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In this note the following version of Phillips' lemma is proved. The L-projection of an L-embedded space -that is of a Banach space which is complemented in its bidual such that the norm between the two complementary subspaces is additive -is weak * -weakly sequentially continuous.

Phillips' classical lemma [START_REF] Phillips | On linear transformations[END_REF] refers to a sequence (µ n ) in ba(IN) (the Banach space of finitely bounded measures on the subsets of IN) and states that if µ n (A) → 0 for all A ⊂ IN then k |µ n ({i})| → 0. It is routine to interpret this result as the weak * -weak-sequential continuity of the canonical projection from the second dual of l 1 onto l 1 because this continuity together with l 1 's Schur property gives exactly Phillips' lemma. (Cf., for example, [2, Ch. VII].) Therefore the following theorem generalizes Phillips' lemma (for the definitions see below):

Theorem 0.1. The L-projection of an L-embedded Banach space is weak * -weakly sequentially continuous.

The theorem will be proved at the end of the paper. The theorem has been known in the two particular cases when the L-embedded space in question is the predual of a von Neumann algebra or the dual of an Membedded Banach spece Y . In the first case the result follows from [1, Th. III.1]; in the second case Y has Pe lczyński's property (V) ( [START_REF] Godefroy | Weakly unconditionally convergent series in M -ideals[END_REF] or [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]Th. III.3.4]) and has therefore, by [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]Prop. III.3.6], what in [6, p. 73] or in [START_REF] Ülger | The weak Phillips property[END_REF] is called the weak Phillips property whence the result by [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]Prop. III.2.4].

Preliminaries. By definition a Banach space X is L-embedded (or an L-summand in its bidual) if there is a linear projection P on its bidual X * * with range X such that P x * * + x * * -P x * * = x * * for all x * * ∈ X * * . The projection P is called L-projection. Throughout this note X denotes an L-embedded Banach space with L-projection P . We have the decomposition X * * = X ⊕ 1 X s where X s denotes the kernel of P that is the range of the projection Q = id X * * -P . We recall that a series z j in a Banach space Z is called weakly unconditionally Cauchy (wuC for short) if |z * (z j )| converges for each z * ∈ Z * or, equivalently, if there is a number M such that n j=1 α j z j ≤ M max 1≤j≤n |α j | for all n ∈ IN and all scalars α j . The presence of a non-trivial wuC-series in a dual Banach space is equivalent to the presence of an isomorphic copy of l ∞ . For general Banach space theory and undefined notation we refer to [START_REF] Johnson | Handbook of the Geometry of Banach Spaces[END_REF], [START_REF] Lindenstrauss | Classical Banach Spaces I and II[END_REF], or [START_REF] Diestel | Sequences and Series in Banach Spaces[END_REF]. The standard reference for L-embedded spaces is [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF]; here we mention only that besides the Hardy space H 1 the preduals of von Neumann algebras -hence in particular L 1 (µ)-spaces and l 1 -are L-embedded. Note in passing that in general an L-embedded Banach space, contrary to l 1 , need not be a dual Banach space.

The proof of the theorem consists of two halves. The first one states that the L-projection sends a weak * -convergent sequence to a relatively weakly sequentially compact set. This has already been proved in [START_REF] Pfitzner | L-embedded Banach spaces and a weak version of Phillips lemma[END_REF]. The second half asserts the existence of the 'right' limit and can be deduced from the corollary below which states that the singular part X s of the bidual is weak * -sequentially closed. Note that X s is weak * -closed if and only if X is the dual of an M-embedded Banach space [4, IV.1.9]. The following lemma contains the two main ingredients for the proof of the theorem namely two wuC-series

x * k and u * k by means of which the theorem above will reduce to Phillips' original lemma. The first one has already been constructed in [START_REF] Pfitzner | L-embedded Banach spaces and a weak version of Phillips lemma[END_REF], the construction of the second one is (somewhat annoyingly) completely analogous, with the rôles of P and Q interchanged, cf. (0.20) and (0.21). (For the proof of the theorem it is not necessary to construct both wuC-series simultanuously but there is no extra effort in doing so and it might be useful elsewhere.) Lemma 0.2. Let X be L-embedded, let (x n ) be a sequence in X and let (t n ) be a sequence in X s . Furthermore, suppose that x + x s is a weak * -cluster point of the x n and that, along the same filter on IN, u + u s is a weak * -cluster point of the t n (with x, u ∈ X, x s , u s ∈ X s ). Let finally x * , u * ∈ X * be normalized elements.

Then there is a sequence (n k ) in IN and there are two wuC-series

x * k and u * k in X * such that t n k (x * k ) = 0 for all k ∈ IN, (0.1) lim k x * k (x n k ) = x s (x * ), (0.2) lim k t n k (u * k ) = u * (u), (0.3) u * k (x n k ) = 0 for all k ∈ IN. (0.4)
Proof. Let 1 > ε > 0 and let (ε j ) be a sequence of numbers decreasing to zero such that 0

< ε j < 1 and ∞ j=1 (1 + ε j ) < 1 + ε. By induction over k ∈ IN 0 = IN ∪ {0} we shall construct four sequences (x * k ) k∈IN0 , (y * k ) k∈IN0 , (u * k ) k∈IN0 and (v * k ) k∈IN0 in X * (
of which the first members x * 0 , y * 0 u * 0 , and v * 0 are auxiliary elements used only for the induction) and an increasing sequence (n k ) of indices such that, for all (real or complex) scalars α j and with β = x s (x * ), γ = u * (u), the following conditions hold for all k ∈ IN 0 :

x * 0 = 0, y * 0 = 1, (0.5)

u * 0 = 0, v * 0 = 1, (0.6) α 0 y * k + k j=1 α j x * j ≤ k j=1 (1 + ε j ) max 0≤j≤k |α j |, if k ≥ 1, (0.7) α 0 v * k + k j=1 α j u * j ≤ k j=1 (1 + ε j ) max 0≤j≤k |α j |, if k ≥ 1, (0.8) t n k (x * k ) = 0, (0.9) u * k (x n k ) = 0, (0.10) y * k (x) = 0, and x s (y * k ) = β, (0.11) u s (v * k ) = 0, and v * k (u) = γ, (0.12) |x * k (x n k ) -β| < ε k , if k ≥ 1, (0.13) |t n k (u * k ) -γ| < ε k , if k ≥ 1. (0.14) We set n 0 = 1, x * 0 = 0, y * 0 = x * , u * 0 = 0 and v * 0 = u * .
For the following it is useful to recall some properties of P : The restriction of P * to X * is an isometric isomorphism from X * onto X ⊥ s with (P * y * ) |X = y * for all * ∈ X * , Q is a contractive projection and X * * * = X ⊥ s ⊕ ∞ X ⊥ (where X ⊥ is the annihilator of X in X * * * ).

For the induction step suppose now that x * 0 , . . . , x * k , y * 0 , . . . , y * k , u * 0 , . . . , u * k , v * 0 , . . . , v * k and n 0 , . . . , n k have been constructed and satisfy conditions (0.5) -(0.14). Since x + x s is a weak * -cluster point of the x n and u + u s is a weak *cluster point of the t n along the same filter there is an index n k+1 such that

|x s (y * k ) -y * k (x n k+1 -x)| < ε k+1 , (0.15) |t n k+1 (v * k ) -(u + u s )(v * k )| < ε k+1 , (0.16) Put E = lin({x * , x * 0 , . . . , x * k , y * k , P * x * 0 , . . . , P * x * k , P * y * k , u * , u * 0 , . . . , u * k , v * k , P * u * 0 , . . . , P * u * k , P * v * k }) ⊂ X * * * , F = lin({x n k+1 , t n k+1 , x, x s , u, u s }) ⊂ X * * . Clearly Q * x * j , Q * y * k , Q * u * j , Q * v * k ∈ E for 0 ≤ j ≤ k.
By the principle of local reflexivity there is an operator R : E → X * such that Re * * * ≤ (1 + ε k+1 ) e * * * , (0.17)

f * * (Re * * * ) = e * * * (f * * ), (0.18) R |E∩X * = id E∩X * (0.19)
for all e * * * ∈ E and f * * ∈ F .

We define

x * k+1 = RP * y * k and y * k+1 = RQ * y * k , (0.20) u * k+1 = RQ * v * k and v * k+1 = RP * v * k . (0.21)
In the following we use the convention

0 j=1 (• • • ) = 0.
Then we have that

α 0 y * k+1 + k+1 j=1 α j x * j = R Q * (α 0 y * k + k j=1 α j x * j ) + P * (α k+1 y * k + k j=1 α j x * j ) , α 0 v * k+1 + k+1 j=1 α j u * j = R P * (α 0 v * k + k j=1 α j u * j ) + Q * (α k+1 v * k + k j=1 α j u * j ) .
Now (0.7) (for k + 1 instead of k) can be seen as follows:

α 0 y * k+1 + k+1 j=1 α j x * j ≤ (0.17) ≤ (1 + ε k+1 ) Q * (α 0 y * k + k j=1 α j x * j ) + P * (α k+1 y * k + k j=1 α j x * j ) = (1 + ε k+1 ) max Q * (α 0 y * k + k j=1 α j x * j ) , P * (α k+1 y * k + k j=1 α j x * j ) ≤ (1 + ε k+1 ) max α 0 y * k + k j=1 α j x * j , α k+1 y * k + k j=1 α j x * j ≤ k+1 j=1 (1 + ε j ) max{ max 0≤j≤k |α j |, max 1≤j≤k+1 |α j |} = k+1 j=1 (1 + ε j ) max 0≤j≤k+1 |α j |
where the last inequality comes from (0.5) if k = 0, and from (0.7), if k ≥ 1. Likewise, (0.8) (for k + 1 instead of k) is proved. The conditions (0.9) and (0.11) (for k + 1 instead of k) are easy to verify because P t n k+1 = 0, Qx = 0 and Qx s = x s thus, by (0.18)

t n k+1 (x * k+1 ) = P t n k+1 (y * k ) = 0, y * k+1 (x) = Qx(y * k ) = 0 and x s (y * k+1 ) = Q * y * k (x s ) = x s (y * k ) = β.
In a similar way we obtain (0.10) and (0.12) (for

k+1 instead of k) by u * k+1 (x n k+1 ) = RQ * v * k (x n k+1 ) = Qx n k+1 (v * k ) = 0, u s (v * k+1 ) = P u s (v * k ) = 0 and v * k+1 (u) = v * k (u) = γ.
Finally, we have

x * k+1 (x n k+1 ) -β = y * k (x n k+1 ) -β = y * k (x n k+1 -x) -x s (y * k )
by (0.11) whence (0.13) for k + 1 by (0.15). Analogously, we get (0.14) for k + 1 via (0.16) and t n k+1 (u * k+1 ) = t n k+1 (v * k ) and (u + u s )(v * k ) = γ by (0.12). This ends the induction and the lemma follows immediately.

Corollary 0.3. The complementary space X s of an L-embedded Banach space X is weak * -sequentially closed.

Proof. Suppose that (s n ) is a sequence in X s that weak * -converges to v + v s . Let u * ∈ X * be normalized, set t n = s nv s . We apply the lemma to (t n ) with u = v, u s = 0 and x n = u and define a sequence (µ n ) of finitely additive measures on the subsets of IN by µ n (A) = (t nu)( k∈A u * k ) for all A ⊂ IN where k∈A u * k ∈ X * is be understood in the weak * -topology of X * and where the u * k are given by the lemma. Then µ n (A) → 0 for all A ⊂ IN and by Phillips' original lemma we get

|t n k (u * k )| (0.4) = |(t n k -u)(u * k )| ≤ j |(t n k -u)(u * j )| = j |µ n k ({j})| → 0.
Thus u * (u) = 0 by (0.3) and u = 0 because u * was arbitrary in the unit sphere of X * . Hence (t n k ) weak * -converges to 0 which is enough to see that (s n ) weak *converges to v s in X s .

Proof. Proof of the theorem: Let X be an L-embedded Banach space with Lprojection P . Suppose that the sequence (x * * n ) is weak * -null and that x * * n = x n +t n with x n = P x * * n . Let x * be a normalized element of X. The sequence (x n ) is bounded and admits a weak * -cluster point x + x s . We use the lemma, this time with the wuC-series

x * k , like in the proof of the corollary and define a sequence Thus x s (x * ) = 0 by (0.2) and x s = 0 because x * was arbitrary in the unit sphere of X * . It follows that each weak * -cluster point of the set consisting of the x n lies in X. Hence this set is relatively weakly sequentially compact by the theorem of Eberlein-Šmulian. If x is the limit of a weakly convergent sequence (x nm ) then (t nm ) weak * -converges to -x. Hence x = 0 by the corollary. This shows that the sequence (x n ) is weakly null and proves the theorem.

  (µ n ) of finitely additive measures on the subsets of IN by µ n (A) = x * * n ( k∈A x * k ) for all A ⊂ IN. Then µ n (A) → 0 for all A ⊂ IN and by (0.1) and Phillips' original lemma we get |x * k (x n k )| = |x * * n k (x * k )| ≤ j |x * * n k (x * j )| = j |µ n k ({j})| → 0.