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Abstract – The dam break problem shallow approximation for laminar flows of viscoplastic non-
Newtonian fluids is revisited numerically with a time and space second order adaptive method. The-
oretical solutions are compared both with some available measurements from the literature and with
new ones on silicon. Asymptotic behaviors are studied, both numerically and as obtained from some
autosimilar solutions: these theoretical results are compared with experiments. These comparisons con-
firm the validity of the shallow approximation equations for the horizontal dam break problem.
Keywords – viscoplastic fluid; dam break problem; shallow flows.

1. Introduction

The dam break problem in a horizontal channel is a classical problem in fluid mechanics and is motivated
by numerous applications in environment and industrial processes. For a Newtonian fluid, this problem was
motivated by hydraulic engineering applications In 1887, Barré de Saint-Venant [7] introduced the shallow
water approximation for fast Newtonian flows, driven by inertia terms while viscous effects are neglected.
More recent studies investigated slower flows [15] and the effect of viscous terms [11]. But only the more
complex non-Newtonian case can approach both for the manufacturing processes (concretes, foods) and
for environmental applications, such as mud flows [9,16], volcanic lava [12], dense snow avalanches [2]
and submarine landslides [13]. A shallow approximation of the dam break problem for a non-Newtonian
viscoplastic fluid was first studied in 1990 by Lui and Mei [17] and revisited in 1999 by Balmforth and
Craster [4]. See [6,3] for recent reviews on this subject.

Despite these numerous applications, and the development of theoretical results, few experimental mea-
surements are available for the classical case of the horizontal dam break problem: the Newtonian case
has been investigated with glucose in [20] while the non-Newtonian one is developed in [5] with a power-
law and viscoplastic fluids. The purpose of this paper is to bring some new measurements in the non-
Newtonian power-law case and demonstrates a new efficient numerical method for the resolution of the
shallow approximation of the problem.
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Section 2 presents the dam break problem statement and section 3 the reduced problem obtained after
the asymptotic analysis under the shallow flow approximation. Section 4 presents the numerical results
and finally, section 5 develops the experimental measurements and the comparison between theory and
experiments for the presents results and previous measurements available in the literature. Appendix A
develops details of the numerical resolution of this nonlinear problem.

2. Problem statement

0 xf(t)−L x

hb(t)
H

h0(t)

Γw(t)

y

Γf(t) : y = h(t, x)

Figure 1. Schematic view of the dam break problem.

The classical bidimensional dam break problem for a power-law quasi-Newtonian fluid model is considered
for leads to the following problem:
find the velocity field u and the pressure field p, defined for all time t > 0 and in the time-dependent
domain Ω(t), such that:

ρ

(

∂u

∂t
+ u.∇u

)

− div
(

2κ |D(u)|n−1
D(u)

)

+ ∇p = ρg in ]0, +∞[×Ω(t), (1)

div u = 0 in ]0, +∞[×Ω(t), (2)

u(t=0) = 0 in Ω(0), (3)

u = 0 on ]0, +∞[×Γw(t), (4)

σ.n = 0 on ]0, +∞[×Γf(t), (5)

where ρ is the constant density, κ the constant consistency, n > 0 the power-law index and g the gravity
force vector. When n = 1, the fluid is Newtonian, with the classical Navier-Stokes equations. The shear
thinning behavior is associated with 0 < n < 1 and the shear thickening behavior to n > 1. The notation
|D(u)| denotes the second invariant of the rate of deformation tensor D(u) = (∇u + ∇u)/2. Here, (1)
and (2) are respectively the momentum and mass conservation equations for an isochoric fluid. These
equations are completed with the appropriate initial and boundary conditions: an initial condition for
the velocity (3), adhesion at the wall of the reservoir (4), and equilibrium at the free surface (5), where

surface tension is neglected. Here, σ = −p.I + 2κ |D(u)|n−1
D(u) is the total stress tensor. The pressure

outside the free surface is supposed to be constant (i.e. the atmospheric pressure). Since the pressure is
defined here up to a constant, we can define by convention the atmospheric pressure as zero. The fluid
domain and the free surface are respectively defined for all time t ≥ 0 by
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Ω(t) = {(x, y) ∈ ] − L, +∞[×]0, H [; φ(t, x, y) < 0},
Γf(t) = {(x, y) ∈ ] − L, +∞[×]0, H [; φ(t, x, y) = 0},

where φ(t, x, y) = y−h(t, x) is the indicator function the flow domain and h(t, x) is the flow height at time
t and position x (see Fig. 1). The wall part of the flow domain boundary is simply Γf(t) = ∂Ω(t) − Γf(t).

The flow domain is transported by the velocity:
∂φ

∂t
+ u.∇φ = 0 that writes equivalently as:

∂h

∂t
(t, x) + ux(t, x, h(t, x))

∂h

∂x
(t, x) = uy(t, x, h(t, x)), ∀(t, x) ∈]0, +∞[×]0; +∞[, (6)

where u = (ux, uy). This equation is completed with the initial condition

h(t=0, x) =







H when − L < x < 0,

0 when x > 0.
(7)

3. The reduced problem

In the context of Bingham [8] fluids, Liu and Mei [17] proposed an asymptotic analysis for slow flows and
small ratio H/L. Revisited in [4], this analysis has also been extended to an Herschel-Bulkley [14] fluid
or a fluid with a power-law index n (see also [5]).

For a fluid with a power-law index, the height h(t, x) is the single remaining unknown of the reduced
problem:
(P ): find h, defined in ]0, +∞[×]− L, +∞[, such that

∂h

∂t
−
(ρg

K

)
1
n ∂

∂x

(

qn

(

h,
∂h

∂x

))

= 0 in ]0, +∞[×]− L, +∞[ (8)

∂h

∂x
(t,−L) =

∂h

∂x
(t, +∞) = 0, ∀t ∈]0, +∞[ (9)

h(0, x) =







H when x < 0

0 otherwise
(10)

where, for all ξ ≥ 0 and ζ ∈ R:

qn(ξ, ζ) =







0, when ζ = 0,
n

2n + 1
ξ2+ 1

n |ζ| 1
n sgn(ζ), otherwise

We introduce the dimensionless quantities:

ĥ =
h

H
, x̂ =

x

L
, t̂ =

t

T

where

T =
L

H

(

KL

ρgH2

)
1
n
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Then, the dimensionless reduced problem writes:
(P̂ ): find ĥ, defined in ]0, +∞[×]− 1, +∞[, such that

∂ĥ

∂t̂
− ∂

∂x̂

(

qn

(

ĥ,
∂ĥ

∂x̂

))

= 0 in ]0, +∞[×]− 1, +∞[ (11)

∂ĥ

∂x̂
(t̂,−1) =

∂ĥ

∂x̂
(t̂, +∞) = 0, ∀t̂ ∈]0, +∞[ (12)

ĥ(0, x̂) =







1 when x̂ < 0

0 otherwise
(13)

This is a parabolic nonlinear problem, with only n as a parameter. Notice that this problem does not
reduces to the usual shallow water model introduced by Barré de Saint-Venant [7] for turbulent flows:
here, the viscous term is not neglected while the inertia one is eliminated during the asymptotic analysis.

4. Numerical results and comments

Here are the numerical results when n = 1 i.e. for a Newtonian fluid.

4.1. Position of the free surface

(a)
h(t, x)

H

x

L
0.50-0.5-1

1

0.684

0.5

0

(b)
h(t, x)

H

x

L
3210-1

1

0.5

0

Figure 2. Evolution of the free surface for n = 1: (a) for small times (t/T = 0, 0.24, 0.48, . . . , 2.4, from left to right); (b)
for medium times (t/T = 2.4, 12, 24, . . . , 120, from left to right).

For short times, front position and upstream level move rapidly, but at the dam position (x = 0) the
fluid height remains constant h(t, x=0) ≈ 0.684 H (Fig. 2.a). For larger times, when t > T , the fluid
height starts to decrease significantly at the dam position (Fig. 2.b), while the front position and the free
surface in the reservoir move slower and the level of the free surface in the reservoir is lower and lower.
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Figure 3. Evolution of the free surface when n = 1: (a) for large times (t/T = 1.2, 1.2× 101, 1.2 × 102, . . . , 1.2× 107, from
left to right); (b) flow height h(t, 0) at the dam.

This behavior is associated with the beginning of a second flow regime. For long times (see Fig. 3.a)
the envelope of free surfaces follows a L/(L + x) law while the front position and the flow height in the
reservoir show a power-law character. Before going further in the analysis of long-time behavior, let us
study the more classical one h(t, 0) for small times.

The initial condition h(t = 0, x) is not continuous in x = 0 : the left value is 1 while the right value is
zero. Therefore, the exact solution h is not regular for short times too. Thus, the convergence becomes
difficult in the vicinity of t = 0. Fig. 3.b shows the convergence study for ∆t̂ = 10−3, 10−4 and 10−5 while
∆x̂ = 10−4. The plot, in logarithmic scale, shows that the fluid height at the dam position tends to remain
constant for any arbitrary short time, while the corresponding height is not defined for (t, x) = (0, 0).
This result suggests that convergence of h(t, x=0) also occurs when t becomes small, though in a weaker
sense than the usual continuous one. In practice, and for all computations in this paper, both the time
steps ∆t̂ and element sizes ∆x̂ are automatically adapted, as shown in appendix A. Remark also that
h(t, x=0) presents a decreasing power-law behavior for long times. Fig. 3.b shows the long-time behavior.
The time approximation uses a geometrical progression tm+1 = α tm where α = 100.01 in order to match
efficiently both short and long-time asymptotic behaviors. This approximation uses 100 time steps per
decade. For long times h(t, x=0) behaves as t−1/5.

4.2. The front position

Fig. 4.a shows the front position for various values of n. Observe the overall change in slope in the
logarithmic scale plot. For short times, xf (t) behaves as

√
t while for long times it behaves as t1/5. The
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Figure 4. (a) Front position xf (t) for various n; (b) Flow height h(t,−L) in the reservoir when n = 1.

problem admits two similarity solutions associated to the short- and long-time behaviors [15,20,5]. This
analysis suggests the following scaling law:

xf (t)

L
≈































0.284

(

t

T

)1/2

if t < 2.5 T

1.133

(

t

T
+ 1.221

)1/5

− 1 otherwise

(14)

The scaling law is not plotted here since there is no further perceptible difference on a graphical rep-
resentation. More precisely, the relative error is less than 5% and the maximum is always reached in
the transition regime while the relative error outside the transition regime is less than 1%. Since the
purpose of the scaling law is to obtain an easy-to-use formula, (14) will be of great interest for practical
applications as no more numerical computations will be required to predict the front position.

The general extension to any n > 0 writes:

xf (t)

L
≈



























an

(

t

T ∗

)
n

1+n

, when
t

T ∗
< α

bn

(

t

T ∗
+ cn

)
n

3+2n

− 1, otherwise

where
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an =
1

3
+ 0.944

(

n

1 + 0.548 n

)0.85

, bn =

{

2(1 + n)n+4

2 + n

(

3 + 2n

n

)n

β

(

1

1 + n
,

3 + n

2 + n

)−2−n
}

1
3+2n

,

cn = α −
(

1 + anα
n

1+n

bn

)
3+2n

n

, T ∗ =
1 + 2n

n
(2 + 2n)

1
n T.

Constant bn is provided by explicit formula associated to long times flow regime, while an is obtained
numerically. Here β(., .) denotes the beta function. The continuity between the two flow regimes is enforced
at some dimensionless transition time t/T∗ = α by choosing an appropriate cn, where, α = 2.5 was used
for practical comparisons with direct numerical computations.

4.3. Flow height in the reservoir

Fig. 4.b presents the computation of reservoir height h(t, x=−1) at position x = −1 when n = 1. For short
times, the height at the dam position and the end of the reservoir remain constants (i.e. h(t, 0)/H = 0.684
and h(t,−L) = 1) while the surface shape rearranges. For long times, h(t,−L) exhibits a power law t−0.2

behavior that matches those of h(t, 0). As a result, for long times, the flow height in the reservoir becomes
roughly constant versus x and decreases versus time as:

h(t, x)

H
≈ 0.535

(

t

T

)−1/5

, −L ≤ x ≤ 0 and t/T∗ ≫ 2.5

A similar behavior is observed for different values of n.

4.4. Maximum flow height

For an observer located at x > 0, the maximum height denoted by hmax(x) is reached at time t = t∗max(x)
(see Figs. 5). Observe that hmax(x) ≈ 0.684 H for small x, as expected, while hmax(x) decreases in 1/x
for large x, as suggested by the envelope of free surfaces on Fig. 3. This suggests the following scaling
law:

hmax(x)

H
≈ 0.684

L

L + x
(15)

where the coefficients are furnished by a non-linear least-square fitting.

The time when the maximum flow height is reached behaves as x5 for large x and x1/5 for small x. This
suggests:

tmax(x) ≈ 2
( x

L

)1/5

+ 2.1

{

(

L + x

L

)5

− 1

}

(16)

5. Comparisons with experiments

Some experiments where performed with silicon: the first paragraph presents rheometry while the exper-
imental setup is detailed in the second paragraph. This section ends with the comparison between theory
and both experiments for silicon and previous measurements available in the literature for other various
materials.
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Figure 5. When n = 1: (a) maximum flow height hmax(x); (b) time of maximum flow height tmax(x).

5.1. Material properties and rheometry

identification
measures

α
(a)
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101110−1

102

101
identification

measures

η
(b)

γ̇

110−110−2

105

104

Figure 6. Rheometry on silicone: (a) torque α versus rotation speed ω and determination of the power-law index n; (b)
viscosity η versus the shear rate γ̇ and determination of the consistency K.

We used a transparent synthetic polymer SGM 36. Made by Dow Corming (USA), SGM 36 is the industrial
code of a polymer liquid between 200 and 550 K. It consists of a linear polydimethylsiloxane molecules.
The flow curves of was determined using a Brookfield HB DV-I+ rheometer with the spindle #7. The
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results are obtained in term of rotation speed ω, torque α, and apparent viscosity η. Then, there are
converted into shear rate and shear stress or apparent viscosity. The procedure identify first the power-
law index n = 0.89 by expressing the torque versus the speed as α = c ωn for some constant c (see Fig. 6.a).
Next, rounding n to 0.9 and using numerical data from [19], table 1, column 7, we obtain an explicit linear
expression between the rotation speed ω and the shear stress γ̇. Then, in a second step, expressing the
apparent viscosity versus the shear rate as η = Kγ̇n−1, we identify the consistency K = 20 750 Pa.sn−1

(see Fig. 6.b).

The material exhibits also a strong viscoelastic behavior with a relaxation time between 10 and 1 seconds
over the range of shear strain rate from 10−2 to 1 s−1, respectively [22]. Elastic recovery of strain occurs
when it is deformed for times shorter than the relaxation time. In the context of the dam break problem,
the time scale is 2 to 3 orders of magnitude larger and viscoelastic effects can be neglected.

5.2. Experimental set-up

Figure 7. Experimental set-up: (a) face view, where the red line indicates the free surface as generated by image processing;
(b) top view.

We used an horizontal channel (see Fig. 7.a) of width W , confined between two plates of Plexiglas, with
a reservoir of length L and height H . Fig. 7.b shows that the flow front is relatively flat, suggesting that
the slump is largely two-dimensional and the side walls do not have much effect. (see also Fig. 6 in [5] or
Fig. 8 in [20] for similar considerations). Slip at the side walls is enforced, thanks to a penetrating grease,
while the fluid sticks at the wood bottom boundary. Both widths W = 115 mm and 225 mm have been
tested in order to check that tridimensional effects are negligible and that measurements are independent
of the width W . Both reservoir channel L = 160 mm and 320 mm length have been tested, while H = 115
mm. Digital photography of the front view are performed with a period of 20 seconds. Using an image
processing tool, we are able to extract the flow profiles and to obtain the successive front positions xf .

5.3. Comparisons

For a Newtonian fluid (n = 1), the theoretical prediction is compared with two available measurements:
on Fig. 8.a with a corn sirup [5, Fig. 7.a] and on Fig. 8.b with a glucose solution [20]. Observe the good
concordance between predictions and measurements for both materials. The small time flow regime on
Fig. 8.b develops a slope equal to one suggesting a first inertia flow regime. Anyhow, a finer comparison
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L(cm) H(cm) ρ(g/cm3) n K(m.k.s)

sirup 40 2.2 1.40 1.00 4

glucose 11, 44 5.5 1.40 1.00 12

silicon 16, 40 11.5 1.40 0.90 20 750

gum 40 2.2, 3.2 1.00 0.50 7.5

apple sauce 40 3.6 1.04 0.27 8

kaolin 40 3.7, 4.35 1.50 0.40 34

Table 1
Flow and material parameters used for the comparisons.

with the corresponding Ritter solution xf = (gH)
1
2 t is not satisfactory and better explained by the lifting

of the dam in [20]. The complete set of flow and material parameters used for all the comparison in this
paragraph are summarized in table 1.

For a non-Newtonian power-law fluid (n 6= 1), the theoretical predictions are compared with several
measurements associated to different values of the power index n. Fig. 8.c shows the comparisons with
our present measurements on silicon with n = 0.9. Fig. 8.d presents measurements on a xantham gum [5,
Fig 9.b] with n = 0.5. Observe also the small time flow regime: as for glucose, this first regime is not
related to inertia effects and could be due to the lifting of the dam. Fig. 9.a presents a comparable
situation with apple sauce [5, Fig 12], with n = 0.27. Finally, Fig. 9.b shows a comparison with kaolin [5,
Fig 11] with n = 0.4. Observe that for largest times, the fluid stops. Kaolin is usually represented by the
Herschel-Bulkley power-law yield stress model and associated shallow water approximation are able to
predict this behavior [18,4] This feature will be integrated in our numerical simulation in the future.

Let us come back to the present measurements on silicon: Fig. 10 shows the free surface profiles for the
two reservoir lengths with the same height H = 11.5 cm and width W = 22.5 cm. The profiles are globally
in good concordance with some small discrepancies: the theory predicts a lower profile at upstream and
a higher one at downstream. A possible explanation of this discrepancies could be the development of
localized viscoelastic effects in the front region, where shear rates are higher.

6. Conclusion

Using silicon, new measurements in the non-Newtonian power-law case has been performed in this paper
for the horizontal dam break problem. Based on a new time-space second-order adaptive algorithm, the
shallow approximation of the problem has been solved and solutions compared with both silicon and other
measurements for Newtonian and non-Newtonian materials. These comparisons confirm the validity of
the slow flow shallow approximation equations for the horizontal dam break problem for these materials.

Future works will focus on some improvements of the model by introducing yield stress and inertia terms.
The yield stress term is associated to the prediction of an asymptotical arrested state for large times while
the inertia term is related to the first flow regime at small times. Also the adaptive numerical algorithm
is a good candidate to handle three-dimensional free surface flows: using an asymptotic analysis, these
flows are reduced to a shallow flow on a surface with a complex topography. This second improvement
will be considered for practical applications for geophysical flows such as mud or volcanic lava flows.
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Figure 8. Front position: comparison between experimental measurements and theoretical predictions with (a) corn sirup [5,
Fig 7.a] ; (b) glucose [20] ; (c) silicon ; (d) gum [5, Fig 9.b].
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simulation n = 0.27
run 3
run 2
run 1

(a) apple saucexf (t)
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simulation n = 0.4
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Figure 9. Front position: comparison between experimental measurements and theoretical predictions with (a) apple sauce [5,
Fig 12] ; (b) kaolin [5, Fig 11].

13



simulation n = 0.9
silicon t = 2000 s
silicon t = 440 s

x/L

h(t, x)

H
(a)

10-1

1

0

simulation n = 0.9
silicon t = 2480 s
silicon t = 880 s

x/L

h(t, x)

H
(b)

10-1

1

0

Figure 10. Free surface : comparison between theoretical prediction with n = 0.9 and experimental measurements with

silicon when H = 115mm and W = 225mm: (a) L = 440mm , and (b) L = 160mm .
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Appendix A. Numerical resolution

This section focuses on time and space approximations of the reduced problem. A semi-implicit time
approximation scheme is first presented, and improved by a fixed-point internal loop. Each step requires
the resolution of a linear second-order elliptic sub-problem.

A.1. Time approximation and algorithms

Since the initial condition h0(x) is discontinuous, the solution of the parabolic problem is singular at the
vicinity of t = 0. For that reason, we opt for a second order fully implicit and variable time step algorithm.
The time step are chosen small at the vicinity of t = 0 and increases with a geometric progression. Let
(tm)m≥0 denotes the time discretization sequence and ∆tm = tm+1 − tm, m ≥ 0 be the time step. The
first-order time derivative is approximated by the following second-order finite difference scheme, defined
for all function ϕ ∈ C0 by:

∂ϕ

∂t
(tm+1) =

2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)
ϕ(tm+1) −

∆tm + ∆tm−1

∆tm∆tm−1
ϕ(tm)

+
∆tm

(∆tm + ∆tm−1)∆tm−1
ϕ(tm−1) + O(∆t2m + ∆t2m−1)

Let us introduce (ĥm)m≥0, ĥm(x̂) ≈ ĥ(m∆t̂, x̂), defined recursively by the following algorithm:

algorithm 1

• m = −1, 0: ĥ0 := ĥ−1 := ĥ(t̂ = 0)

• m ≥ 1: given ĥm−1 and ĥm, find ĥm+1 such that:

2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)
ĥm+1 − d

dx̂

(

νn

(

ĥm+1,
dĥm+1

dx̂

)

dĥm+1

dx̂

)

(A.1)

=
∆tm + ∆tm−1

∆tm∆tm−1
ĥm − ∆tm

(∆tm + ∆tm−1)∆tm−1
ĥm−1 in ] − 1, +∞[ (A.2)

dĥm+1

dx̂
(−1) =

dĥm+1

dx̂
(+∞) = 0 (A.3)

where, for all ξ ≥ 0 and ζ ∈ R:

νn(ξ, ζ) =







0, when ζ = 0,
n

2n + 1
ξ2+ 1

n |ζ|−1+ 1
n sgn(ζ), otherwise

Algorithm 1 corresponds to an implicit second-order backward discretization scheme with variable time
step. This scheme is used for all the computations which are undertaken in the next sections. The initial
time-dependent problem is transformed to a sequence of nonlinear sub-problems (A.2)-(A.3), since, at

each iteration m, ĥm+1 is unknown. The simplest idea is to solve each sub-problem by using an inner
fixed-point loop:
algorithm 2.a

• k = 0: ϕ0 := ĥm
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• k ≥ 1: given ϕk, find ϕk+1 such that:

αmϕk+1 − d

dx̂

(

νn

(

ϕk,
dϕk

dx̂

)

dϕk+1

dx̂

)

= fm in ] − 1, +∞[

dϕk+1

dx̂
(−1) =

dϕk+1

dx̂
(+∞) = 0

where

αm =
2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)

fm =
∆tm + ∆tm−1

∆tm∆tm−1
ĥm − ∆tm

(∆tm + ∆tm−1)∆tm−1
ĥm−1

This inner loop stops when the residual term is less than a given tolerance ε > 0. Then, we set ĥm+1 := ϕk.
Algorithm 2.a reduces to an elliptic second order differential equation with non-constant coefficients.

In practice, we observe that this algorithm converges only for n ∈]1/2, 2[ and has poor convergence
properties for large meshes. So, in order to solve the nonlinear sub-problem (A.2)-(A.3), we define a more
robust algorithm:
algorithm 2.b

• k = 0: ϕ0 := ĥm

• k ≥ 1: given ϕk, find ϕk+1 such that:

αmϕk+1 − d

dx̂

(

µn

(

ϕk
)

∣

∣

∣

∣

dϕk+1

dx̂

∣

∣

∣

∣

1
n

)

= fm in ] − 1, +∞[

dϕk+1

dx̂
(−1) =

dϕk+1

dx̂
(+∞) = 0

where, for all ξ ≥ 0:

µn(ξ) =
n

2n + 1
ξ2+ 1

n

For a fixed iteration k ≥ 0, observe that the sub-problem (A.4)-(A.4) is still nonlinear: this is the so-called
p-laplacian problem, with p = 1+1/n > 1. Let Lp(−1, +∞) and W 1,p(−1, +∞) denote the usual Sobolev
functional spaces [1]. Observe that the solution of (A.4)-(A.4) is characterized as the minimum of the
following energy-like function, defined for all ϕ ∈ W 1,p(−1, +∞) by:

Jk,m(h) =
αm

2

∫ +∞

−1

ϕ2 dx +
n

n + 1

∫ +∞

−1

µn(ϕk)|ϕ′|1+ 1
n dx −

∫ +∞

−1

fmĥ dx

Following [10, p. 128], let us consider the quantity δ = ϕ′ ∈ Lp(−1, +∞) as an independent variable. The
constraint δ − ϕ′ = 0 is enforced by using a Lagrange multiplier τ ∈ Lp′

(−1, +∞), where p′ = 1 − 1/p =
1/(1 + n). The following augmented Lagrangian is then introduced:

Lk,m((ϕ, δ); τ) =
αm

2

∫ xe

−1

ϕ2 dx+
n

n + 1

∫ xe

−1

µn(ϕk)|δ|1+ 1
n dx−

∫ xe

−1

fm ϕdx+

∫ xe

−1

(ϕ′−δ) τ dx+
β

2

∫ xe

−1

|ϕ′−δ|2 dx

where β > 0 is the augmentation parameter of the Lagrangian. The previous minimization problem is
equivalent to the following saddle point problem

inf
(ϕ,δ)∈W 1,p×Lp

sup
τ∈Lp′

Lm,k((ϕ, δ); τ)
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Notice that the solution is independent of β since the solution of the saddle point problem satisfies δ = ϕ′.
An Uzawa minimization algorithm for finding the saddle point of Lm,k writes:
algorithm 3

• l = 0: let δ0 and τ0 arbitrarily chosen.
• l ≥ 0: let δl and τl being known, find ϕl+1 such that

αϕl+1 − βϕ′′
l+1 = f − (τl − βδl) in ] − 1, xe[

ϕ′
l+1(−1) = ϕ′

l+1(+∞) = 0
(A.4)

then, compute δl+1 in a point-by-point way:

δl+1(x) = Φn,β

(

µn(ϕk(x)), τl(x) + βϕ′
l+1(x)

)

(A.5)

and finally, compute explicitly τl+1 as:

τl+1 = τl + β(ϕ′
l+1 − δl+1) (A.6)

Problem (A.4) is linear and completely standard: it can be very efficiently solved, especially in one space
dimension. The nonlinearity is treated in (A.5) where the function Φn,β has been introduced: it is defined
for all µ̄, ζ ∈ R by:

Φn,β(µ̄, ζ) = argmin
δ∈R

µ̄ n

n + 1
|δ|1+ 1

n +
β

2
δ2 − ζ δ

Since this minimization problem in R is convex, its solution δ ∈ R is unique and then Φn,β is well defined.

The minimization problem is also differentiable and its solution satisfies µ̄|δ| 1
n sgn(δ) + βδ − ζ = 0 where

sgn denotes the sign function. Notice that when n = 1, i.e. the Bingham model, the computation is
explicit: δ = ζ/(µ̄ + β). In the general case of the Hershel-Bulkley model, when n > 0, we consider the
Newton algorithm:

• q = 0: let δ0 given.
• q ≥ 0: let δq being known and compute

δq+1 = δq −
µ̄|δq|

1
n sgn(δq) + βδq − ζ
1
n µ̄|δq|

1
n
−1 + β

In practice, the Newton algorithm is initialized with δ0 = ζ/(µ̄ + β) and we observe that the convergence
is very fast. Also, algorithms 2.b and 3 are combined in a flatten algorithm, where only one iteration of
the l inner loop is performed. This leads to an efficient and robust strategy for the numerical resolution
of the nonlinear problem.

A.2. Space approximation and adaptive subdivision

The problem is discretized with respect to the space variable x̂ by a quadratic finite element method in a
bounded interval ] − 1, x̂e[, where x̂e is chosen sufficiently large. The matrix of the subproblems involves
a bandwidth equal to five: the linear system can be efficiently solved by using a direct method. The
numerical implementation bases on the finite element library [21].

At each time step, we used a mesh adaptive procedure that bases on a criterion χ related to the flow rate
plus a time derivative term:

χ(t̂, x̂) =



νn

(

ĥ,
∂ĥ

∂x̂

)(

∂ĥ

∂x̂

)2

+

(

∂ĥ

∂t̂

)2




1/2
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x̂

∆x̂

ĥ(t̂, x̂)

10-1

1
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10−1

10−2
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x̂

∆x̂
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10-1

1
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10−2
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Figure A.1. Adaptive subdivision for the dam break problem n = 0.9, t = 15: 1145 elements.

The time derivative term is approximated by the previous second order scheme. The time step is locally
optimized for minimizing the local interpolation error χ:

∆x̂(t̂, x̂) = min

(

∆x̂−2
min, max

(

∆x̂−2
max,

∣

∣

∣

∣

∂2χ

∂x̂2

∣

∣

∣

∣

))

where ∆x̂min = 10−4 and ∆x̂max = 10−1. At time tm, a subdivision is then automatically generated
as x̂i+1 = x̂i + ∆x̂(t̂m, x̂i), i ≥ 0, and x̂0 = −1. As shown on Fig. A.1, this procedure is capable of
capturing the front position, where gradients are locally important and the solution becomes singular:
the discretization step tends to ∆x̂min. Conversely, at downstream, after the front, the solution is zero
and the discretization step is ∆x̂max.
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