 2ikπ| α λ -β e -β(n-1) , so that L λ (χ An )(z) ≤ λ -β e -βn k∈Z 1 |z + λ + 2ikπ| α • As we have α > 1, there is K 4 > 0, independent of λ and z, such that k∈Z 1 |z + λ + 2ikπ| α < K 4 λ β • This tells us that L λ (χ An )(z) ≤ K 4 e -βn •
Integrating with respect to m λ , and summing over n ≥ 2, we get

χ µ λ ≤ log λ 0 + K 3 m λ (A 1 ) + K 3 K 4 n≥2 e -βn ≤ K 5 , With K 5 := log λ 0 + K 3 + K 3 K 4 e -2β
1-e -β . This is clearly independent of λ and we are done Note that with some more work one can indeed prove that χ µ λ converges towards χ µ 1 as λ converges towards 1 from above. 4.2. Controlling the integral away from 0. Let N be an integer 6 and set

M N = n≥N +1 C n and B N = J λ \ M N . Note that both set M N and B N depends on λ. Proposition 4.2. There exists k(N ) > 0 such that ∀λ ∈ [1, λ 0 ] we have B N Φdµ λ ≤ k(N ).
Proof. Let D 0 = B N and for any n ∈ N let D n = C N +n . Following [Ha,Zi 1 ] let U n be the set of points which arrive or come back to B N after exactly n iterates, which means that

U n = F -1 λ (D n-1 ). Note that U n ∩ M n = D n . Given N 0 ∈ N we set A n = F -N 0 λ (U n ) ∩ B N . Since (U n ) is a partition of J λ , (A n ) is a partition of B N and we have B N Φdµ λ = +∞ k=1 A k Φdµ λ . Using relation 4.1 with n = N 0 + k we get A k Φdµ λ = A k 1 |(F N 0 +k λ ) ′ | Φ • F N 0 +k λ + Φ N 0 +k dµ λ •
Using the fact that F N 0 +k λ (A k ) ⊂ B N , Lemma 3.5 and Lemma 3.4 we deduce that

A k Φdµ λ ≤ κ(N ) (N 0 + k) 2 A k Φ • F N 0 +k λ dµ λ + (N 0 + k)µ λ (A k )
The fact that

F N 0 +k λ (A k ) ⊂ B N also implies that χ A k ≤ χ B N • F N 0 +k λ
, from the invariance of µ λ we thus get

A k Φ • F N 0 +k λ dµ λ ≤ χ B N • F N 0 +k λ Φ • F N 0 +k λ dµ λ ≤ B N Φdµ λ which leads to A k Φdµ λ ≤ κ(N ) (N 0 + k) 2 B N Φdµ λ + (N 0 + k)µ λ (A k ).
In order to estimate µ λ (A k ), we first use Lemma 3.9 to conclude that

µ λ (A k ) ≤ Km λ (A k ) ≤ Km λ (F -N 0 λ (U k )), for some constant K independent of k, N 0 and λ. Since U k = F -1 λ (D k ), we get µ λ (A k ) ≤ Km λ (F -(N 0 +1) λ (D k )). Moreover m λ (F -(N 0 +1) λ (D k )) = χ D k • F N 0 +1 λ dm λ = D k L N 0 +1 λ (1)dm λ , since there exists K 1 (N 0 ) independent of λ and k such that L N 0 +1 λ (1) ≤
6 This integer will be chosen later big enough to ensure that for any zn ∈ Cn we have n≥N arg(zn) ≤ π 6 .

K 1 (N 0 ), using Lemma 3.6 and the fact that D k = C N +k , we get

m λ (F -(N 0 +1) λ (D k ) ≤ K 1 (N 0 )m λ (C N +k ) ≤ K 2 (N + k) 2d(λ) • Using the fact that (N 0 + k) ≤ N 0 (N + k), we thus conclude that A k Φdµ λ ≤ κ(N ) (N 0 + k) 2 B N Φdµ λ + KK 2 N 0 (N + k) 2d(λ)-1 • Summing over k we end up with B N Φdµ λ ≤ κ(N ) N 0 -1 B N Φdµ λ + KK 2 N 0 (N -1) 2d(λ)-2 •
The integer N being fixed, one may now choose N 0 big enough so that

κ(N ) N 0 -1 ≤ f rac12, so that B N Φdµ λ ≤ 2KK 2 N 0 (N -1) 2d(λ)-2
• This last constant depends only on N and we are done. 4.3. Controlling the integral in a neighborhood of 0. In this paragraph we deal with the remaining part of Re (Ψ)dµ λ . If we note

M N = J λ \ B N we prove Proposition 4.3. There exists K > 0 and N ∈ N such that for ∀λ ∈ (1, λ 0 ) 1 K (λ -1) 2d(λ)-3 ≤ M N Re (Ψ)dµ λ ≤ K(λ -1) 2d(λ)-3 , if d(λ) < 3 2 , - 1 K log(λ -1) ≤ M N Re (Ψ)dµ λ ≤ -K log(λ -1), if d(λ) = 3 2 , M N Re (Ψ)dµ λ ≤ K, if d(λ) > 3 2 .
Proof. We split this integral into several pieces. First we note using 4.1 that

M N Re (Ψ)dµ λ = +∞ n=N +1 Cn Re 1 (F n-N λ ) ′ Ψ • F n-N λ dµ λ + Cn Re (Ψ n-N ) dµ λ .
We first deal with the left hand side of the sum that we bound integrating the modulus of the function.

Cn Re 1 (F n-N λ ) ′ Ψ • F n-N λ dµ λ ≤ Cn 1 |(F n-N λ ) ′ | Φ • F n-N λ dµ λ •
We use Lemma 3.5 and the fact that for z ∈ C n , we have

F n-N λ (z) ∈ C N ⊂ B N to conclude that Cn Re 1 (F n-N λ ) ′ Ψ • F n-N λ dµ λ ≤ K (n -N ) 2 B N Φdµ λ • Summing over n ≥ N we get +∞ n=N +1 Cn Re 1 (F n-N λ ) ′ Ψ • F n-N λ dµ λ ≤ K B N Φdµ λ +∞ n=1 1 n 2 •
By Proposition 4.2 we conclude that there exists K(N ) > 0 such that

+∞ n=N Cn Re 1 (F n-N λ ) ′ Ψ • F n-N λ dµ λ ≤ K(N )• (4.2)
We now deal with the right hand side. We have

Cn Re (Ψ n-N )dµ λ = n-N k=1 Cn Re 1 (F k λ ) ′ dµ λ • Choose N big enough so that conclusions of Lemma 3.2 hold. For any z ∈ C n and any k ≤ n -N we have √ 3 2 |F k λ (z)| ≤ Re (F k λ ) ′ (z), so that Cn Re (ψ n-N )dµ λ ∼ n-N k=1 Cn Re 1 |F k λ | ′ dµ λ • Note now that for any z ∈ C n , we have by the Chain Rule that (F k λ ) ′ (z) = (F n λ ) ′ (z) (F n-k λ ) ′ (F k λ (z))
, with F k λ (z) ∈ C n-k . We deduce, using Proposition 3.1, that 1

|(F k λ ) ′ (z)| ∼ a n (2) a n-k (2) •
Estimates of µ λ (C n ) are given by Proposition 3.8 and we conclude that

Cn Re (ψ n-N )dµ λ ∼ a n (2d(λ) -1)a n (2) n-N k=1 a n-k (-2) if n ≤ N ε , 1 ε a n (2d(λ))a n (2) n-N k=1 a n-k (-2) if n ≥ N ε . Since a n (α)a n (β) = a n (α + β)
, and with S k,n (α) = n k a j (α), this can also be written

Cn Re (ψ n-N )dµ λ ∼ a n (2d(λ) + 1)S N,n-1 (-2) if n ≤ N ε , 1 ε a n (2d(λ) + 2)S N,n-1 (-2) if n ≥ N ε . Use now Corollary 5.11 we have S N,n-1 (-2) ∼ (a n (-3) -a N (-3)) if n ≤ N ε and S N,n-1 (-2) ∼ an(-2) ε if n ≥ N ε and we get Cn Re (ψ n-N )dµ λ ∼ a n (2d(λ) + 1)(a n (-3) -a N (-3)) if n ≤ N ε , 1 ε 2 a n (2d(λ) + 2)a n (-2) if n ≥ N ε . Since a n (α)a n (β) = a n (α + β) we get Cn Re (ψ n-N )dµ λ ∼ a n (2d(λ) -2) -a N (-3)a n (2d(λ) + 1) if n ≤ N ε , 1 ε 2 a n (2d(λ)) if n ≥ N ε .
We may thus use Proposition 4.2 and Proposition 4.3 to conclude that d ′ (λ) is converging towards 0 when λ is converging towards 0 from above. In particular there is

λ 2 > 1 such that ∀λ ∈ [1, λ 2 ), - 1 2 ≤ d ′ (λ) ≤ 1 2 • We deduce that - 1 2 (λ -1) ≤ d(λ) -d(1) ≤ 1 2 (λ -1), so that (λ -1) λ-1 (λ -1) 2d(1)-3 ≤ (λ -1) 2d(λ)-3 = (λ -1) 2d(1)-3 (λ -1) 2(d(λ)-d(1)) ≤ (λ -1) -(λ-1) (λ -1) 2d(1)-3 Since λ → (λ -1) λ-1 is continuous on [1, λ 2 ] there exists K 3 > 1 such that 1 K 3 (λ -1) 2d(1)-3 ≤ (λ -1) 2d(λ)-3 ≤ K 3 (λ -1) 2d(1)-3 •
Using again Proposition 4.2 and Proposition 4.3, and the fact we just proved that allows us to replace d(λ) with d( 1), we conclude the proof of the main result in case d(1) < 3 2 . In case d(1) = 3 2 , propositions 4.2 and 4.3 tells us that the maximum in (4.3) is dominated bylog(λ -1). In case d(1) > 3 2 , the same proposition leads to the fact that this maximum is bounded.

Appendices

5.1.

Estimates close to a repelling/parabolic fixed point. In this appendix we show how to get estimates in case of a degeneracy towards a multi-petal parabolic fixed point. It is a two steps proof : first we deal with the real axis then we extend estimates obtained in the real line to the complex plane using Koebe's distortion Theorem.

Consider the following family of germs of holomorphic functions defined in a neighborhood of 0 that we denote by U :

f ε (z) = (1 + ε)z + z p+1 + z p+2 g ε (z)•
Assume that there is an inverse branch f -1 ε well defined on U that leaves a sector S θ := {re iα |θ ≤ α ≤ θ} invariant, for some 0 < θ < π 2 . Let U θ := U ∩S θ . Assume also that ∀z ∈ U we have |zg ε (z)| < 1 2 . Let I = U ∩R + and assume that f -1 ε (I) ⊂ I and that f ε is not decreasing on I. This appendix is organized as follow : in the first two paragraphs we study those germs giving in the second paragraph uniform estimates for |(f -n ε ) ′ |.

5.1.1. The mean value Theorem and its consequences. We start with the following easy fact.

Lemma 5.1. Let f : R → R + be a decreasing map with antiderivative F on R and let (u n ) n∈N be a decreasing sequence of real numbers. Suppose that there exist n > 1 such that for all k ≤ n we have i-

K 1 ≤ (u k -u k+1 )f (u k ), then K 1 k ≤ F (u 0 ) -F (u k )• ii-(u k -u k+1 )f (u k+1 ) ≤ K 2 , then F (u 0 ) -F (u k ) ≤ K 2 k•
Proof. One only needs to check that our assumptions imply

(u k -u k+1 )f (u k ) ≤ u k u k+1 f (t)dt ≤ (u k -u k+1 )f (u k+1 )•
In particular we point out the following two particular cases : Corollary 5.2. Let (x n ) be a decreasing sequence of positive real numbers. Assume that there exist 0 < K 1 < K 2 and n ∈ N such that ∀k ≤ n,

K 1 x p+1 n ≤ (x n -x n+1 ) ≤ K 2 x p+1
n+1 . Then there exist K1 and K2

7 such that for ∀k ≤ n

K1 ≤ k 1 p x k ≤ K2 •
Corollary 5.3. Let (u n ) be a decreasing sequence of real numbers. Assume that there are α > 0, β > 0, p > 0 and n ∈ N such that ∀k ≤ n

(u k -u k+1 ) ≤ α + βe pu k+1 •
Then ∀k ≤ n we have

α 1 p (α + βe pu 0 ) 1 p e -αk ≤ e u k -u 0 •
Let us provide a short argument of how these corollaries can be deduced from the Lemma 5.1.

Proof. For Corollary 5.2 we use the Lemma with the function f : x → x -(p+1) so that one may take F : x → -1 p x -p . We deduce that we have :

K 1 n ≤ 1 p 1 x p n - 1 x p 0 ≤ K 2 n•
Elementary computations then lead to the desired inequalities.

For Corollary 5.3 we now consider the function f : x → (1 + β α e px ) -1 . One first checks that F : x → x -1 p log f (x) is an antiderivative of f . Our assumptions on (u n ) may now be written as

(u k -u k+1 )f (u k ) ≤ α• 7 One can take for instance K2 = (pK1) -1 p and K1 = (pK2 + 1 x p 0 ) -1 p .
Using the Lemma 5.1 we deduce that F (u 0 ) -F (u k ) ≤ αk. This can be written in the form

u 0 -u k + 1 p log α + βe pu k α + βe pu 0 ≤ αk•
Applying exponents to both sides of this last inequality, we deduce that

α + βe pu k α + βe pu 0 1 p e -αk ≤ e u k -u 0 •
From this we get our estimates.

5.1.2. Uniform estimates along the real axis. We now come back to our dynamical setting. Let x 0 ∈ I be a fixed element. Assume for convenience that x 0 < 1. Define for any n ≥ 0, f ε (x n+1 (ε)) = x n (ε), where x 0 (ε) = x 0 .

For each ε > 0 sufficiently small, we define N ε as N ε = sup{n ∈ N | x p n ≥ ε}, and for ε = 0 as N 0 = +∞. Note that for any ε > 0 small enough, the sequence (x n (ε)) is strictly decreasing towards 0. So that N ε is a well defined integer. Our main results in this paragraph is the following.

Proposition 5.4. There exists K > 1 such that for all ε > 0 small enough, (5.1)

K -1 ≤ εN ε ≤ K, ε > 0, (5.2) K -1 ≤ x n n 1 p ≤ K, ∀n < N ε , (5.3) K -1 ≤ x n ε -1 p (1 + ε) n ≤ K, ∀n ≥ N ε .
This result may be interpreted in the following way : N ε is a "parabolic time". During that time, the fixed point 0 acts on the orbit of x 0 , (x n ), as if it was a parabolic fixed point with p petals. For n greater than N ε the orbit of x 0 is close enough to 0 and realize that it is indeed an attracting fixed point for f -1 ε . In the following Lemma we obtain estimates which are true for all n ∈ N and part of proposition 5.4. Lemma 5.5. There exists K > 1 such that for all ε > 0 small enough,

(5.4) K -1 ε 1 p (1 + ε) -n ≤ x n ≤ K 1 n 1 p , ∀n ∈ N•
Proof. All our estimates will result from the following very definition of (x n ).

(5.5)

x n = (1 + ε)x n+1 + x p+1 n+1 (1 + x n+1 g ε (x n+1 )
). Assuming that ε < 1, we easily deduce from this equality that for any n we have

(5.6) 1 ≤ x n x n+1 ≤ (2 + 2x p 0 ) ≤ 4
From 5.5 we deduce that (5.7)

x n -x n+1 x p+1 n = εx n+1 x p+1 n + x n+1 x n p+1 (1 + x n+1 g ε (x n+1 )),
which, with (5.6) leads to

K 1 := 1 4 p+2 ≤ 1 2 x n+1 x n p+1 ≤ x n -x n+1 x p+1 n .
Using now Corollary 5.2 we conclude that ∀n, x n n

1 p ≤ p 1 4 p+2 -1
p ≤ 64. This is precisely the right hand side (5.4).

The left hand side of 5.4 is obtained when one notes that (5.5) also implies that

log x n -log x n+1 = log(1 + ε + x p n+1 + x p+1 n+1 g ε (x n+1 )) ≤ log(1 + ε) + 2x p n+1 .
We may thus apply Corollary 5.3 with the sequence u n := log x n , α = log(1 + ε), and β = 2, and deduce that

α 1 p (α + βe pu 0 ) 1 p e -αn ≤ e un-u 0 • Assuming that ε is small enough so that ε 3 ≤ α = log(1 + ε) ≤ e pu 0 we get 1 9 ε 1 p (1 + ε) -n ≤ e un = x n .
This ends the proof of lemma 5.5.

We are now in position to give a proof of Proposition 5.4, but first note that the right hand side of (5.2) and the left hand side of (5.3) are given by Lemma 5.5.

Proof. In order to get estimate (5.2), we check that the assumptions on g ε , the definition of N ε and relation (5.7) leads for all n < N ε to

x

n -x n+1 x p+1 n+1 ≤ 5 2 •
Corollary 5.2 then tells us that ∀n < N ε we have

K1 ≤ x n n 1 p , with, for instance, K1 = ( 5p 2 + 1 x p 0 ) - 1 
p . We are now in position to give estimates for N ε . They easily come out from the following inequalities we have already proved: (5.8) K1

K 2p 0 1 N 1 p ε ≤ K1 K 2p 0 1 (N ε -1) 1 p ≤ x Nε-1 K 2p 0 ≤ x Nε K 0 ≤ x Nε+1 ≤ ε 1 p ≤ x Nε ≤ 2 N ε •
From there we deduce that (5.9) K3 ≤ ε

1 p N ε ≤ 2, with K3 = K1 K 2p 0 .
Now we only need to take care of (5.3). We start by noticing that for all n we have (1+ε)x n+1 ≤ x n . For any n ≥ N ε we thus have (1+ε) n-Nε x n ≤ x Nε . This leads to (5.10)

x n ≤ (1 + ε) -n x Nε (1 + ε) Nε .
By definition of N ε and relation (5.6) we have

x Nε K 0 x Nε+1 ≤ K 0 ε 1 p •
By relation (5.9) we also have

(1 + ε) Nε ≤ (1 + 2 p N ε ) Nε ≤ e 2 p •
From this and (5.10) we deduce that

x n ≤ K 0 e 2 p ε 1 p (1 + ε) -n • (5.11) Taking K = K 2p 0 e 2 p
finishes the proof of the Proposition.

Let now α(p) := p+1 p . The following corollary is useful Corollary 5.6. There exists K > 1 such that for all ε > 0 small enough we have

i-K -1 ≤ (x n -x n+1 )n α(p) ≤ K ∀n ≤ N ε ii-K -1 ≤ (x n -x n+1 )ε -α(p) (1 + ε) (p+1)n ≤ K ∀n > N ε
Proof. From relation (5.5) we deduce that ∀n ∈ N,

x nx n+1 = εx n+1 + x p+1 n+1 (1 + x n+1 g ε (x n+1 )), (5.12) so that εx n+1 ≤ x nx n+1 , and Lemma 5.5 tells us that the left hand side inequality of ii-is true. Moreover, for n ≤ N ε we have ε ≤ x p n+1 , and (5.12) leads to x nx n+1 ≤ 3x p+1 n+1 . With Lemma 5.5, we get the right-hand side inequality of i-.

Let n < N ε . Then, from (5.2) and (5.6), we deduce that

1 2KK p+1 0 1 n α(p) ≤ x p+1 n K p+1 0 ≤ x p+1 n+1 ≤ (x n -x n+1 )•
This is the left-hand side inequality of i-.

In order to finish fix n ≥ N ε . Then, by relation (5.5) and Proposition 5.4, we get that

x nx n+1 ≤ 3x p+1 n+1 ≤ 3K p+1 ε α(p) (1 + ε) -(p+1)n • The proof of the Corollary is now complete. 5.1.3. Extension to the complex plane. As already mentioned, this extension is done via Koebe's distortion Theorem. It asserts that given two simply connected domains in C, V ⊂ V ′ , such that the boundary of V is at a positive distance from the boundary of V ′ , there exists a constant K > 0, which depends only on the modulus of the annulus V ′ \ V , and such that for any univalent function f defined in V ′ we have for all x, y ∈ V we have,

1 K ≤ |f ′ (x)| |f ′ (y)| ≤ K•
Proposition 5.7. Let V be a domain such that V ⊂ U θ . Then there exists K > 0 such that ∀ε small enough, ∀n ∈ N and ∀z ∈ V we have i-

1 K ≤ n α(p) |(f -n ε ) ′ (z)| ≤ K if n < N ε . ii-1 K (1 + ε) -(p+1)n ≤ |(f -n ε ) ′ (z)| ≤ Kε α(p) (1 + ε) -(p+1)n if n ≥ N ε .
Proof. Enlarging V if necessary one may assume that there is x 0 ∈ V ∩ R + ∩ U θ such that for all ε small enough x 1 (ε) := f -1 ε (x 0 ) is also in V . Koebe's distortion Theorem implies that for all n, all ε and all z ∈ V we have

1 K (x n (ε) -x n+1 (ε)) x 0 -x 1 (ε) ≤ |(f -n ε ) ′ (z)| ≤ K (x n (ε) -x n+1 (ε)) x 0 -x 1 (ε) •
Applying Corollary 5.6, and noticing that x 0x 1 (ε) > a > 0 with some real a independent of ε, lead to the desired inequalities.

The following result gives uniform estimates on how closely the orbits are tangent to the real axis. 

5.2.

Estimates of some partial sums. In this appendix we single out the behaviour of the partial sums we need to evaluate at several steps in the proof of our main result. It seemed to us that postponing those estimates to an appendix will clarify the exposition. We are thus in this paragraph dealing with a sequence of real numbers defined by : a n = 1/n for n ≤ N ε and a n = ε(1 + ε) -n for n > N ε , where N ε is comparable with 1/ε. We are indeed interested in the sequences (a n (α)) n∈N , with α ∈ R and a n (α) = a α n , and partial sums S k,n (α) = n j=k a j (α). The first Lemma, whose proof is straightforward and left to the reader asserts, the following. Lemma 5.9. For any k < n in N we have S k,n (α) ∼ Proof. Since α > 0, we see that the sequence (1 + ε) -αn converges to 0, and Lemma 5.9 implies that i-is true. Note that we have max(S n,Nε (α), S Nε,+∞ (α)) ≤ S n,+∞ ≤ 2 max(S n,Nε (α), S Nε,+∞ (α)).

Using i-that we have just proved, the fact that we have a Nε ∼ a Nε+1 , and the fact that N ε ∼ ε -1 , we conclude that

S Nε,+∞ ∼ a Nε ε ∼ ε α-1 ∼ N 1-α ε •
Let us now estimate S n,Nε by considering three cases. We start with the case when α = 1. Indeed, Lemma 5.9 implies that S n,Nε ∼ log( Nε n ). This gives us iii-.

Assume now that α > 1. Then S Nε,+∞ ∼ N 1-α ε ≤ n 1-α = a n (α -1). Moreover, in virtue of Lemma 5.9, we have S n,Nε ∼ n 1-α -N 1-α ε . Thus S n,Nε ∼ a n (α -1) 1 -n N ε α-1

•

In particular S n,Nε a n (α -1). So, we can conclude that S n,+∞ (α) a n (α -1). If n Nε ≤ 1 2 , we have (1 -n Nε ) α-1 ≥ (1 -1 2 ) α-1 . And we also have S n,+∞ (α) a n (α -1); so, we are done. On the other hand, if n Nε ≥ 1 2 , then S n,+∞ (α) ≥ S Nε,+∞ (α) ∼ N 1-α ε ∼ n 1-α = a n (α -1)• This ends the proof of ii-.

Assume finally that 0 < α < 1. Then Lemma 5.9 tells us that

S n,Nε (α) ∼ (N 1-α ε -n 1-α ) ≤ N 1-α ε ∼ S Nε,∞ .
We thus conclude that max(S n,Nε (α), S Nε,+∞ (α)) ∼ S Nε,+∞ . This proves iv-and ends the proof of the Corollary.

We can also prove the following result with the same kind of arguments. So we omit them.

2 ≥

 2 r and for all λ ∈ [1, λ 0 ] if Re z > M then L λ (1)(z) ≤ 1. The purpose of the first requirement is the following (3.13) ∀z ∈ P (Re z > M and F λ (y) = z) ⇒ |y| > r (i.e. y ∈ B r )•

  Corollary 5.8. There exists K > 0 such that ∀ε small enough, ∀n ∈ N and ∀z 0 ∈ V , we have|Im (f -n ε (z 0 ))| ≤ K 1 n α(p) • In particular, the series ∞ n=0 Im (f -n ε (z 0 )) converges. Proof. Note that |Im (z n )| = |Im (z nx n )| ≤ |z nx n |. Koebe's distortion theorem leads to |z n -x n | ≤ K 1 |(f n ε ) ′(zn)| and Proposition 5.7 gives the result.

1 1 -

 1 α (n 1-αk 1-α ) if n ≤ N ε and α = 1 log n k if n ≤ N ε and α = 1 S k,n (α) ∼ 1 αε (a k (α)a n (α)), if k > N ε and α = 0.As its consequence, we get the following.Corollary 5.10.If α > 0 then i-S n,+∞ (α) ∼ an(α) ε if n > N ε , ii-S n,+∞ (α) ∼ a n (α -1) if n ≤ N ε and α > 1, iii-S n,+∞ (α) ∼ log Nε n + K if n ≤ N ε , α = 1, for some K > 0. iv-S n,+∞ (α) ∼ N 1-α ε if n ≤ N ε and α < 1,
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This result is known as Bowen's formula.

We denote here P0 the pressure with respect to the dynamical system (J λ 0 , F λ 0 ).

In our study we have Nε ∼1 ε = 1 λ-1 •

We end this section about conformal measures with a technical Lemma. It will be used in the next section concerning invariant measures.

Before stating and proving this result we recall that P = {z ∈ C |pi < Im z ≤ pi}, and for any M > 0, and any r > 0, we introduce the following notation : P M := {z ∈ P | Re z ≤ M }, B r := P \ B(0, r) and B r,M := P M ∩ B r .

Summing over n ≥ N this gives us n≥N Cn Re (ψ n-N )dµ λ is comparable with max (S N,Nε (2d(λ) -2)a N (-3)S N,Nε (2d(λ) + 1)), 1 ε 2 S Nε,+∞ (2d(λ))

We then deduce from Corollary 5.10 and Corollary 5.11 that S N,Nε (2d(λ) + 1) ∼ a N (2d(λ)) ∼ 1, and also that S Nε,+∞ (2d(λ))

. Summarizing all those estimates we get

Proof of the main result. We are now in position to prove the main result of this paper that we recall here.

Theorem 4.4. There exists λ 0 > 1, and K > 1 such that

Proof. Let us recall that we have

where it is proved that λ → d(λ) is continuous on [1, +∞) , and Proposition 4.1 to conclude that there exists λ 1 > 1 and

Note that given any integer N we have

Corollary 5.11. Let N be a fixed integer such that 2N < N ε ∼ 1

ε . Then we have the following estimates of S N,n (α) for N ≤ n:

for n ≥ N ε