Hermann Pfitzner 
  
THE DUAL OF A NON-REFLEXIVE L-EMBEDDED BANACH SPACE CONTAINS l ∞ ISOMETRICALLY

Keywords: 1991 Mathematics Subject Classification. Primary 46B20; Secondary 46B03, 46B04, 46B26 embedded Banach spaces, isometric copies of c 0

A Banach space is said to be L-embedded if it is complemented in its bidual such that the norm between the two complementary subspaces is additive.

This note is an afterthought to a result of Dowling [START_REF] Dowling | Isometric copies of c 0 and ℓ ∞ in duals of Banach spaces[END_REF] according to which a dual Banach space contains an isometric copy of c 0 if it contains an asymptotic one. (For definitions see below.) It is known ( [START_REF] Pfitzner | L-summands in their biduals have Pe lczyński's property (V * )[END_REF] or [4, Th. IV.2.7]) that the dual of a non-reflexive L-embedded Banach space contains c 0 isomorphically. For a special class of L-embedded Banach spaces the construction of the c 0 -copy has been improved so to yield an asymptotic one [START_REF] Pfitzner | A note on asymptotically isometric copies of l 1 and c 0[END_REF]Prop. 6]) and it turns out that this improvement is possible in the general case which together with Dowling's result yields isometric copies of c 0 in the dual of an L-embedded Banach space.

All this is perhaps known -or at least not surprising -to experts in the field but the final result, i.e. an isometric copy of c 0 (and hence of l ∞ ) in the dual of an L-embedded space X, is optimal in the category of Banach spaces and therefore it seems worthwile proving it explicitely. As in [START_REF] Pfitzner | L-summands in their biduals have Pe lczyński's property (V * )[END_REF] we will prove a bit more by constructing the c 0 -copy within the context of Pe lczyński's property (V * ) i.e. the c 0 -basis will be constructed so to behave approximately like biorthogonal functionals on the basis of a given l 1 -basis in X, see (2) and (3) below where in particular the value cJ (x n ) in (2) is optimal. (For the definition and some basic results on Pe lczyński's property (V * ) see [START_REF] Harmand | M -ideals in Banach Spaces and Banach Algebras[END_REF].)

Preliminaries: A projection P on a Banach space Z is called an L-projection if P z + z -P z = z for all z ∈ Z. A Banach space X is called L-embedded (or an L-summand in its bidual) if it is the image of an Lprojection on its bidual. In this case we write X * * = X ⊕ 1 X s . Among classical Banach spaces, the Hardy space H 1 0 , L 1 -spaces and, more generally, the preduals of von Neumann algebras or of JBW * -triples serve as examples of L-embedded spaces. A sequence (x n ) in a Banach space X is said to span c 0 asymptotically isometrically (or just to span c 0 asymptotically) if there is a null sequence

(δ n ) in [0, 1[ such that sup(1 -δ n )|α n | ≤ α n x n ≤ sup(1 + δ n )|α n | for all (α n ) ∈ c 0 .
X is said to contain c 0 asymptotically if it contains such a sequence (x n ). Recall the routine fact that if (x * n ) in X * is equivalent to the canonical basis of c 0 then α n x * n makes sense for all (α n ) ∈ l ∞ in the w * -topology of X * and by lower w * -semicontinuity of the norm an estimate

α n x * n ≤ M sup |α n | that holds for all (α n ) ∈ c 0 extends to all (α n ) ∈ l ∞ .
The Banach spaces we consider in this note are real or complex, the set IN starts at 1. To a bounded sequence (x n ) in a Banach space X we associate its 'James constant'

c J (x n ) = sup c m where the c m = inf n≥m |αn|=1 n≥m α n x n
form an increasing sequence. If (x n ) is equivalent to the canonical basis of l 1 then c J (x n ) > 0 and more specifically, c J (x n ) > 0 if and only if there is an integer m such that (x n ) n≥m is equivalent to the canonical basis of l 1 . Roughly speaking, the number c J (x n ) may be thought of as the 'approximately best l 1 -basis constant' of (x n ); precisely speaking, there is a null sequence

(τ m ) in [0, 1[ (determined by c m = (1 -τ m )c J (x n )) such that ∞ n=m α n x n ≥ (1 -τ m )c J (x n ) ∞ n=m |α n |
for all (α n ) ∈ l 1 and c J (x n ) cannot be replaced by a strictly greater constant. If one passes to a subsequence

(x n k ) of (x n ) then c J (x n k ) ≥ c J (x n ) hence it makes sense to define cJ (x n ) = sup n k c J (x n k ).
The standard reference for L-embedded Banach spaces is the monograph [4, Ch. IV]. For general Banach space theory and undefined notation we refer to [START_REF] Diestel | Sequences and Series in Banach Spaces[END_REF], [START_REF] Johnson | Handbook of the Geometry of Banach Spaces[END_REF], or [START_REF] Lindenstrauss | Classical Banach Spaces I and II[END_REF].

The main result of this note is Theorem 1. Let X be an L-embedded Banach space and let (x n ) be equivalent to the canonical basis of l 1 . Then there is a sequence

(x * n ) in X * that generates l ∞ isometrically, more precisely α n x * n = sup |α n | for all (α n ) ∈ l ∞ (1)
and there is a strictly increasing sequence

(p n ) in IN such that lim |x * n (x pn )| = cJ (x m ) (2) x * n (x p l ) = 0 if l < n (3)
In particular, the dual of a non-reflexive L-embedded Banach space contains an isometric copy of l ∞ .

In order to prove the theorem we first state and prove Dowling's result in a way which fits our purpose.

Proposition 2. Let (ε n ) be a null sequence in [0, 1[, let (N n ) be a sequence of pairwise disjoint infinite subsets of IN and let (y * n ) in the dual of a Banach space Y span c 0 such that α n y * n ≤ sup(1 + ε n )|α n | and y * n → 1 (4) for all (α n ) ∈ c 0 .
Then the elements

x * n = k∈Nn y * k 1 + ε k (5)
generate l ∞ isometrically (as in [START_REF] Diestel | Sequences and Series in Banach Spaces[END_REF]).

Proof of the proposition: With (ε n ), (N n ) and (y * n ) as in the hypothesis of the statement define x * n by [START_REF] Johnson | Handbook of the Geometry of Banach Spaces[END_REF]. Then x * n ≤ 1 for all n ∈ IN by the first half of (4). For the inverse inequality we have that

x * n ≥ 2 y * m 1 + ε m - y * m 1 + ε m - k∈Nn,k =m y * k 1 + ε k ≥ 2 y * m 1 + ε m -1
holds for all m ∈ N n hence x * n ≥ 1 by the second half of (4) which proves

x * n = 1.
Similarly we show (1): First, "≤" of (1) follows from the first half of (4); second, by the just shown inequality we have

α n x * n ≥ 2|α m | -α m x * m - n =m α n x * n ≥ 2|α m | -sup |α n |
for all m ∈ IN hence "≥" of (1).

Proof of the theorem:

Let (δ n ) be a sequence in ]0, 1[ converging to 0. Suppose (x n ) is an l 1 -basis and write c = cJ (x n ) for short.

Observation: Given τ > 0 there is a subsequence (x n k ) of (x n ) such that c J (x n k ) > (1 -τ )c
and by James' l 1 -distortion theorem there are blocks of the x n k which span l 1 almost isometrically that is to say there are pairwise disjoint finite sets

A l ⊂ {n k | k ∈ IN}, a sequence of scalars (λ n ) such that k∈A l |λ k | = 1 and such that the sequence (z l ) defined by z l = zl / zl and zl = k∈A l λ k x k satisfies (1 -2 -m ) ∞ l=m |α l | ≤ ∞ l=m α l z l ≤ (1 + 2 -m ) ∞ l=m |α l | for all m ∈ IN; furthermore zl → c J (x n k ) whence the existence of l ′ such that |c -zl ′ | < τ .
By induction over n ∈ IN we will construct finite sequences (y

(n) * i
) n i=1 in X * , a sequence (ỹ n ) in X, pairwise disjoint finite sets C n ⊂ IN and a scalar sequence (µ n ) such that, with the notation y n = ỹn / ỹn ,

k∈Cn |µ k | = 1, ỹn = k∈Cn µ k x k , |c -ỹn | < δ n , (6) |y 
(n) * i (y i )| > 1 -δ i ∀i ≤ n, (7) 
y (n) * i (y l ) = 0 ∀l < i ≤ n, (8) 
y (n) * i (x p ) = 0 ∀p ∈ C l , ∀l < i ≤ n, (9) 
m i=1 α i y (n) * i ≤ max i≤m (1 + (1 -2 -n ) δ i ) |α i | ∀m ≤ n, α i scalars. ( 10 
)
For n = 1 we use the observation with τ = δ 1 and choose l 1 such that | zl 1 -c| < δ 1 . Then we choose y 

(z l 1 ) = z l 1 . It remains to set C 1 = A l 1 , µ k = λ k for k ∈ C 1 and ỹ1 = zl 1 .
For the induction step n → n + 1 we recall that (P * ) |X * is an isometric isomorphism from X * onto X ⊥ s , that X * * * = X ⊥ ⊕ ∞ X ⊥ s and that (P * x * ) |X = (x * ) |X for all x * ∈ X * . Let (z l ) be as in the observation above with τ = δ n+1 and let z s ∈ X * * \ X be a w * -accumulation point of the z l . Then z s ∈ X s and z s = 1 by the proof of [8, Lem 1] (or by some general folklore argument). Choose t ∈ ker P * ⊂ X * * * such that t = 1 and t(z s ) = z s . Put

E = lin({P * y (m) * i | i ≤ m ≤ n} ∪ {t}) ⊂ X * * * , F = lin({y i | i ≤ n} ∪ {z s } ∪ {x p | p ∈ l≤n C l }) ⊂ X * *
and choose η > 0 such that

(1 + η)(1 + (1 -2 -n ) δ i ) < 1 + (1 -2 -(n+1) ) δ i and η < (1 -2 -(n+1) ) δ n+1
for all i ≤ n. The principle of local reflexivity provides an operator R : E → X * such that 

α i = 0 if m < i ≤ n + 1) by n+1 i=1 α i y (n+1) * i (11) ≤ (1 + η) n i=1 α i P * y (n) * i + α n+1 t = (1 + η) max n i=1 α i P * y (n) * i , α n+1 t = (1 + η) max n i=1 α i y (n) * i , α n+1 t (10) ≤ (1 + η) max max i≤n (1 + (1 -2 -n ) δ i )|α i |, |α n+1 | ≤ max i≤n+1 (1 + (1 -2 -(n+1) ) δ i )|α i |.
Since z s is a w * -cluster point of (z l ) we have

|y (n+1) * n+1 (z l )| > |z s (y (n+1) * n+1 )| -δ n+1 (12) = |t(z s )| -δ n+1 = 1 -δ n+1
for infinitely many l; furthermore, an l n+1 can be chosen among these l so to obtain [START_REF] Lindenstrauss | Classical Banach Spaces I and II[END_REF] holds and (7, n + 1) holds for i = n + 1. For i ≤ n, (7, n + 1) follows from

| zl n+1 -c| < δ n+1 . Set C n+1 = A l n+1 , ỹn+1 = zl n+1 , µ k = λ k for k ∈ C n+1 . Then
y (n+1) * i (y i ) = (P * y (n) * i )(y i ) = y (n) * i (y i ) (7) > 1 -δ i .
Condition (8, n + 1) holds for i = n + 1 by

y (n+1) * n+1 (y l ) = (Rt)(y l ) (12) = t(y l ) = 0 ∀ l < n + 1
and it holds for i < n + 1 by

y (n+1) * i (y l ) = (P * y (n) * i )(y l ) = y (n) * i (y l ) (8) = 0 ∀ l < i.
The proof of (9, n + 1) works like the one of (8, n + 1). This ends the induction.

Now we define y

* i = 1 1+δ i lim n∈U y (n) * i
for all i ∈ IN where U is a fixed nontrivial ultrafilter on IN and where the limit is understood in the w *topology of X * . Then by w * -lower semicontinuity of the norm and by [START_REF] Simons | On the Dunford-Pettis Property and Banach spaces that contain c 0[END_REF] [START_REF] Pfitzner | L-summands in their biduals have Pe lczyński's property (V * )[END_REF] and (y * i ) satisfies (4) for ε n = 0.

α i y * i ≤ sup(1 + δ i ) |α i | 1 + δ i = sup |α i | for all (α i ) ∈ l ∞ . In particular, y * i ≤ 1 hence y * i → 1 by
Let (N n ) be a sequence of pairwise disjoint infinite subsets of IN such that (i n ) increases strictly where i n = min N n . By the proposition the sequence defined by

x * n = i∈Nn y * i generates l ∞ isometrically and we have |x * n (y in )| (8) 
= |y * in (y in )|

≥ 1δ in . By construction of the y i there is, for each n ∈ IN, an index

p n ∈ C in such that |x * n (x pn )| ≥ (1 -δ in ) ỹin (6) 
≥ (1δ in )(cδ in ) which will yield "≥" of (2). In order to show "≤" of (2) suppose to the contrary that x * nm (x pn m ) > κ+c for appropriate subsequences, all m and κ > 0. According to an extraction lemma of Simons [START_REF] Simons | On the Dunford-Pettis Property and Banach spaces that contain c 0[END_REF] we may furthermore suppose that

j =m |x * n j (x pn m )| < κ/2 for all m. Then given (α m ) and θ m such that θ m α m = |α m | we obtain α m x pn m ≥ ( j θ j x * n j )( m α m x pn m ) ≥ (κ + c) m |α m |-m j =m |α m | |x * n j (x pn m )| ≥ ((κ/2)+c) m |α m |
which yields the contradiction c J (x pn m ) > c and thus shows "≤" and all of (2) whereas (3) follows from (9) via y * i (x p ) = 0 for p ∈ C l , l < i. The last assertion of the theorem is immediate from the fact that nonreflexive L-embedded spaces contain l 1 isomorphically [4, IV.2.3] Remarks: 1. It is not clear whether (3) can be obtained also for l > n. What can be said by Simons' extraction lemma (used in the proof) is that, under the assumptions of the theorem and given ε > 0, it is possible (after passing to appropriate subsequences) to obtain in addition to (3) that l-1 n=1 |x * n (x p l )| = n =l |x * n (x p l )| < ε for all l. In case cJ (x n ) = 1 = lim x n (which happens when the x n span l 1 almost isometrically) this can be improved to

n =l |x * n (x p l )| = ( n |x * n (x p l )|) -|x * l (x p l )| ≤ x p l -|x * l (x p l )| → 0. ( 13 
)
One might also construct straightforward perturbations of the x * n in order to get (3) for l = n but then it is not clear whether these perturbations can be arranged to span c 0 isometrically, not just almost isometrically.

Since in general L-embedded spaces do not contain l 1 isometrically (see below, last remark) it is in general not possible to improve (2) and (3) so to obtain x * n (x p l ) = c(x m ) if l = n and = 0 if l = n. 2. As already alluded to in the introduction, the construction of c 0 in this paper bears much resemblance to the one of [START_REF] Pfitzner | L-summands in their biduals have Pe lczyński's property (V * )[END_REF]. A different way to construct c 0 is contained in [START_REF] Pfitzner | Separable L-embedded Banach spaces are unique preduals[END_REF] but it seems unlikely that this construction can be improved to yield an isometric c 0 -copy. 3. It follows from (2) that in L-embedded spaces the sup in the definition of cJ is attained by the James constant of an appropriate subsequence. For general Banach spaces this is not known although it can be shown by a routine diagonal argument that each bounded sequence (x n ) admits a c J -stable subsequence (x n k ) (meaning that cJ (x n k ) = c J (x n k )) whose James constant is arbitrarily near to c(x n ). 4. Each normalized sequence (x n ) in an L-embedded Banach space that spans l 1 almost isomorphically contains a subsequence each of whose w *accumulation points in the bidual attains its norm on the dual unit ball. To see this let (x * n ) and (x pn ) be the sequences given by the theorem and by Simons' extraction lemma (see (13) above), let x s be a w * -accumulation point of the x pn and let x * = x * n ; then x * = 1 and on the one hand x s = 1 by [START_REF] Pfitzner | A note on asymptotically isometric copies of l 1 and c 0[END_REF] and on the other hand x s (x * ) = lim x * (x pn )

(13) = lim x * n (x pn ) (2) 
= c J (x n ) = 1. It would be interesting to know whether this remark holds for the whole sequence (x n ) instead of only a subsequence (x pn ). A kind of converse follows from [9, Rem. 2] for separable X: If x s ∈ X s attains its norm on the dual unit ball then it does so on the sum of a wuC-series. 5. Let us finally note that the presence of isometric c 0 -copies in X * does not necessarily entail the presence of isometric copies of l 1 in X even if X is the dual of an M-embedded Banach space. This follows from [4, Cor. III.2.12] which states that there is an L-embedded Banach space which is the dual of an M-embedded space (to wit the dual of c 0 with an equivalent norm) which is strictly convex and therefore does not contain l 1 isometrically although it contains, as do all non-reflexive L-embedded spaces, l 1 asymptotically ( [START_REF] Pfitzner | A note on asymptotically isometric copies of l 1 and c 0[END_REF], see [START_REF] Dowling | The optimality of James's distortion theorems[END_REF] for the definition of asymptotic copies and the difference to almost isometric ones).
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 1 η) e * * * ≤ Re * * * ≤ (1 + η) e * * * , (11) f * * (Re * * * ) = e * * * (f * * ), (12) for all e * * * ∈ E and f * * ∈ F . We define y (n+1) * i = R(P * y (n) * i ) for i ≤ n and y (n+1) * n+1 Rt and obtain (10, n + 1) (with