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After a short survey on L-embedded Banach spaces -for which Bochner spaces of the form L 1 (X) with reflexive X serve as examples -we prove that these spaces satisfy a weak form of Phillips' lemma: It is proved that the L-projection of an L-embedded Banach spaces sends relatively w *sequentially compact sets to relatively weakly sequentially compact sets.

Further, if the underlying measure space is finite and if X ⊂ L 1 is (in Godefroy's terminology) nicely placed i.e. L-embedded, for example H 1 0 ⊂ L 1 (I T), then L 1 (X) is L-embedded, too. Finally, if X is reflexive (hence trivially L-embedded) then L 1 (X) is L-embedded.

The class of L-embedded spaces is much larger than the one of duals of Membedded spaces because among L 1 -spaces only l 1 (Γ) (Γ a set) is the dual of an M-embedded space, and, analogously, the only von Neumann predual which is the dual of an M-embedded space is the direct sum in the l 1 -sense of N(H)spaces which in turn is equivalent to the von Neumann predual having RNP [3, Prop. III.2.9, Prop. IV.2.9]. In particular, an L-embedded space need not have RNP whereas the dual of an M-embedded space does. There are dual L-embedded spaces with RNP that are not duals of M-embedded spaces [3, Ex. IV.4.12].

The interest of L-embeddedness lies in the fact that it unifies some Banach space properties which before were known only as special cases. A kind of breakthrough for this general point of view was Godefroy's discovery that L-embedded Banach spaces are weakly sequentially complete. Another example of this unifying point of view is the fact [START_REF] Pfitzner | Separable L-embedded Banach spaces are unique preduals[END_REF] that (at least) separable L-embedded spaces are unique preduals which comprises for example the corresponding result of Dixmier-Sakai for von Neumann preduals.

Talagrand [START_REF] Talagrand | Weak Cauchy sequences in L 1 (E)[END_REF] has shown that the Bochner space L 1 (X) is weakly sequentially complete if and only if X is and Randrianantoanina [START_REF] Randrianantoanina | Complemented copies of ℓ 1 and Peczyski's property (V * ) in Bochner function spaces[END_REF] has shown that L 1 (X) has Pe lczyński's property (V * ) if and only if X does (see also [START_REF] Lin | Köthe-Bochner function spaces[END_REF]). Since L-embedded spaces are weakly sequentially complete and have (V * ) [3, IV.2.7] it seems plausible that L 1 (X) is L-embedded for more Banach spaces X than the ones mentionned above.

A weak version of Phillips' lemma. Phillips' lemma [START_REF] Phillips | On linear transformations[END_REF] states that the canonical projection from the second dual of l 1 onto l 1 is w * -norm-sequentially continuous which if one takes l 1 's Schur property for granted is equivalent to the projection being w * -weak-sequentially continuous. (Cf., for example, [1, Ch. VII].) Therefore the fact that the canonical projection from the third onto the first dual of a Banach space is w * -weak sequentially continuous if the space in consideration has Pe lczyński's property (V) (cf. [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]Prop. III.3.6]) can be considered a generalization of Phillips' lemma.

In this note we give a modest -see the remark after the proof -generalization in a similar direction by looking at l 1 as an L-embedded Banach space. Although the result is new the technique of its proof is not. In fact it is a modification of the proof in [START_REF] Pfitzner | Separable L-embedded Banach spaces are unique preduals[END_REF] but holds, contrary to the latter one, for all L-embedded Banach spaces, not only separable ones.

Theorem The L-projection of an L-embedded Banach space sends relatively w *sequentially compact sets into relatively weakly sequentially compact sets.

Proof. We recall that a series z j in a Banach space Z is called weakly unconditionally Cauchy (wuC for short) if |z * (z j )| converges for each z * ∈ Z * or, equivalently, if there is a number M such that n j=1 α j z j ≤ M max 1≤j≤n |α j | for all n ∈ IN and all scalars α j .

Let X be an L-embedded Banach space with L-projection P . We have the decomposition X * * = X ⊕ 1 X s where X s denotes the range of the projection Q = id X * * -P . Let (x n ) be a sequence in X and let (t n ) be a sequence in X s . Further, consider a cluster point x + x s of the x n in the w * -topology of X * * (with x ∈ X, x s ∈ X s ).

Claim Given x * ∈ X * of norm one there are a wuC-series

x * k in X * and a sequence (n k ) in IN such that, for all k ∈ IN,

t n k (x * k ) = 0 (0.1) lim k x * k (x n k ) = x s (x * ). (0.2)
Proof of the claim: Let 1 > ε > 0 and let (ε j ) be a sequence of numbers decreasing to zero such that 0 < ε j < 1 and

∞ j=1 (1 + ε j ) < 1 + ε. By induction over k ∈ IN 0 = IN ∪ {0} we shall construct two sequences (x *
k ) k∈IN0 and (y * k ) k∈IN0 in X * (of which the first members x * 0 and y * 0 are auxiliary elements used only for the induction) and an increasing sequence (n k ) of indices such that, for all (real or complex) scalars α j and with β = x s (x * ), the following hold:

x * 0 = 0, y * 0 = 1, (0.3) 
α 0 y * k + k j=1 α j x * j ≤ k j=1 (1 + ε j ) max 0≤j≤k |α j |, if k ≥ 1, (0.4) t n k (x * k ) = 0, (0.5) y * k (x) = 0, and x s (y * k ) = β, (0.6) |x * k (x n k ) -β| < ε k . (0.7)
We set n 0 = 1, x * 0 = 0 and y * 0 = x * . For the following it is useful to recall some properties of P : The restriction of P * to X * is an isometric isomorphism from X * onto X ⊥ s with (P * y * ) |X = y * for all y * ∈ X * , Q is a contractive projection and X * * * = X ⊥ s ⊕ ∞ X ⊥ (where X ⊥ is the annihilator of X in X * * * ). For the induction step suppose now that x * 0 , . . . , x * k , y * 0 , . . . , y * k and n 0 , . . . , n k have been constructed and satisfy conditions (0.3) -(0.7). Since x + x s is a w * -cluster point of the x n there is an index n k+1 such that

|x s (y * k ) -y * k (x n k+1 -x)| < ε k+1 . (0.8) Put E = lin({x * , x * 0 , . . . , x * k , y * k , P * x * 0 , . . . , P * x * k , P * y * k }) ⊂ X * * * , F = lin({x n k+1 , t n k+1 , x, x s }) ⊂ X * * . Clearly Q * x * j , Q * y * k ∈ E for 0 ≤ j ≤ k.
By the principle of local reflexivity there is an operator R : E → X * such that (1 -ε k+1 ) e * * * ≤ Re * * * ≤ (1 + ε k+1 ) e * * * , (0.9) f * * (Re * * * ) = e * * * (f * * ), (0.10)

R |E∩X * = id E∩X * (0.11)
for all e * * * ∈ E and f * * ∈ F . We define

x * k+1 = RP * y * k and y * k+1 = RQ * y * k .
In the following we use the convention

0 j=1 (• • • ) = 0. Then we have that α 0 y * k+1 + k+1 j=1 α j x * j = R Q * (α 0 y * k + k j=1 α j x * j ) + P * (α k+1 y * k + k j=1 α j x * j ) .
Now (0.4) (for k + 1 instead of k) can be seen as follows:

α 0 y * k+1 + k+1 j=1 α j x * j ≤ (0.9) ≤ (1 + ε k+1 ) Q * (α 0 y * k + k j=1 α j x * j ) + P * (α k+1 y * k + k j=1 α j x * j ) = (1 + ε k+1 ) max Q * (α 0 y * k + k j=1 α j x * j ) , P * (α k+1 y * k + k j=1 α j x * j ) ≤ (1 + ε k+1 ) max α 0 y * k + k j=1 α j x * j , α k+1 y * k + k j=1 α j x * j ≤ k+1 j=1 (1 + ε j ) max{ max 0≤j≤k |α j |, max 1≤j≤k+1 |α j |} = k+1 j=1 (1 + ε j ) max 0≤j≤k+1 |α j |
where the last inequality comes from (0.3) if k = 0, and from (0.4), if k ≥ 1.

The conditions (0.5) and (0.6) (for k + 1 instead of k) are easy to verify because P t n k+1 = 0, Qx = 0 and Qx s = 0 thus, by (0.10)

t n k+1 (x * k+1 ) = y * k (P t n k+1 ) = 0, y * k+1 (x) = y * k (Qx) = 0 and x s (y * k+1 ) = Q * y * k (x s ) = x s (y * k ) = β. Finally, we have x * k+1 (x n k+1 ) -β = y * k (x n k+1 ) -β = y * k (x n k+1 -x) -x s (y * k )
by (0.6) whence (0.7) for k + 1 by (0.8). This ends the induction and proves the claim.

Put now x * * n = x n + t n and suppose that (x * * n ) is w * -null. We define a sequence (µ n ) of finitely additive measures on the subsets of IN by µ n (A) = x * * n ( k∈A x * k ) for all A ⊂ IN where k∈A x * k is to be understood in the w * -topology of X * . Then µ n (A) → 0 for all A ⊂ IN and by (0.1) and Phillips' original lemma ( [START_REF] Phillips | On linear transformations[END_REF], [1, p. 83]) we get

|x * k (x n k )| = |x * * n k (x * k )| ≤ j |x * * n k (x * j )| = j |µ n k ({j})| → 0.
Thus x s (x * ) = 0 by (0.2). Since x * was an arbitrary normalized element this means that x s = 0. It follows that the w * -closure in X * * of the set consisting of the x n lies in X. Hence this set is relatively weakly compact (or, equivalently, relatively weakly sequentially compact). This proves the theorem.

It is not clear whether the L-projection is actually w * -weak-continuous. In two cases this happens trivially: firstly if the dual X * is a Grothendick space (which by definition means that in X * * w * -convergent sequences converge weakly) and secondly if X is the dual of an M-embedded Banach space Y (see [3, Ch. III]) because in this case P is the canonical restriction projection from Y * * * onto Y * ([3, Prop. III.2.4]) and the x n tend to 0 on the elements of Y and thus any weak cluster point x of (x n ) is necessarily zero. Alternatively, in the latter case the result [3, Prop. III.3.6], which was mentionned above, applies because M-embedded Banach spaces have property (V) ( [START_REF] Godefroy | Weakly unconditionally convergent series in M -ideals[END_REF] or [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]Th. III.3.4]).