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THE DUAL OF A NON-REFLEXIVE L-EMBEDDED

BANACH SPACE CONTAINS l∞ ISOMETRICALLY

HERMANN PFITZNER

Abstract. See title. (A Banach space is said to be L-embedded if
it is complemented in its bidual such that the norm between the two
complementary subspaces is additive.)

This note is an afterthought to a result of Dowling [2] according to which a
dual Banach space contains an isometric copy of c0 if it contains an asymp-
totic one. (For definitions see below.) It is known ([7] or [4, Th. IV.2.7]) that
the dual of a non-reflexive L-embedded Banach space contains c0 isomorphi-
cally. For a special class of L-embedded Banach spaces the construction of
the c0-copy has been improved so to yield an asymptotic one ([8, Prop. 6])
and it turns out that this improvement is possible in the general case which
together with Dowling’s result yields isometric copies of c0 in the dual of an
L-embedded Banach space.

All this is perhaps known - or at least not surprising - to experts in the
field but the final result, i.e. an isometric copy of c0 (and hence of l∞) in
the dual of an L-embedded space X , is optimal in the category of Banach
spaces and therefore it seems worthwile proving it explicitely. As in [7] we
will prove a bit more by constructing the c0-copy within the context of Pe l-
czyński’s property (V∗) i.e. the c0-basis will be constructed so to behave
approximately like biorthogonal functionals on the basis of a given l1-basis
in X , see (2) and (3) below where in particular the value c̃J(xn) in (2) is
optimal. (For the definition and some basic results on Pe lczyński’s property
(V∗) see [4].)

Preliminaries: A projection P on a Banach space Z is called an L-projection
if ‖Pz‖ + ‖z − Pz‖ = ‖z‖ for all z ∈ Z. A Banach space X is called
L-embedded (or an L-summand in its bidual) if it is the image of an L-
projection on its bidual. In this case we write X∗∗ = X ⊕1 Xs. Among
classical Banach spaces, the Hardy space H1

0 , L1-spaces and, more generally,
the preduals of von Neumann algebras or of JBW∗-triples serve as examples
of L-embedded spaces. A sequence (xn) in a Banach space X is said to span
c0 asymptotically isometrically (or just to span c0 asymptotically) if there

is a null sequence (δn) in [0, 1[ such that sup(1 − δn)|αn| ≤
∥

∥

∥

∑

αnxn

∥

∥

∥
≤

sup(1 + δn)|αn| for all (αn) ∈ c0. X is said to contain c0 asymptotically
if it contains such a sequence (xn). Recall the routine fact that if (x∗

n) in
X∗ is equivalent to the canonical basis of c0 then

∑

αnx
∗
n makes sense for

all (αn) ∈ l∞ in the w∗-topology of X∗ and by lower w∗-semicontinuity of
the norm an estimate ‖

∑

αnx
∗
n‖ ≤ M sup |αn| that holds for all (αn) ∈ c0
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extends to all (αn) ∈ l∞. The Banach spaces we consider in this note are
real or complex, the set IN starts at 1.

To a bounded sequence (xn) in a Banach space X we associate its ’James
constant’

cJ(xn) = sup cm where the cm = inf∑
n≥m |αn|=1

‖
∑

n≥m

αnxn‖

form an increasing sequence. If (xn) is equivalent to the canonical basis of
l1 then cJ(xn) > 0 and more specifically, cJ(xn) > 0 if and only if there
is an integer m such that (xn)n≥m is equivalent to the canonical basis of
l1. Roughly speaking, the number cJ(xn) may be thought of as the ’ap-
proximately best l1-basis constant’ of (xn); precisely speaking, there is a
null sequence (τm) in [0, 1[ (determined by cm = (1 − τm)cJ(xn)) such that
‖
∑∞

n=m αnxn‖ ≥ (1−τm)cJ(xn)
∑∞

n=m |αn| for all (αn) ∈ l1 and cJ(xn) can-
not be replaced by a strictly greater constant. If one passes to a subsequence
(xnk

) of (xn) then cJ(xnk
) ≥ cJ(xn) hence it makes sense to define

c̃J(xn) = sup
nk

cJ(xnk
).

The standard reference for L-embedded Banach spaces is the monograph [4,
Ch. IV]. For general Banach space theory and undefined notation we refer
to [1], [5], or [6].

The main result of this note is

Theorem 1. Let X be an L-embedded Banach space and let (xn) be equiv-
alent to the canonical basis of l1. Then there is a sequence (x∗

n) in X∗ that
generates l∞ isometrically, more precisely

‖
∑

αnx
∗
n‖ = sup |αn| for all (αn) ∈ l∞(1)

and there is a strictly increasing sequence (pn) in IN such that

lim |x∗
n(xpn)| = c̃J(xm)(2)

x∗
n(xpl) = 0 if l < n(3)

In particular, the dual of a non-reflexive L-embedded Banach space contains
an isometric copy of l∞.

In order to prove the theorem we first state and prove Dowling’s result in a
way which fits our purpose.

Proposition 2. Let (εn) be a null sequence in [0, 1[, let (Nn) be a sequence
of pairwise disjoint infinite subsets of IN and let (y∗n) in the dual of a Banach
space Y span c0 such that

‖
∑

αny
∗
n‖ ≤ sup(1 + εn)|αn| and ‖y∗n‖ → 1(4)

for all (αn) ∈ c0.
Then the elements

x∗
n =

∑

k∈Nn

y∗k
1 + εk

(5)

generate l∞ isometrically (as in (1)).
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Proof of the proposition: With (εn), (Nn) and (y∗n) as in the hypothesis of
the statement define x∗

n by (5). Then ‖x∗
n‖ ≤ 1 for all n ∈ IN by the first

half of (4). For the inverse inequality we have that

‖x∗
n‖ ≥ ‖2

y∗m
1 + εm

‖ −
∥

∥

∥

y∗m
1 + εm

−
∑

k∈Nn,k 6=m

y∗k
1 + εk

∥

∥

∥
≥ 2

‖y∗m‖

1 + εm
− 1

holds for all m ∈ Nn hence ‖x∗
n‖ ≥ 1 by the second half of (4) which proves

‖x∗
n‖ = 1.
Similarly we show (1): First, “≤” of (1) follows from the first half of (4);

second, by the just shown inequality we have

‖
∑

αnx
∗
n‖ ≥ 2|αm| − ‖αmx

∗
m −

∑

n 6=m

αnx
∗
n‖ ≥ 2|αm| − sup |αn|

for all m ∈ IN hence “≥” of (1).

Proof of the theorem:
Let (δn) be a sequence in ]0, 1[ converging to 0. Suppose (xn) is an l1-basis
and write c̃ = c̃J(xn) for short.
Observation: Given τ > 0 there is a subsequence (xnk

) of (xn) such that
cJ(xnk

) > (1 − τ)c̃ and by James’ l1-distortion theorem there are blocks of
the xnk

which span l1 almost isometrically that is to say there are pairwise
disjoint finite sets Al ⊂ {nk| k ∈ IN}, a sequence of scalars (λn) such that
∑

k∈Al
|λk| = 1 and such that the sequence (zl) defined by zl = z̃l/‖z̃l‖

and z̃l =
∑

k∈Al
λkxk satisfies (1 − 2−m)

∑∞
l=m |αl| ≤

∥

∥

∥

∑∞
l=m αlzl

∥

∥

∥
≤ (1 +

2−m)
∑∞

l=m |αl| for all m ∈ IN; furthermore ‖z̃l‖ → cJ(xnk
) whence the

existence of l′ such that |c̃− ‖z̃l′‖| < τ .

By induction over n ∈ IN we will construct finite sequences (y
(n)∗
i )ni=1 in

X∗, a sequence (ỹn) in X , pairwise disjoint finite sets Cn ⊂ IN and a scalar
sequence (µn) such that, with the notation yn = ỹn/‖ỹn‖,

∑

k∈Cn

|µk| = 1, ỹn =
∑

k∈Cn

µkxk, |c̃− ‖ỹn‖| < δn,(6)

|y
(n)∗
i (yi)| > 1 − δi ∀i ≤ n,(7)

y
(n)∗
i (yl) = 0 ∀l < i ≤ n,(8)

y
(n)∗
i (xp) = 0 ∀p ∈ Cl, ∀l < i ≤ n,(9)

∥

∥

∥

m
∑

i=1

αiy
(n)∗
i

∥

∥

∥
≤ max

i≤m
(1 + (1 − 2−n) δi) |αi| ∀m ≤ n, αi scalars.(10)

For n = 1 we use the observation with τ = δ1 and choose l1 such that
|‖z̃l1‖− c̃| < δ1. Then we choose y

(1)∗
1 such that ‖y

(1)∗
1 ‖ = 1 and y

(1)∗
1 (zl1) =

‖zl1‖. It remains to set C1 = Al1 , µk = λk for k ∈ C1 and ỹ1 = z̃l1 .
For the induction step n 7→ n + 1 we recall that (P ∗)|X∗ is an isomet-

ric isomorphism from X∗ onto X⊥
s , that X∗∗∗ = X⊥ ⊕∞ X⊥

s and that
(P ∗x∗)|X = (x∗)|X for all x∗ ∈ X∗. Let (zl) be as in the observation above
with τ = δn+1 and let zs ∈ X∗∗ \ X be a w∗-accumulation point of the
zl. Then zs ∈ Xs and ‖zs‖ = 1 by the proof of [8, Lem 1] (or by some
general folklore argument). Choose t ∈ kerP ∗ ⊂ X∗∗∗ such that ‖t‖ = 1
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and t(zs) = ‖zs‖. Put

E = lin({P ∗y
(m)∗
i | i ≤ m ≤ n} ∪ {t}) ⊂ X∗∗∗,

F = lin({yi| i ≤ n} ∪ {zs} ∪ {xp| p ∈
⋃

l≤n

Cl}) ⊂ X∗∗

and choose η > 0 such that

(1 + η)(1 + (1 − 2−n) δi) < 1 + (1 − 2−(n+1)) δi and η < (1 − 2−(n+1)) δn+1

for all i ≤ n. The principle of local reflexivity provides an operator R :
E → X∗ such that

(1 − η)‖e∗∗∗‖ ≤ ‖Re∗∗∗‖ ≤ (1 + η)‖e∗∗∗‖,(11)

f ∗∗(Re∗∗∗) = e∗∗∗(f ∗∗),(12)

for all e∗∗∗ ∈ E and f ∗∗ ∈ F .

We define y
(n+1)∗
i = R(P ∗y

(n)∗
i ) for i ≤ n and y

(n+1)∗
n+1 = Rt and obtain (10,

n + 1) (with αi = 0 if m < i ≤ n + 1) by

∥

∥

∥

n+1
∑

i=1

αiy
(n+1)∗
i

∥

∥

∥

(11)

≤ (1 + η)
∥

∥

∥

(

n
∑

i=1

αiP
∗y

(n)∗
i

)

+ αn+1t
∥

∥

∥

= (1 + η) max
(
∥

∥

∥

n
∑

i=1

αiP
∗y

(n)∗
i

∥

∥

∥
, ‖αn+1t‖

)

= (1 + η) max
(
∥

∥

∥

n
∑

i=1

αiy
(n)∗
i

∥

∥

∥
, ‖αn+1t‖

)

(10)

≤ (1 + η) max
(

max
i≤n

(1 + (1 − 2−n) δi)|αi|, |αn+1|
)

≤ max
i≤n+1

(1 + (1 − 2−(n+1)) δi)|αi|.

Since zs is a w∗-cluster point of (zl) we have

|y
(n+1)∗
n+1 (zl)| > |zs(y

(n+1)∗
n+1 )| − δn+1

(12)
= |t(zs)| − δn+1 = 1 − δn+1

for infinitely many l; furthermore, an ln+1 can be chosen among these l so
to obtain |‖z̃ln+1

‖ − c̃| < δn+1. Set Cn+1 = Aln+1
, ỹn+1 = z̃ln+1

, µk = λk for
k ∈ Cn+1. Then (6) holds and (7, n + 1) holds for i = n + 1. For i ≤ n, (7,
n + 1) follows from

y
(n+1)∗
i (yi) = (P ∗y

(n)∗
i )(yi) = y

(n)∗
i (yi)

(7)
> 1 − δi.

Condition (8, n + 1) holds for i = n + 1 by

y
(n+1)∗
n+1 (yl) = (Rt)(yl)

(12)
= t(yl) = 0 ∀ l < n + 1

and it holds for i < n + 1 by

y
(n+1)∗
i (yl) = (P ∗y

(n)∗
i )(yl) = y

(n)∗
i (yl)

(8)
= 0 ∀ l < i.

The proof of (9, n + 1) works like the one of (8, n + 1). This ends the
induction.
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Now we define y∗i = 1
1+δi

limn∈U y
(n)∗
i for all i ∈ IN where U is a fixed

nontrivial ultrafilter on IN and where the limit is understood in the w∗-
topology of X∗. Then by w∗-lower semicontinuity of the norm and by (10)

‖
∑

αiy
∗
i ‖ ≤ sup(1 + δi)

|αi|

1 + δi
= sup |αi|

for all (αi) ∈ l∞. In particular, ‖y∗i ‖ ≤ 1 hence ‖y∗i ‖ → 1 by (7) and (y∗i )
satisfies (4) for εn = 0.

Let (Nn) be a sequence of pairwise disjoint infinite subsets of IN such that
(in) increases strictly where in = minNn. By the proposition the sequence
defined by

x∗
n =

∑

i∈Nn

y∗i

generates l∞ isometrically and we have |x∗
n(yin)|

(8)
= |y∗in(yin)|

(7)

≥ 1 − δin .
By construction of the yi there is, for each n ∈ IN, an index pn ∈ Cin

such that |x∗
n(xpn)| ≥ (1 − δin)‖ỹin‖

(6)

≥ (1 − δin)(c̃ − δin) which will yield
“≥” of (2). In order to show “≤” of (2) suppose to the contrary that
x∗
nm

(xpnm
) > κ+c̃ for appropriate subsequences, all m and κ > 0. According

to an extraction lemma of Simons [10] we may furthermore suppose that
∑

j 6=m |x∗
nj

(xpnm
)| < κ/2 for all m. Then given (αm) and θm such that

θmαm = |αm| we obtain ‖
∑

αmxpnm
‖ ≥ (

∑

j θjx
∗
nj

)(
∑

m αmxpnm
) ≥ (κ +

c̃)
∑

m |αm|−
∑

m

∑

j 6=m |αm| |x
∗
nj

(xpnm
)| ≥ ((κ/2)+c̃)

∑

m |αm| which yields

the contradiction cJ(xpnm
) > c̃ and thus shows “≤” and all of (2) whereas

(3) follows from (9) via y∗i (xp) = 0 for p ∈ Cl, l < i.
The last assertion of the theorem is immediate from the fact that non-

reflexive L-embedded spaces contain l1 isomorphically [4, IV.2.3]

Remarks:
1. It is not clear whether (3) can be obtained also for l > n. What can
be said by Simons’ extraction lemma (used in the proof) is that, under the
assumptions of the theorem and given ε > 0, it is possible (after passing to

appropriate subsequences) to obtain in addition to (3) that
∑l−1

n=1 |x
∗
n(xpl)| =

∑

n 6=l |x
∗
n(xpl)| < ε for all l. In case c̃J(xn) = 1 = lim ‖xn‖ (which happens

when the xn span l1 almost isometrically) this can be improved to
∑

n 6=l

|x∗
n(xpl)| = (

∑

n

|x∗
n(xpl)|) − |x∗

l (xpl)| ≤ ‖xpl‖ − |x∗
l (xpl)| → 0.(13)

One might also construct straightforward perturbations of the x∗
n in order

to get (3) for l 6= n but then it is not clear whether these perturbations can
be arranged to span c0 isometrically, not just almost isometrically.

Since in general L-embedded spaces do not contain l1 isometrically (see
below, last remark) it is in general not possible to improve (2) and (3) so
to obtain x∗

n(xpl) = c̃(xm) if l = n and = 0 if l 6= n.
2. As already alluded to in the introduction, the construction of c0 in this
paper bears much resemblance to the one of [7]. A different way to con-
struct c0 is contained in [9] but it seems unlikely that this construction can
be improved to yield an isometric c0-copy.
3. It follows from (2) that in L-embedded spaces the sup in the definition
of c̃J is attained by the James constant of an appropriate subsequence. For
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general Banach spaces this is not known although it can be shown by a rou-
tine diagonal argument that each bounded sequence (xn) admits a cJ -stable
subsequence (xnk

) (meaning that c̃J(xnk
) = cJ(xnk

)) whose James constant
is arbitrarily near to c̃(xn).
4. Each normalized sequence (xn) in an L-embedded Banach space that
spans l1 almost isomorphically contains a subsequence each of whose w∗-
accumulation points in the bidual attains its norm on the dual unit ball. To
see this let (x∗

n) and (xpn) be the sequences given by the theorem and by
Simons’ extraction lemma (see (13) above), let xs be a w∗-accumulation
point of the xpn and let x∗ =

∑

x∗
n; then ‖x∗‖ = 1 and on the one

hand ‖xs‖ = 1 by [8] and on the other hand xs(x
∗) = lim x∗(xpn)

(13)
=

lim x∗
n(xpn)

(2)
= cJ(xn) = 1.

It would be interesting to know whether this remark holds for the whole
sequence (xn) instead of only a subsequence (xpn). A kind of converse follows
from [9, Rem. 2] for separable X : If xs ∈ Xs attains its norm on the dual
unit ball then it does so on the sum of a wuC-series.
5. Let us finally note that the presence of isometric c0-copies in X∗ does not
necessarily entail the presence of isometric copies of l1 in X even if X is the
dual of an M-embedded Banach space. This follows from [4, Cor. III.2.12]
which states that there is an L-embedded Banach space which is the dual of
an M-embedded space (to wit the dual of c0 with an equivalent norm) which
is strictly convex and therefore does not contain l1 isometrically although it
contains, as do all non-reflexive L-embedded spaces, l1 asymptotically ([8],
see [3] for the definition of asymptotic copies and the difference to almost
isometric ones).
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