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Phillips’ Lemma for L-embedded Banach spaces

Hermann Pfitzner

Abstract. In this note the following version of Phillips’ lemma is proved. The
L-projection of an L-embedded space - that is of a Banach space which is com-
plemented in its bidual such that the norm between the two complementary
subspaces is additive - is weak∗-weakly sequentially continuous.
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Phillips’ classical lemma [9] refers to a sequence (µn) in ba(IN) (the Banach space
of finitely bounded measures on the subsets of IN) and states that if µn(A) → 0
for all A ⊂ IN then

∑

k |µn({i})| → 0. It is routine to interpret this result as the
weak∗-weak-sequential continuity of the canonical projection from the second dual
of l1 onto l1 because this continuity together with l1’s Schur property gives exactly
Phillips’ lemma. (Cf., for example, [2, Ch. VII].) Therefore the following theorem
generalizes Phillips’ lemma (for the definitions see below):

Theorem 0.1. The L-projection of an L-embedded Banach space is weak∗-weakly
sequentially continuous.

The theorem will be proved at the end of the paper.

The theorem has been known in the two particular cases when the L-embedded
space in question is the predual of a von Neumann algebra or the dual of an M-
embedded Banach spece Y . In the first case the result follows from [1, Th. III.1];
in the second case Y has Pe lczyński’s property (V) ([3] or [4, Th. III.3.4]) and
has therefore, by [4, Prop. III.3.6], what in [6, p. 73] or in [10] is called the weak
Phillips property whence the result by [4, Prop. III.2.4].

Preliminaries. By definition a Banach space X is L-embedded (or an L-summand
in its bidual) if there is a linear projection P on its bidual X∗∗ with range X such
that ‖Px∗∗‖+ ‖x∗∗ −Px∗∗‖ = ‖x∗∗‖ for all x∗∗ ∈ X∗∗. The projection P is called
L-projection. Throughout this note X denotes an L-embedded Banach space with
L-projection P . We have the decomposition X∗∗ = X ⊕1 Xs where Xs denotes
the kernel of P that is the range of the projection Q = idX∗∗ − P . We recall
that a series

∑

zj in a Banach space Z is called weakly unconditionally Cauchy
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(wuC for short) if
∑

|z∗(zj)| converges for each z∗ ∈ Z∗ or, equivalently, if there
is a number M such that ‖

∑n

j=1 αjzj‖ ≤ M max1≤j≤n |αj | for all n ∈ IN and
all scalars αj . The presence of a non-trivial wuC-series in a dual Banach space is
equivalent to the presence of an isomorphic copy of l∞. For general Banach space
theory and undefined notation we refer to [5], [7], or [2]. The standard reference for
L-embedded spaces is [4]; here we mention only that besides the Hardy space H1

the preduals of von Neumann algebras - hence in particular L1(µ)-spaces and l1

- are L-embedded. Note in passing that in general an L-embedded Banach space,
contrary to l1, need not be a dual Banach space.

The proof of the theorem consists of two halves. The first one states that the
L-projection sends a weak∗-convergent sequence to a relatively weakly sequentially
compact set. This has already been proved in [8]. The second half asserts the exis-
tence of the ’right’ limit and can be deduced from the corollary below which states
that the singular part Xs of the bidual is weak∗-sequentially closed. Note that
Xs is weak∗-closed if and only if X is the dual of an M-embedded Banach space
[4, IV.1.9]. The following lemma contains the two main ingredients for the proof
of the theorem namely two wuC-series

∑

x∗
k and

∑

u∗
k by means of which the

theorem above will reduce to Phillips’ original lemma. The first one has already
been constructed in [8], the construction of the second one is (somewhat annoy-
ingly) completely analogous, with the rôles of P and Q interchanged, cf. (0.20)
and (0.21). (For the proof of the theorem it is not necessary to construct both
wuC-series simultanuously but there is no extra effort in doing so and it might be
useful elsewhere.)

Lemma 0.2. Let X be L-embedded, let (xn) be a sequence in X and let (tn) be a
sequence in Xs. Furthermore, suppose that x + xs is a weak∗-cluster point of the
xn and that, along the same filter on IN, u + us is a weak∗-cluster point of the tn
(with x, u ∈ X, xs, us ∈ Xs). Let finally x∗, u∗ ∈ X∗ be normalized elements.

Then there is a sequence (nk) in IN and there are two wuC-series
∑

x∗
k and

∑

u∗
k in X∗ such that

tnk
(x∗

k) = 0 for all k ∈ IN, (0.1)

lim
k

x∗
k(xnk

) = xs(x
∗), (0.2)

lim
k

tnk
(u∗

k) = u∗(u), (0.3)

u∗
k(xnk

) = 0 for all k ∈ IN. (0.4)

Proof. Let 1 > ε > 0 and let (εj) be a sequence of numbers decreasing to zero
such that 0 < εj < 1 and

∏∞
j=1(1 + εj) < 1 + ε.

By induction over k ∈ IN0 = IN ∪ {0} we shall construct four sequences
(x∗

k)k∈IN0
, (y∗k)k∈IN0

, (u∗
k)k∈IN0

and (v∗k)k∈IN0
in X∗ (of which the first members

x∗
0, y∗0 u∗

0, and v∗0 are auxiliary elements used only for the induction) and an
increasing sequence (nk) of indices such that, for all (real or complex) scalars αj
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and with β = xs(x
∗), γ = u∗(u), the following conditions hold for all k ∈ IN0:

x∗
0 = 0, ‖y∗0‖ = 1, (0.5)

u∗
0 = 0, ‖v∗0‖ = 1, (0.6)

∥

∥

∥
α0y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥
≤

(

k
∏

j=1

(1 + εj)
)

max
0≤j≤k

|αj |, if k ≥ 1, (0.7)

∥

∥

∥
α0v

∗
k +

k
∑

j=1

αju
∗
j

∥

∥

∥
≤

(

k
∏

j=1

(1 + εj)
)

max
0≤j≤k

|αj |, if k ≥ 1, (0.8)

tnk
(x∗

k) = 0, (0.9)

u∗
k(xnk

) = 0, (0.10)

y∗k(x) = 0, and xs(y
∗
k) = β, (0.11)

us(v
∗
k) = 0, and v∗k(u) = γ, (0.12)

|x∗
k(xnk

) − β| < εk, if k ≥ 1, (0.13)

|tnk
(u∗

k) − γ| < εk, if k ≥ 1. (0.14)

We set n0 = 1, x∗
0 = 0, y∗0 = x∗, u∗

0 = 0 and v∗0 = u∗.
For the following it is useful to recall some properties of P : The restriction of P ∗

to X∗ is an isometric isomorphism from X∗ onto X⊥
s with (P ∗y∗)|X = y∗ for all

y∗ ∈ X∗, Q is a contractive projection and X∗∗∗ = X⊥
s ⊕∞ X⊥ (where X⊥ is the

annihilator of X in X∗∗∗).

For the induction step suppose now that x∗
0, . . . , x

∗
k, y∗0 , . . . , y

∗
k, u∗

0, . . . , u
∗
k,

v∗0 , . . . , v
∗
k and n0, . . . , nk have been constructed and satisfy conditions (0.5) -

(0.14). Since x + xs is a weak∗-cluster point of the xn and u + us is a weak∗-
cluster point of the tn along the same filter there is an index nk+1 such that

|xs(y
∗
k) − y∗k(xnk+1

− x)| < εk+1, (0.15)

|tnk+1
(v∗k) − (u + us)(v

∗
k)| < εk+1, (0.16)

Put

E = lin({x∗, x∗
0, . . . , x

∗
k, y

∗
k, P

∗x∗
0, . . . , P

∗x∗
k, P

∗y∗k,

u∗, u∗
0, . . . , u

∗
k, v

∗
k, P

∗u∗
0, . . . , P

∗u∗
k, P

∗v∗k}) ⊂ X∗∗∗,

F = lin({xnk+1
, tnk+1

, x, xs, u, us}) ⊂ X∗∗.

Clearly Q∗x∗
j , Q

∗y∗k, Q
∗u∗

j , Q
∗v∗k ∈ E for 0 ≤ j ≤ k. By the principle of local

reflexivity there is an operator R : E → X∗ such that

‖Re∗∗∗‖ ≤ (1 + εk+1)‖e∗∗∗‖, (0.17)

f∗∗(Re∗∗∗) = e∗∗∗(f∗∗), (0.18)

R|E∩X∗ = idE∩X∗ (0.19)

for all e∗∗∗ ∈ E and f∗∗ ∈ F .
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We define

x∗
k+1 = RP ∗y∗k and y∗k+1 = RQ∗y∗k, (0.20)

u∗
k+1 = RQ∗v∗k and v∗k+1 = RP ∗v∗k. (0.21)

In the following we use the convention
∑0

j=1(· · · ) = 0. Then we have that

α0y
∗
k+1 +

k+1
∑

j=1

αjx
∗
j = R

(

Q∗(α0y
∗
k +

k
∑

j=1

αjx
∗
j ) + P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )
)

,

α0v
∗
k+1 +

k+1
∑

j=1

αju
∗
j = R

(

P ∗(α0v
∗
k +

k
∑

j=1

αju
∗
j) + Q∗(αk+1v

∗
k +

k
∑

j=1

αju
∗
j)
)

.

Now (0.7) (for k + 1 instead of k) can be seen as follows:

∥

∥

∥
α0y

∗
k+1 +

k+1
∑

j=1

αjx
∗
j

∥

∥

∥
≤

(0.17)

≤ (1 + εk+1)
∥

∥

∥
Q∗(α0y

∗
k +

k
∑

j=1

αjx
∗
j ) + P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )
∥

∥

∥

= (1 + εk+1) max
{∥

∥

∥
Q∗(α0y

∗
k +

k
∑

j=1

αjx
∗
j )
∥

∥

∥
,
∥

∥

∥
P ∗(αk+1y

∗
k +

k
∑

j=1

αjx
∗
j )
∥

∥

∥

}

≤ (1 + εk+1) max
{
∥

∥

∥
α0y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥
,
∥

∥

∥
αk+1y

∗
k +

k
∑

j=1

αjx
∗
j

∥

∥

∥

}

≤
(

k+1
∏

j=1

(1 + εj)
)

max{ max
0≤j≤k

|αj |, max
1≤j≤k+1

|αj |}

=
(

k+1
∏

j=1

(1 + εj)
)

max
0≤j≤k+1

|αj |

where the last inequality comes from (0.5) if k = 0, and from (0.7), if k ≥ 1.
Likewise, (0.8) (for k + 1 instead of k) is proved.
The conditions (0.9) and (0.11) (for k + 1 instead of k) are easy to verify

because Ptnk+1
= 0, Qx = 0 and Qxs = xs thus, by (0.18)

tnk+1
(x∗

k+1) = Ptnk+1
(y∗k) = 0,

y∗k+1(x) = Qx(y∗k) = 0 and xs(y
∗
k+1) = Q∗y∗k(xs) = xs(y

∗
k) = β.

In a similar way we obtain (0.10) and (0.12) (for k+1 instead of k) by u∗
k+1(xnk+1

) =
RQ∗v∗k(xnk+1

) = Qxnk+1
(v∗k) = 0, us(v

∗
k+1) = Pus(v

∗
k) = 0 and v∗k+1(u) = v∗k(u) =

γ.
Finally, we have

x∗
k+1(xnk+1

) − β = y∗k(xnk+1
) − β = y∗k(xnk+1

− x) − xs(y
∗
k)
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by (0.11) whence (0.13) for k + 1 by (0.15). Analogously, we get (0.14) for k + 1
via (0.16) and tnk+1

(u∗
k+1) = tnk+1

(v∗k) and (u + us)(v
∗
k) = γ by (0.12).

This ends the induction and the lemma follows immediately. �

Corollary 0.3. The complementary space Xs of an L-embedded Banach space X is
weak∗-sequentially closed.

Proof. Suppose that (sn) is a sequence in Xs that weak∗-converges to v + vs. Let
u∗ ∈ X∗ be normalized, set tn = sn − vs. We apply the lemma to (tn) with u = v,
us = 0 and xn = u and define a sequence (µn) of finitely additive measures on the
subsets of IN by µn(A) = (tn − u)(

∑

k∈A u∗
k) for all A ⊂ IN where

∑

k∈A u∗
k ∈ X∗

is to be understood in the weak∗-topology of X∗ and where the u∗
k are given by

the lemma. Then µn(A) → 0 for all A ⊂ IN and by Phillips’ original lemma we get

|tnk
(u∗

k)|
(0.4)
= |(tnk

− u)(u∗
k)| ≤

∑

j

|(tnk
− u)(u∗

j )| =
∑

j

|µnk
({j})| → 0.

Thus u∗(u) = 0 by (0.3) and u = 0 because u∗ was arbitrary in the unit sphere
of X∗. Hence (tnk

) weak∗-converges to 0 which is enough to see that (sn) weak∗-
converges to vs in Xs. �

Proof. Proof of the theorem: Let X be an L-embedded Banach space with L-
projection P . Suppose that the sequence (x∗∗

n ) is weak∗-null and that x∗∗
n = xn+tn

with xn = Px∗∗
n . Let x∗ be a normalized element of X . The sequence (xn) is

bounded and admits a weak∗-cluster point x + xs. We use the lemma, this time
with the wuC-series

∑

x∗
k, like in the proof of the corollary and define a sequence

(µn) of finitely additive measures on the subsets of IN by µn(A) = x∗∗
n (

∑

k∈A x∗
k)

for all A ⊂ IN. Then µn(A) → 0 for all A ⊂ IN and by (0.1) and Phillips’ original
lemma we get

|x∗
k(xnk

)| = |x∗∗
nk

(x∗
k)| ≤

∑

j

|x∗∗
nk

(x∗
j )| =

∑

j

|µnk
({j})| → 0.

Thus xs(x
∗) = 0 by (0.2) and xs = 0 because x∗ was arbitrary in the unit sphere

of X∗. It follows that each weak∗-cluster point of the set consisting of the xn lies
in X . Hence this set is relatively weakly sequentially compact by the theorem of
Eberlein-Šmulian. If x is the limit of a weakly convergent sequence (xnm

) then
(tnm

) weak∗-converges to −x. Hence x = 0 by the corollary. This shows that the
sequence (xn) is weakly null and proves the theorem. �

References

[1] Ch. A. Akemann. The dual space of an operator algebra. Trans. Amer. Math. Soc.,
126:286–302, 1967.

[2] J. Diestel. Sequences and Series in Banach Spaces. Springer, Berlin-Heidelberg-New
York, 1984.



6 Hermann Pfitzner

[3] G. Godefroy and P. Saab. Weakly unconditionally convergent series in M -ideals.
Math. Scand., 64:307–318, 1989.

[4] P. Harmand, D. Werner, and W. Werner. M-ideals in Banach Spaces and Banach

Algebras. Lecture Notes in Mathematics 1547. Springer, 1993.

[5] W. B. Johnson and J. Lindenstrauss. Handbook of the Geometry of Banach Spaces,

Volumes 1 and 2. North Holland, 2001, 2003.
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