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L-embedded Banach spaces and a weak version
of Phillips lemma

Hermann Pfitzner

Abstract. After a short survey on L-embedded Banach spaces - for which
Bochner spaces of the form L

1(X) with reflexive X serve as examples - we
prove that these spaces satisfy a weak form of Phillips’ lemma: It is proved
that the L-projection of an L-embedded Banach spaces sends relatively w

∗-
sequentially compact sets to relatively weakly sequentially compact sets.
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L-embedded Banach spaces. A projection P on a Banach space Z is called an
L-projection if ‖Pz‖ + ‖z − Pz‖ = ‖z‖ for all z ∈ Z. A Banach space X is called
L-embedded (or an L-summand in its bidual) if it is the image of an L-projection
on its bidual. In this case we write X∗∗ = X ⊕1 Xs. The standard reference for
L-embedded Banach spaces is the monograph [3] which contains everything of
this introduction except for [7]. For general Banach space theory and undefined
notation we refer to [4], [6], or [1].

A special class of L-embedded spaces consists of the duals of M-embedded
Banach spaces: A Banach space Y is called M-embedded (or an M-Ideal in its

bidual) if its annihilator Y ⊥ in Y ∗∗∗ is the range of an L-projection on Y ∗∗∗ in which
case the dual Y ∗ identifies easily with the kernel of the L-projection and is therefore
L-embedded. Examples of such L-embedded spaces include l1(Γ) = (c0(Γ))∗ (Γ any
set), N(H) = (K(H))∗ (the nuclear operators on a Hilbert space H), (K(lp, lq))∗

where 1 < p ≤ q < ∞, the Hardy space H1
0 = (C(IT)/A)∗ where A is the disk

algebra.

L1-spaces are L-embedded and so are, more generally, the preduals of von
Neumann algebras, even the preduals of JBW∗-triples. As to a generalization to-
wards Bochner spaces of the form L1(X) not much seems to be known: From [3,
p. 199] we resume the following cases. Since the projective tensor product of L1

and the predual of von Neumann algebra is again the predual of a von Neumann
algebra the Bochner space L1(X) is L-embedded if X is a von Neumann predual.
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Further, if the underlying measure space is finite and if X ⊂ L1 is (in Godefroy’s
terminology) nicely placed i.e. L-embedded, for example H1

0 ⊂ L1(IT), then L1(X)
is L-embedded, too. Finally, if X is reflexive (hence trivially L-embedded) then
L1(X) is L-embedded.

The class of L-embedded spaces is much larger than the one of duals of M-
embedded spaces because among L1-spaces only l1(Γ) (Γ a set) is the dual of
an M-embedded space, and, analogously, the only von Neumann predual which
is the dual of an M-embedded space is the direct sum in the l1-sense of N(H)-
spaces which in turn is equivalent to the von Neumann predual having RNP [3,
Prop. III.2.9, Prop. IV.2.9]. In particular, an L-embedded space need not have
RNP whereas the dual of an M-embedded space does. There are dual L-embedded
spaces with RNP that are not duals of M-embedded spaces [3, Ex. IV.4.12].

The interest of L-embeddedness lies in the fact that it unifies some Banach
space properties which before were known only as special cases. A kind of break-
through for this general point of view was Godefroy’s discovery that L-embedded
Banach spaces are weakly sequentially complete. Another example of this unifying
point of view is the fact [7] that (at least) separable L-embedded spaces are unique
preduals which comprises for example the corresponding result of Dixmier-Sakai
for von Neumann preduals.

Talagrand [10] has shown that the Bochner space L1(X) is weakly sequen-
tially complete if and only if X is and Randrianantoanina [9] has shown that
L1(X) has Pe lczyński’s property (V∗) if and only if X does (see also [5]). Since
L-embedded spaces are weakly sequentially complete and have (V∗) [3, IV.2.7] it
seems plausible that L1(X) is L-embedded for more Banach spaces X than the
ones mentionned above.

A weak version of Phillips’ lemma. Phillips’ lemma [8] states that the canonical
projection from the second dual of l1 onto l1 is w∗-norm-sequentially continuous
which if one takes l1’s Schur property for granted is equivalent to the projection
being w∗-weak-sequentially continuous. (Cf., for example, [1, Ch. VII].) Therefore
the fact that the canonical projection from the third onto the first dual of a Banach
space is w∗-weak sequentially continuous if the space in consideration has Pe l-
czyński’s property (V) (cf. [3, Prop. III.3.6]) can be considered a generalization of
Phillips’ lemma.

In this note we give a modest - see the remark after the proof - generalization
in a similar direction by looking at l1 as an L-embedded Banach space. Although
the result is new the technique of its proof is not. In fact it is a modification of
the proof in [7] but holds, contrary to the latter one, for all L-embedded Banach
spaces, not only separable ones.

Theorem The L-projection of an L-embedded Banach space sends relatively w∗-

sequentially compact sets into relatively weakly sequentially compact sets.

Proof. We recall that a series
∑

zj in a Banach space Z is called weakly uncon-

ditionally Cauchy (wuC for short) if
∑

|z∗(zj)| converges for each z∗ ∈ Z∗ or,
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equivalently, if there is a number M such that ‖
∑n

j=1 αjzj‖ ≤ M max1≤j≤n |αj |
for all n ∈ IN and all scalars αj .

Let X be an L-embedded Banach space with L-projection P . We have the
decomposition X∗∗ = X ⊕1 Xs where Xs denotes the range of the projection
Q = idX∗∗ − P . Let (xn) be a sequence in X and let (tn) be a sequence in Xs.
Further, consider a cluster point x + xs of the xn in the w∗–topology of X∗∗ (with
x ∈ X, xs ∈ Xs).

Claim Given x∗ ∈ X∗ of norm one there are a wuC-series
∑

x∗
k in X∗ and a

sequence (nk) in IN such that, for all k ∈ IN,

tnk
(x∗

k) = 0 (0.1)

lim
k

x∗
k(xnk

) = xs(x
∗). (0.2)

Proof of the claim: Let 1 > ε > 0 and let (εj) be a sequence of numbers decreasing
to zero such that 0 < εj < 1 and

∏∞
j=1(1 + εj) < 1 + ε.

By induction over k ∈ IN0 = IN ∪ {0} we shall construct two sequences
(x∗

k)k∈IN0
and (y∗

k)k∈IN0
in X∗ (of which the first members x∗

0 and y∗
0 are auxiliary

elements used only for the induction) and an increasing sequence (nk) of indices
such that, for all (real or complex) scalars αj and with β = xs(x

∗), the following
hold:

x∗
0 = 0, ‖y∗

0‖ = 1, (0.3)

∥

∥

∥
α0y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥
≤

(

k
∏

j=1

(1 + εj)
)

max
0≤j≤k

|αj |, if k ≥ 1, (0.4)

tnk
(x∗

k) = 0, (0.5)

y∗
k(x) = 0, and xs(y

∗
k) = β, (0.6)

|x∗
k(xnk

) − β| < εk. (0.7)

We set n0 = 1, x∗
0 = 0 and y∗

0 = x∗.
For the following it is useful to recall some properties of P : The restriction of P ∗

to X∗ is an isometric isomorphism from X∗ onto X⊥
s with (P ∗y∗)|X = y∗ for all

y∗ ∈ X∗, Q is a contractive projection and X∗∗∗ = X⊥
s ⊕∞ X⊥ (where X⊥ is the

annihilator of X in X∗∗∗).
For the induction step suppose now that x∗

0, . . . , x
∗
k, y∗

0 , . . . , y∗
k and n0, . . . , nk have

been constructed and satisfy conditions (0.3) - (0.7). Since x + xs is a w∗-cluster
point of the xn there is an index nk+1 such that

|xs(y
∗
k) − y∗

k(xnk+1
− x)| < εk+1. (0.8)

Put

E = lin({x∗, x∗
0, . . . , x

∗
k, y∗

k, P ∗x∗
0, . . . , P

∗x∗
k, P ∗y∗

k}) ⊂ X∗∗∗,

F = lin({xnk+1
, tnk+1

, x, xs}) ⊂ X∗∗.
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Clearly Q∗x∗
j , Q∗y∗

k ∈ E for 0 ≤ j ≤ k. By the principle of local reflexivity there
is an operator R : E → X∗ such that

(1 − εk+1)‖e∗∗∗‖ ≤ ‖Re∗∗∗‖ ≤ (1 + εk+1)‖e∗∗∗‖, (0.9)

f∗∗(Re∗∗∗) = e∗∗∗(f∗∗), (0.10)

R|E∩X∗ = idE∩X∗ (0.11)

for all e∗∗∗ ∈ E and f∗∗ ∈ F .
We define

x∗
k+1 = RP ∗y∗

k and y∗
k+1 = RQ∗y∗

k.

In the following we use the convention
∑0

j=1(· · · ) = 0. Then we have that

α0y
∗
k+1 +

k+1
∑

j=1

αjx
∗
j = R

(

Q∗(α0y
∗
k +

k
∑

j=1

αjx
∗
j ) + P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )

)

.

Now (0.4) (for k + 1 instead of k) can be seen as follows:

∥

∥

∥
α0y

∗
k+1 +

k+1
∑

j=1

αjx
∗
j

∥

∥

∥
≤

(0.9)

≤ (1 + εk+1)
∥

∥

∥
Q∗(α0y

∗
k +

k
∑

j=1

αjx
∗
j ) + P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )

∥

∥

∥

= (1 + εk+1) max
{

∥

∥

∥
Q∗(α0y

∗
k +

k
∑

j=1

αjx
∗
j )

∥

∥

∥
,
∥

∥

∥
P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )

∥

∥

∥

}

≤ (1 + εk+1) max
{∥

∥

∥
α0y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥
,
∥

∥

∥
αk+1y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥

}

≤
(

k+1
∏

j=1

(1 + εj)
)

max{ max
0≤j≤k

|αj |, max
1≤j≤k+1

|αj |}

=
(

k+1
∏

j=1

(1 + εj)
)

max
0≤j≤k+1

|αj |

where the last inequality comes from (0.3) if k = 0, and from (0.4), if k ≥ 1.
The conditions (0.5) and (0.6) (for k + 1 instead of k) are easy to verify

because Ptnk+1
= 0, Qx = 0 and Qxs = 0 thus, by (0.10)

tnk+1
(x∗

k+1) = y∗
k(Ptnk+1

) = 0,

y∗
k+1(x) = y∗

k(Qx) = 0 and xs(y
∗
k+1) = Q∗y∗

k(xs) = xs(y
∗
k) = β.

Finally, we have

x∗
k+1(xnk+1

) − β = y∗
k(xnk+1

) − β = y∗
k(xnk+1

− x) − xs(y
∗
k)
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by (0.6) whence (0.7) for k + 1 by (0.8). This ends the induction and proves the
claim.

Put now x∗∗
n = xn + tn and suppose that (x∗∗

n ) is w∗-null. We define a sequence
(µn) of finitely additive measures on the subsets of IN by µn(A) = x∗∗

n (
∑

k∈A x∗
k)

for all A ⊂ IN where
∑

k∈A x∗
k is to be understood in the w∗-topology of X∗. Then

µn(A) → 0 for all A ⊂ IN and by (0.1) and Phillips’ original lemma ([8], [1, p. 83])
we get

|x∗
k(xnk

)| = |x∗∗
nk

(x∗
k)| ≤

∑

j

|x∗∗
nk

(x∗
j )| =

∑

j

|µnk
({j})| → 0.

Thus xs(x
∗) = 0 by (0.2). Since x∗ was an arbitrary normalized element this means

that xs = 0. It follows that the w∗-closure in X∗∗ of the set consisting of the xn

lies in X. Hence this set is relatively weakly compact (or, equivalently, relatively
weakly sequentially compact). This proves the theorem. �

It is not clear whether the L-projection is actually w∗-weak-continuous. In
two cases this happens trivially: firstly if the dual X∗ is a Grothendick space
(which by definition means that in X∗∗ w∗-convergent sequences converge weakly)
and secondly if X is the dual of an M-embedded Banach space Y (see [3, Ch. III])
because in this case P is the canonical restriction projection from Y ∗∗∗ onto Y ∗ ([3,
Prop. III.2.4]) and the xn tend to 0 on the elements of Y and thus any weak cluster
point x of (xn) is necessarily zero. Alternatively, in the latter case the result [3,
Prop. III.3.6], which was mentionned above, applies because M-embedded Banach
spaces have property (V) ([2] or [3, Th. III.3.4]).
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