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ABSTRACT

This paper provides a new robust design method to dimen-

sion a mechanism and to synthesize its dimensional toleganc
The general issue is to find a robust mechanism for a given
task, and to compute its optimal dimensional tolerancest Fo
that purpose, the developed approach follows two consecuti
steps, which are independent and complementary. Firstithe

The concept of robust design may be first used by Taguch
He introduced the concept of parameter design to improve th
quality of a product whose manufacturing process invohgs s
nificant variability or noise|]2]. Robust design aims at nmmiid-
ing the sensitivity of performances to variations withoomtrol-
ling the causes of these variations. In the last decadesralev
authors have contributed to the formulation and the im proet

mensions of the mechanism are computed by means of an appro-of robust design problems. Kalsi et eﬂl [3]introduced a reghe

priate robustness index, which is used to minimize the teitgi
of its performances to variations. These robust dimensioas
obtained independently of the amount of variations, aner&bé
globally the largest variations. Thus, knowing the acceletper-

to reduce the effects of uncertainty and incorporate fléitin
the design of complex engineering systems involving midtip
decision-makers. Chen et eﬂ [4] studied two broad categari
problems namely, (i) Type 1: minimizing variations in peffo

formance error of the mechanism, the second step aims at com-mance caused by variations in noise factors (uncontralpht

puting the optimal dimensional tolerances of the mecharigm

rameters) and (ii) Type 2: minimizing variations in perfance

means of the new tolerance synthesis method. This method iscaused by variations in control factors (design variabl®s).

used to find the best distribution of the error between thesdim
sions of the mechanism. Two serial manipulators are studied
illustrate the theory.

Keywords: robust design, tolerance synthesis, mechanism, vari-
ations, sensitivity ellipsoid, optimization.

1 Introduction

Every engineering design is subject to variations that can
arise from a variety of sources, including manufacturingrap
tions, variations in material properties, and the opegaénvi-
ronment. When variations are ignored, nonrobust designs ca
result, which are expensive to produce or fail in servicesites,
the robustness of a mechanism is important when calibrégion
necessary because the lower the sensitivity of the meahaois
dimensional variations, the easier its calibratiﬂn [1].

*IRCCyN: UMR rf 6597 CNRS Ecole Centrale de Nantes, Université de
Nantes Ecole des Mines de Nantes 1

Sundaresan et a|:| [5] developed a procedure incorporatiogrt
tainties inDV and variations in constraints due to these uncer-:
tainties.

The dimensional tolerances of a mechanism are fixed ac
cording to various parameters such as the manufacturirogpso
the performance tolerances, the manufacturing cost. Cétase
al. [4.[7] presented the Direct Linearization Method foetaince
analysis of 2-D and 3-D mechanical assemblies. Parkirﬂbn [E
used a deterministic method of robust design to determineyth
timum nominal dimensions of an assembly in order to improve
the assembly quality without tightening tolerances. Moegp
Rajagopalan and Cutkoskf] [9] used similar methods to agalys
the performance errors of mechanisms fabricatesitu

Some optimization methods for tolerance synthesis exist ir
the literature. Zhang and Wan[[lO] used a simulated annea
ing algorithm to maximize the robustness of product by appro
priately allocating assembly and machining tolerancese ¢t
al. @] presented a tolerance synthesis method for ncaisyes-



tems based on nonlinear programming, whereas Gadallahand E 2 Robust design problem

Maraghy ] presented a method using a system of experimen-

In a robust design problem, the distinction is made betweel

tal design. Zhu and Tind [113] used the theory of performance three sets: (i) the set of design variabl&/} whose nominal

sensitivity distribution to study the sensitivity of thessgm to
variations, and selected one manipulator among six, by snefan

a robustness index. They defined the tolerance box as a centra
tion of the circumscribe box of the design sensitivity edtijx

of the mechanism. The link between dimensional tolerancds a
product’s cost is presented in several workg [14].

values can be selected between the range of upper and low
bounds, they are controllable; (ii) the set of design patarse
(DP) that cannot be adjusted by the designer, they are uncentro
lable; (iii) the set of performance functions. Theimensional
vector of design variables is denotedoy= [x1 X2---x]". The
m-dimensional vector of design parameters is denoteg by

T - i
The paper focuses on mechanisms, which are assemblies of P1 P2~ Pm|". Performance functions are grouped into the

moving parts performing a complete functional motion.

Here, the study of a mechanism and the calculation of its
dimensional tolerances are conducted in two consecutpsst
First, its dimensions are computed by means of a robustness i
dex, which is proposed to minimize the sensitivity of itsfper
mances to variations. For example, a robust dimensionitigeof
2R manipulator, whose end effectBrhas to hit poin® with the
highest precision, is depicted in Hipy.1. For this dimenisigrthe
links of the manipulator are perpendicular wHeis supposed to
hit P. In this configuration, the maximum positioning errorf
g, due to dimensional variations, is a minimum.

A

Figure 1. A Robust Dimensioning of the 2R Manipulator

Then, knowing the acceptable performance error of the

mechanism, the second step aims at computing the optimal di-
mensional tolerances of the mechanism by means of a new toler
ance synthesis method. This method is based on the robsstnes

approach of the first step.

The formulation of a robust design problem is given in sec-
tion E Secti0|ﬂ3 discusses of an appropriate robustness fod

mechanisms. The new tolerance synthesis method is dexkelope

in sectior[}4. Finally, a R manipulator and aBmanipulator are
studied in sectiof] 5 to illustrate the theory.

dimensional vectof = [f, f,---fy]T, [[L§]. DV are, however,
subject to uncontrollable variations because of manufaer-
rors, wear, or other uncertainties, although their nommale is
fixed.

For instance, for the slider-crank mechanism depicted by
Figl,f =<N >, x=[lc Iy g7, andp = [f, 1 where< N >
is the average side force on piston to be minimide@ndl, are
the lengths of the rod and the crank of the mechanieiis.the
eccentricity between the crank and the pistépis the force on
piston anduis the friction coefficient between the piston and the
cylinder .

piston

Figure 2.  Slider-Crank Mechanism

A system is robust when its performance is as little seresitiv
as possible to variations. Performance funcfidepends oV
andDP, which are supposed to be independent.

Here, the study of the sensitivity of the system to variaion
based on the theory of performance sensitivity distributio

8 = 3¢ Jp] [T 87 =J 8X 2)



In this theory, a Jacobian matrik describes the effect of the
component variations to the system performance, as dedigte
eq.[2) wherely = 0f /ox, Jp = 8f /ap, I = [Ix Jp], XT = [xTp"].
ox anddp are the variations ilDV and inDP, respectively.Jy
andJp are the § x 1) sensitivity Jacobian matrix dfwith respect
to x and the ( x m) sensitivity Jacobian matrix dfwith respect
to p, respectively. If variations iDV are not taken into account,
thenJ = Jp andX = p. On the contrary] = Jx andX = x when
only variations inDV are considered.

The performance distribution is characterized in the varia
tion space by a set of eigenvalues and eigenveci@s,by a
hyper-ellipsoid. Without loss of generality, assumingt thari-
ations inDV are negligible and that there are only th®, this
design sensitivity hyper-ellipsoid is an ellipse depidte@igﬁ.

01 and oz are the smallest and the largest singular values of
J, respectively, and, g2 are their corresponding eigenvectors.
Lengths of semi-axes are inversely proportional to singued:

ues ofJ. Points on the ellipse surface lead to the same norm of
performance variation|f||2, where||.||> depicts the Euclidean
norm. Moreover, the performance is the least sensitive tiava
tions in the direction ofj; and the most sensitive to variations in
the direction ofgy.

q op2

qi

||6f]]2/ 52

»

dp1

||5fl]-=constant

Figure 3. Design Sensitivity Ellipsoid

A mechanism is robust when the sensitiv@yf its perfor-
mances to variations is a minimum. Therefde&an be defined
as the ratio of the Euclidean norm of variations in its perfor
mances||6f||2, and the Euclidean norm of variationsV and
DP, ||8X||2, [[L§]. Srepresents a variation transmission ratio and
means the amount of variations transmitted from the sources
the design. Besides, eff.(3) follows from j.(2) and meaatsSth
is bounded by the smallest singular valgg,,, and the largest
singular valuegnay Of sensitivity Jacobian matrik

13|

oin =S Yo

3)

< Omax

3 Choice of an appropriate robustness index

In order to obtain a robust solution independently of the
amount of variations ilbV andDP, a judicious robustness index
is required. The robustness indices usually found in therrec
literature are the condition number and the Euclidean ndrm o
the sensitivity Jacobian matrid, Al-Widyan and Angeleq [15],
Ting and Long [1B] used the condition numberbfzhu [13]
and Hu et aI.|El|7] suggested the use of the Euclidean norin of
In this section, it is shown that the Euclidean normla$ more
appropriate for the robust design of mechanisms.

The condition number of a matrix is the ratio of its largest
singular value to its smallest singular value. R be the con-
dition number of].

Omax

Rl = [|9[|2[197 Y2 =
Omin

(4)

According to [16[1F], a design is robust whh is a mini-
mum. Assuming that only variations PP are considered, each
variationdp; has the same influence on the norm of variations in
performance wheRl; is unitary,i.e.: the sensitivity ellipsoid is a
sphere. Although this property is interesting, the presimaex
is not sufficient because the influencedq; on performance is
not necessarily a minimum whétl; is unitary, ]. Indeed, the
condition numberRl;, can be small even if the values ofin
andonax are large.

A singular value of] corresponds to the error transmission
factor in the direction of its corresponding eigenvectat amthe
space of variations. The ideal solution is the minimizatdall
the singular values of, but is not easy to obtain. According to
eq.(8), a compromise solution is to minimize the upper bounc
of S, which is the largest singular value df Thus, a second
robustness indeRly, is defined by eoﬂS).

Rl = HJHZ = Omax

(5)

Ci

—
IS

Figure 4. Damper



The damper shown in Fﬂ.4 is studied to compRigand
Rl;. The design variables are magsand damping coefficient
Cy to be determined with the aim of keeping the magnitude of
displacemeniy at a nominal value of 0.1m, while the magni-
tude Ry of the excitation forcd=(t) = Fpcogwt) and its pulsa-
tion w undergo considerable variations beyond the control of the
designer:Fp = 10N, w= 2mrad/s. The displacement is equal
to X(t) = Xgcogut + ¢) whereg@ is the phase. Moreover, the
following relations exist:

Xo = Fo

w0 /Gt ame’

x=[MCq", p=[Row]", f=[% ¢. Equation [}) gives
the relation between variationsfrand variations irp.

5 =J3p (6)

where the sensitivity Jacobian matrix dependsxanmdp,
and is equal to:

1 -1-0? Xo
JJP{OG\/l——uZ]’ o= g WM
and
[ ®Xo/Xo | dF/Fo
o= 7] o= Se)
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Figure 5. Robustness index Rly
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Figure 6. Robustness index Rly
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Figure 7. Design Sensitivity Ellipses

Figures[b[J6 depict robustness indidRs and Rl of the
damper with respect thl, respectively. In FigﬂSRIl is a mini-
mum whenM /Mmax = 0.54 with Mmax = 2.533kg. Fig[b shows
that Rl increases witiM. According to Figﬂ7, which depicts
some design sensitivity ellipses of the damper, plottediifiber-
ent values oM, the moreM tends towards zero, the larger the
size of the ellipse. It means that the design can tolerateadjip
more variations i andw, i.e.: it is robust. Besides, the el-
lipse corresponding to the value Bf/Mmax that minimisesRl;
is the smallest one. Therefore, minimiziRg is not equivalent
to minimizing the influence of variations P on performance
function.

Chen et al. 4] and Parkinsof [19] proposed an optimiza-
tion algorithm to increase the robustness of a design withsu
ing robustness indices. However, they need to know the magn
tude of source variations to use their algorithm. Assumirag t
AFy/Fo=0.1, Aw/w= 0.1 andM/Mmax > 1/2, their algorithm
converges oM /Mmax = 1/2 andCy = 13.78 N.s.nT! in order
to minimize variations i ande. So, according td[4] andiT[L9],
the mass of the damper is minimized to make it robust, liké wit
robustness indeRl,. In conclusion, the study of the damper con-
firms thatRl is more suitable thaRl; to evaluate the robustness



of a mechanism.Rl, is used in the following sections of this
paper.

Remark: It is important not to confuse symbofsandA.
ov depicts the variation of variableandAv depicts its tolerance,
i.e.. —Av < ov<Av.

4 An efficient tolerance synthesis method

The dimensional tolerances of a mechanism are usually
fixed according to various parameters such as the manufactur

ing process, the performance tolerances, the manufagtcoist.
Some optimization methods for tolerance synthesis exigtén
literature. Zhu and TindﬂB] defined the tolerance box asra co
traction of the circumscribe box of the design sensitivilipsoid

of the mechanism. However, this Tolerance Box, called ZBy-T
includes some rejects, cf Fiby.8.

rejects

2A‘T‘2 opt

2A./L'] opt

Caro-TB

Figure 8. Tolerance Synthesis, |=2

Some works in the literature deal with the link between di-
mensional tolerances and product's cgsi [114, 9]. Here, tst ¢

Then, their optimal dimensional toleranaks,x are computed
using the following optimization algorithm:

|
max U;
) i|:l| il
st. U(Ul, uz,---, U|) € E(C)
uISIQr‘(\/I)ZO7|:157|
|Ui| > AXimin, i =1,---, |

i=1...

3 )

DXiopt = [Ui|, R — DXiopt < Xi < Xi + AXiopt, |

This algorithm consists in maximizing the/per-volumeof
the tolerance box included &C). V is the eigenvector corre-
sponding to the maximum singular value of the sensitivitgoda
bian matrix of the mechanism an is its i!" component. Be-
sides, pointJ whose coordinates afe, uz---, uy) belongs to
&(C) if and only if uTJT Jyu = C? whereu = [ug, up,---, u]".
Moreover, each dimensional toleran®g has to be higher than
a minimum dimensional tolerané;min, depending on the man-
ufacturing process arxi. For instance, Fi|8 depicts all the pos-
sible positions ofJ whenl = 2 andVi, V, are negative and posi-
tive, respectively.

In the following, a R and a R manipulators are studied
to illustrate the proposed robust design and tolerancensgigt
methods. If the positioning error of the end effector haséo b
smaller than a scal& atn different goal poses, it means that the
tolerance box has to be includedrimlesign sensitivity ellipsoids
because each pose of the manipulator is associated witligmdes
sensitivity ellipsoid. However, the tolerance synthegi®ethm
works with only one design sensitivity ellipsoid. To copetwi
this problem, we consider the most restrictive ellips@ig,. As
for any serial manipulator, a unitary variation in one dasigri-
able and no variation in the others lead to a unitary positigpn
error of its end effector, the design sensitivity ellipsoidtersect
at 2 points wherd is the number of design variables. There-

of a mechanism is supposed to decrease when its dimensionalffore, &m, is the ellipsoid with the smallest small axis among the

tolerances increase. Thus, a new tolerance synthesis chistho

proposed, which aims at finding the largest tolerance box of a

mechanism that does not include rejects. (@) be the design
sensitivity ellipsoid of a mechanism corresponding to amof
variations in its performance equal@o Assuming that this norm
has to be smaller thaB, the optimal tolerance box is supposed
to be the largest box included &{C). This tolerance box called
Caro-TB and depicted in Fid.8, is smaller than Zhu-TB, bugsio
not include any reject. The choice of the tolerance box ddpen
on the wish of the designer. However, it is always important t
know the solution without rejects because the cost of thedog
to rejects can be estimated from this solution.

First, nominal valueZ = [X; X--- X]" of design variables
are computed from robustness indelg, presented in secticﬂ1 3.

5

n design sensitivity ellipsoids.

5 Case studies
5.1 Study of a 2R manipulator

The mechanism studied in this section is a serRh®anip-
ulator, depicted in Fi@9. It is composed of two revolutenjei
and two linksAB andBE of lengthsl; andl,, respectively. First,
the manipulator is designed, so that its end-effeEtean hit all
points of a targe$r, and to be as little sensitive as possible to di-
mensional variations. Indeed, the lower the sensitivitthefma-
nipulator to dimensional variations, the easier its calilon ﬂ].
Subsequently, the tolerance synthesis method introdunceeic-
tion E is used to compute its optimal dimensional tolerances



Figure 9. A 2R Manipulator and its target Sy

5.1.1 Dimensioning of the 2R manipulator LetSr
be defined as a set afpointsPy, P, -- -, P,. First, E can hit all
points inSy if and only if I1 andl; satisfy the following condi-

tions:

with r = mind(A,R), R = mind(A,R),i = 1,---,n where
d(A, R) is the distance betwedhandA. These conditions bound
the feasible design variables space as shown ir@ig.lo.

The formulation of a robust design problem was given in
sectionl]Z. For the manipulator under study, the set of design
variablesx, and the set of performance functiofisare given by

eqs.[{B).

||17|2|§I‘
l1+12>R

T

(7)
(8)

x=b]" f= (] g ]
a=Nh [Celi SGlJT +12 [C91i+92i 591i+92i]

T

whereg is the vector of the Cartesian coordinatesboat R,.
Co; = cosBji, Sp; = sinBji where8j; is the j'" actuated joint
variable at?, j =1,2.

The relation between the positioning error®fat B, of;,
and dimensional variations1, anddl,, follows from eq.KB) and
is given by eq[(9).

olg

6fi :\]Xi 5 with \]Xi — |:C91i C91i+92i 6'2

; OX =

i S0y+62 ] [
The norm off = [&f],---, &7 ,---,&f1]T, ||8f||, is the global

positioning error o€ on Sy. The sensitivity Jacobian matrix of

the manipulator]y, is a(2n x 2) matrix composed of matrices

] ©)

6

Jy. The relation betweedf, Jx and dimensional variationsx,
is given by eq|(70).

Of = Jdx  with  Jy=[J5 -5 --Ix 1" (10)

The robustness of the manipulator with respect to dimen
sional variations is quantified by robustness inéx defined
in section[B. Rl; is the maximum singular value afy and
corresponds to the maximum norm of positioning errorEof
||6f||max when the norm of dimensional variations is unitaey;
d243812=1.

o8 p-h= 1 A%
s /2.5001—
24169 !
S T 7
259847
6 LEAIANT ,
7695\\\\ \b |
K N
hb=RN 0N |
§ N :\Qopt
i A
2 : ‘\\\\ li-b=r
;
llopt
0 ‘ o

Figure 10. Rl = f(l1,12)

Let St be made up of four point®;, P,, Ps, P4, whose Carte-
sian coordinates are (1,5), (2,7), (3,7), (4,6), respelyti\Fig
shows the isocontours dRl in the feasible design variable
space. We can notice thRi, isocontours form a family of el-
lipses and thaRl, is a minimum when design variables belong
to the circleCyop. In fact, the algebraic expressionif, can be

derived as shown in ef.{11):
: Ly 1313

Rb=,/n+ oSy n+
’ \/ i; § \/ i; 212

wherex; andy; are the Cartesian coordinates of pdit Thus,
the set of solutiond{, |5), satisfying eq[(11) for a fixeRl, is ei-
ther ellipsee; or ellipses, whose equations até /a? + L3/b? =
c andL?/a3 +L3/b3 = c, respectively, where; = b, = 1/Rl,

(11)

ay =b; =1/,/2n—RI3. L1 andL, are the expressions bfand
I> in the coordinate frame rotated of 45deg with respect to the



reference frame of the design variable space. Thusndey,
depicted in Fid.]1, are the isocontours of robustness ifdgex

L2 b I

b2

al

€2 €l

&h

b=cpnstant

b | a2

Figure 11. Design Variables (I1,|2) corresponding to the same Rl»

12 12
2 ,12_ = 2 2 _ = 2
EHE=1 3 X =13 AR (12)

According to eq[(A1)RL, is a minimum when ed.(12) is sat-
isfied, i.e. when dimensioningl{,l2) belongs to the circle of

radius the square root of the mean of square distances betwee

pointsA and P, and centered at the origin of the design space
variable. Therefore, this circle correspond€tg,. Its radius is
equal to 6.87. Thus, there exists an infinite number of dimen-
sionings (,I2) that minimizeRl. Three of them are depicted in

Fig[12.

T - Manipulator 1

o+— Manipulator 2

» =+ Manipulator 3
-2 -1 0 1 2 3 4 5 6 7

Figure 12. Robust Manipulators

According to eq[(]1), the maximum global positioning er-
ror of E is a minimum when cosines of anglég tend towards

zero. It means that the links of a robu& thanipulator should be
almost perpendicular. That is apparent in Eb.lz. The obthi
robust dimensions are independent of the amount of vanistio
and tolerate globally the largest variations.

As there are several robust manipulators, the designer ce
choose another criterion to be optimized. For instance,ame c
take into account the cost or the complexity of the mechanism
Here, the optimal robust manipulator is supposed to be tiee on
with the best dexterity. This criterion is frequently usadmia-
nipulator design. It evaluates the ease of a manipulatotaoLge
motions or arbitrary motions in all directions. It is qudiet by
the condition number of its kinematic Jacobian mat [Z0je
smaller this condition number, the higher the dexteritysiBes,
the manipulator is isotropic when its condition number isaq
to one, ]. Let)k be the kinematic Jacobian matrix of thR 2
manipulator:

—l1sin(B1) —12sin(B1 + B2) —I2sin(B1 + 62)

Y= 1|1 cog1) +12c001 +6) 12c080;+67)

(13)

For any posture of the manipulator defined by ar@izlethe
condition number oy is a minimum if and only i, = Il\/§/2
[Rd]. Let £ be the line of equatiofy = 11v/2/2. Doy, the in-
tersection ofcyop With £, depicts the optimal robust manipula-
tor, cf Fig. In conclusion, theRmanipulator of link lengths
[1 =l10pt =5.61 andlz = Ixopt = 3.97 is the optimal robust one,
i.e.. the one with the best dexterity among the least sensitive
ones to dimensional variations that allow their end effeEt¢o
hit all points inSy. This manipulator is the second one depicted
in Fig.,i.e.: the one whose links are depicted with bold lines.

In conclusion, the robust design method gave the set of a
the robust manipulators. The optimal dimensioning was ehos
among this set by means of another criterion, namely theedext
ity. In the following section, the tolerance synthesis noetpre-
sented in sectioﬁl4 is used to compute the optimal dimenision:
tolerances of the selected manipulator.

5.1.2 Tolerance synthesis of the 2R manipulator
In addition to the fact thaE has to hit every point ofr, its
positioning error has to be smaller thanyiri whatever its pose.

Fig.@ depicts the design sensitivity ellipses of the optim
robust manipulator defined in the previous section, whegetar
Sr is defined byPy, P, P3, P4, plotted in Fig. The shape, size
and orientation of these ellipses depend only on the seoctnd a
ated joint variabled,, of the manipulator8, belongs to interval
[B2min, B2may to allow E to hit all points ofSy. Moreover, points
on these ellipses lead to the same positioning erré, @qual to
10 um.

The optimal dimensional toleranc@diop: and Alyopt Of
lengthsl; and |, are computed from the tolerance synthesis
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Figure 13. Tolerance Box

method developed in sectidh 4. The ellipse used in the tol-
erance synthesis algorithm is the one correspondin@pty,

i.e. the one with the smallest semi-axis. FinalBdiopt =
Alopt = 5.82um and the corresponding tolerance box is depicted
in Fig[L3.

PointsA1(1,0), A2(0,1), Az(—1,0), A4(0,—1) belong to all
design sensitivity ellipses of the manipulator becauseitamn
variation inlj and no variation ij, (i # j), lead to a unitary po-
sitioning error of its end effector. As an ellipse is conv&ylare
A1A2AzA4 is included in all the design sensitivity ellipses what-
ever the bounds d,. It follows that eq.@4) is a sufficient con-
dition for the positioning error o to be smaller than 1gm
whatever its pose.

Al + Al < 10um (14)

Without the tolerance synthesis method developed in sectio
H, the designer would have chosen dimensional tolerafbes
andAl, by means of qu:M). Herd 10pt andAlygp: do not re-
spect eq[(14) becausop + Alopt = 11.64um. However, they
allow the positioning error o to be smaller that 1dm onSy.

So, knowing the target of the manipulator, the tolerancé®gis
method proposed in secti@ 4 is more interesting than tHe suf
cient condition, defined by eﬂl4), to synthesize its disi@mal
tolerances.

The R manipulator has been studied in order to get graph-
ical interpretations of the results and algebraic expoessof
robustness indeRl,. However, the foregoing methods can be
applied to more general mechanisms &ligimay be computed
numerically, as for the study of thé&k3nanipulator in the follow-
ing section.

Figure 14. 3R Manipulator

5.2 Tolerance synthesis ofa 3R manipulator

A three-dof serial positioning manipulator with three rev-
olute joints is shown in Fig.14. Modified D-H parameters are
used to describe its geometty [219;, 62, B3 are the actuated
joint variables of the B manipulator andly, r», d3, d4 denote
its dimensions. Its inverse geometric model was studie@2 [
The positioning errorgg, of end effectorE, has to be smaller
than 1@m at any point®, i = 1,---,n, of a path. Variations in
01, 82 andb3 are negligible because the encoders are supposed
be very accurate. Seg depends on variations in the other D-H
parameters. Here, only variationsdp, r», d3 are considered in
order to get graphical representation.

The relation between the positioning erroiEoét R, of;, and
dimensional variation&dy, &r», anddds, is given by eq[(15).

cosB;; —SinByj cosHyj cosHy;
sinBy; cosPy; SinBy cosBy;
0 0 —sinBy

ofi =JyOx with Jy, =
(15)

whereB1; and By are the values o; and 6, at P, computed

with the inverse kinematic model of the manipula@ [22}=

lex &y eZ]T whereey, e, ande, denote the Cartesian coordinates

of E anddx = [dd; or» 6d3]T wheredd,, or,, dds are variations

in dy, rp, d3, respectively.

The norm ofdf = [f],--- &f - 8fT]T, ||8f||, is the global
positioning error ofE. The sensitivity Jacobian matrix of the
manipulatorJy, is a(3n x 2) matrix composed of matricek,.
The relation betweedf, Jy, anddx, is given by eq@O).

Assuming thath = 5 and Cartesian coordinates of points
Pl,Pz,Pg,P4,P5, are (1, 1, 1), (2, -2, 3), (5, 6, 2),(-1, -4, 3), (2, 3,
5), respectively. IndeRl,, defined in sectioﬂ 3, is usedto find the
robust dimensioning of the manipulator, and is computedarim
ically. Here,Rl, is a minimum and the design of the manipulator
is robust wherd, = 1.75,r, = 2.5, d3 = 3.25, andds = 2.5.

Fig[L3 depicts the most restrictive ellipsoid of the matapu
tor and its optimal tolerance box. The most restrictivepshid,
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Figure 15. The Most Restrictive Ellipsoid & the Optimal Tolerance Box

&mr, IS the one with the smallest semi-axis among the five de-

sign ellipsoids of the manipulator and corresponds to pBint
The tolerance synthesis method proposed in seﬂion 4 istased
compute the optimal tolerance box included in the mosticestr
tive ellipsoid,i.e.: the following algorithm is used to compute
Adoopt, Aroopt andAdaopt:

max|u; Uaus|
u

st. U (Ul,U2,U3) € &mr
up >0
us>0
|Ui| > MXimin , i= 1---,3

r d
whereAximin = 1pm, AXomin = d—zAxlmin, DXamin = d—zAxlmin
The results of this optimization problem araj = 4.08y,
up = —5.77panduz = 4.08y. Thus,Adzgpt = 4.08um, Argopt =
5.77um andAdsopt = 4.08um.
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Figure 16. Validation of the Optimal Tolerance Box

Fig[L§ depicts the values ef whendd,, 3r», 3ds, are be-

tween —Adypt and Adyopt, —Aroept and Arggp, —Adsept and
Adsopt, respectively, and for the five poses of the manipulator .
€e is always smaller than 10n. It means that the positioning
error ofE is smaller than 1fam for any posture of the manipula-
tor when the tolerances db, r, andds are Adygpt, Arogpt, and
Adsopt, respectively.
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Figure 17. The Optimal Tolerance Box is not included in the Octahedron

Points B1(1,0,0), B(—1,0,0), B3(0,1,0), Ba(0,—1,0),
Bs(0,0,1) andBg(0,0,—1) belong to all design sensitivity ellip-
soids of the manipulator because a unitary variation of &gdes
variable and no variation of the others lead to a unitaryatamn
of the position ofE. As an ellipsoid is a convex volume, octahe-
dronBy, By, B3, B4, Bs, Bg depicted in Fig|:1|7 is included in all the
design sensitivity ellipsoids of the manipulator such thabint
on the surface leads to a positioning errooéqual to 10um.

It follows that eq.[1B) is a sufficient condition for the pisiing
error ofE to be smaller than 1m whatever its pose.

Ady 4 Arp + Adz < 10um (16)

Without the tolerance synthesis method proposed in sectio
E, the designer would have chosen dimensional tolerafidgs
Arp, and Adz by means of ec{ﬂ6). Heré\doopt, Aroopt, and
Adsopt do Not respect ecmlG) becausdyopt + Ar2opt + Adsopt =
13.9um. It means that the optimal tolerance box is not included
in octahedromB,, By, B3, B4, Bs, Bg, as depicted by FiEIl?. How-
ever, they allow the positioning error & to be smaller that 10
um ateach posi,i=1,---,5. So, knowing the target of the ma-
nipulator, the tolerance synthesis method proposed i is
more interesting than the sufficient condition, defined h
to synthesize its dimensional tolerances.

In conclusion, the optimal dimensional tolerances of the
3R manipulator areAd, = 4.08um, Arp = 5.77um and,Ads =
4.08um so that the positioning error & is less than 1um at
any pointR,i=1,---,5.



6 Conclusions

This paper has provided a new and efficient tolerance syn-
thesis method for mechanisms, based on a robust design ap{10]
proach. The study of the robustness of a mechanism follows
two consecutive steps, which are independent and complemen
tary. The first step aims at computing its robust dimensigns b
means of an appropriate robustness index. The Euclidean nor
of the sensitivity Jacobian matrix is such an index. Thestud
of a damper confirmed that the Euclidean norm of its sensitiv- [12]
ity Jacobian matrix is more suitable than its condition nemb
to quantify the robustness of a mechanism. This method yield
the set of all the robust manipulators and allows the designe
integrate other criteria. Then, the developed toleranoéhggis
method is used to compute the optimal tolerance box of the se-
lected robust manipulator. The theory is illustrated by s&dal
manipulators. The application of this theory to the robestign
and tolerance synthesis of parallel manipulators is onleeohext
steps in our research work.
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