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TOPOLOGICAL DERIVATIVES FOR NETWORKS OF

ELASTIC STRINGS

G. LEUGERING AND J. SOKOLOWSKI

Abstract. We consider second order problems on metric graphs under
given boundary and nodal conditions. We consider the problem of chang-
ing the topology of the underlying graph in that we replace a multiple
node by an imported subgraph, or, in reverse, concentrate a subgraph
to a single node or delete or add edges, respectively. We wish to do so in
some optimal fashion. More precisely, given a cost function we may look
at such operations in order to find an optimal topology of the graph.
Thus, finally we are looking into the topological gradient of an elliptic
problem on a graph.

1. Introduction

Ordinary or time-dependent partial differential equations on metric graphs
are a subject of great importance in various applications. In contrast to such
objects on discrete graphs, see e.g. [21], where only node-to-node relations
and consequently discrete linear and nonlinear partial difference equations
are considered, on a metric graph we consider a material variable x along
each individual edge, such that we can introduce local equations, i.e. differen-
tial equations, possibly with varying coefficients along edges, which are then
to be coupled at the inner vertices. Such couplings, as seen below, depend on
the local equations, and more importantly, can be parametrized by gener-
alized Kirchhoff conditions. To this end, one can introduce Sturm-Liouville
type operators on metric graphs and discuss the problem of characterizing
self-adjoint nodal conditions. It is interesting to observe that the develop-
ment of differential equations on metric graphs has taken place in parallel, for
mechanical structures (see e.g. [15]) and, more recently, for quantum graphs
(see e.g. [23]). While in mechanical networks typically vectorial quantities
are to be considered, quantum graph problems are genuinely scalar. The
problem for scalar equations, in particular motivated by quantum graphs,
has been solved by Kostrykin and Schrader [23]. For mechanical systems,
typically the classical Kirchhoff condition has been used (see Lagnese et.al.
[15], Lagnese and Leugering [16]. In this paper we extend the theory to vec-
torial equations, that, in the context of mechanics, account for longitudinal,
vertical and lateral motion along an edge - even twist and shearing can be
included when dealing with Timoshenko-beams along edges.
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Moreover, the optimization of the topology of the metric graph ’carrying a
process’ is of paramount interest in many applications.
Edgewise linear problems on graphs in that context reduce to truss-like
structures and the topology optimization thereof has been of vital interest
in structural mechanics (cf. e.g. Rozvany and Kocvara and Zowe [26, 11]
as well as Mroz and Bojczuk [19] where only longitudinal strains are trans-
mitted). Also in the context of flow problems in branching vascular and
irrigational systems ( cf. e.g. Durand [8] for flow in branching vascular sys-
tems, de Wolf [7] for flow in gas pipe-networks, and Brenot et.al. [5] for
irrigational networks ), problems of optimal topology have been analyzed in
recent years. See Klarbring et.al. [10]
Locally varying problems, as discussed here, relate to elasticity problems
on metric graphs. We leave the corresponding treatment of beams and,
hence, frame-structures to a forthcoming publication. Such elastic 3-D grid-
structures, where a thickness parameter and local stiffness is involved, can
be taken as being representative of material structures like ceramic, poly-
meric or metallic foams, but also they can be taken in the context of carbon
nano-tubes as the mechanical structure carrying other processes, like light-
transmission. Is is well-known, see e.g. the work of Kuchment [12, 13],
Post [25], Exner and Post [9] and many others, that the topology of such
metric graphs plays an important role in the study of their physical prop-
erties. In particular, the spectrum of such an operator on a metric graph is
largely determined by the underlying discrete graph structure. See the work
of von Below [28], see also Nicaise [22]. The occurance of so-called band-
gaps is thus crucially related to the spectrum of the incidence matrix of the
graph (see definition below). Thus, changing the incidence matrix at a given
multiple node results in changing the spectrum. Also the inverse problem of
determining the physical properties of an underlined metric graph problem
including its topology has been of much interest recently. See Belishev [3],
Belishev and Vakulenko [4], Avdonin and Kurasov [1] and Avdonin, Leuger-
ing and Mykhailov [2]. In these articles the Steklov-Poincaré map plays a
key role.
In material sciences on asks the reverse question: how can we achieve a
certain desired optimal band-gap structure in changing the topology of the
graph. Moreover, in the context of meta-materials one asks for auxetic struc-
tures, such that the global bulk material, a homogenized one, has, say, a neg-
ative Poisson ratio. Questions of this sort necessitate a variational theory of
topology changes, a topological sensitivity analysis of differential operators
on metric graphs. A first paper in this direction is Leugering and Sokolowski
[18].
We need to introduce some notation. We consider a simple graph (V,E) = G
in Rd, d = 2, 3, with vertices V = {vJ |J ∈ J } and edges E = {ei|i ∈ I}.
Let m = |J |, n = |I| be the numbers of vertices and edges, respectively.
In general the edge-set may be a collection of smooth curves in R2, parametrized
by their arc lengths. The restriction to straight edges is for the sake of sim-
plicity only. The more general case, which is of course also interesting in
the combination of shape and topology optimization, can also be handled.
However this is beyond these notes.
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Figure 1. A typical graph

We associate to the edge ei the unit vector ei aligned along the edge.
(e⊥i )1, (e⊥i )2 denote the orthogonal unit vectors. In the planar case we only
have e⊥i Given a node vJ we define

IJ := {i ∈ I|ei is incident at vJ}

the incidence set, and dJ = |IJ | the edge degree of vJ . The set of nodes splits
into simple nodes JS and multiple nodes JM according to dJ = 1 and dJ > 1,
respectively. On G we consider a vector-valued function r representative of
the displacement of the network (see Figure 2)

(1.1) r : G→ Rnp := Πpi

i∈IR, pi ≥ 1∀i ∈ I.

The numbers pi represent the degrees of freedom of the physical model used
to describe the behavior of the edge with number i. For instance, p = 1 is
representative of a heat problem, whereas p = 2, 3 is used in an elasticity
context on graphs in 2 or 3 dimensions. The pi’s may change in the network
in principle. However, in this paper we insist on pi = p = 2,∀i in the planar
case. See Lagnese, Leugering and Schmidt [15] and Lagnese and Leugering
[16] for details on the modeling.
Once the function r is understood as being representative of, say, a defor-
mation of the graph, we may localize it to the edges

(1.2) ri := r|ei
: [αi, βi] → Rp, i ∈ I,

where ei is parametrized by x ∈ [αi, βi] =: Ii,0 ≤ αi < βi, ℓi := βi − αi. See
Figure 2
We introduce the incidence relation

diJ :=

{
1 if ei ends at vJ

−1 if ei starts at vJ .
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X

Y

Figure 2. Representation of planar displacement

Accordingly, we define

xiJ :=

{
0 if diJ = −1

ℓi if diJ = 1.

We will use the notation ri(vJ) instead of ri(xiJ). In order to represent the
material considered on the graph, we introduce stiffness matrices

Ki = Eidiag(κi, κ
⊥1

i , κ⊥2

i )ET
i ,(1.3)

Ei = (ei, e
⊥1

i , e⊥2

i ) ∈ Rd,d.(1.4)

Obviously, the longitudinal stiffness is given by κi, whereas the transverse
ans lateral stiffness is given by κ⊥1

i , κ⊥2

i . This can be related to 1-d analoga
of the Lamé parameters. In general, the stiffness parameters can vary along
the edge. We introduce Dirichlet and Neumann simple nodes as follows. As
the displacements and, consequently, the forces are vectorial quantities, we
may consider nodes, where the longitudinal (or tangential) displacement or
forces are kept zero, while the transverse displacements of forces are not
constrained, and the other way round. We thus define

J t
D := {J ∈ JS |ri(vJ ) · ei = 0},

J n
D := {J ∈ JS|ri(vJ) · e⊥i = 0},

J t
N := {J ∈ JS |diJKir

′
i(vJ) · ei = 0},

J n
N := {J ∈ JS|diJKir

′
i(vJ ) · e⊥i = 0},

for the planar situation, the 3-d case being completely analogous. Notice
that these sets are not necessarily disjoint. Obviously, the set of completely
clamped vertices can be expressed as

(1.5) J 0
D := J t

D ∩ J n
D

Similarly, a vertex with completely homogenous Neumann conditions is ex-
pressed as J n

N ∩ J t
N . At tangential Dirchlet nodes in J t

D we may, however,
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consider normal Neumann-conditions as in J n
N and so on. The system of

equations governing the full transient motion is then given by

(1.6)





ρr̈i − (Ki(r
i)′)′ + cir

i = f i ∈ (0, ℓi)

ri(vD) = uD, i ∈ ID,D ∈ JD

diJ(ri)′(vN ) = gJ i ∈ IN , N ∈ JN

ri(vJ ) = rj(vJ ) i, j ∈ IJ , J ∈ JM
∑

i∈IJ

diJ (Ki(r
i)′)(vJ ) = 0 J ∈ JM

ri(·, 0) = ri
0, r

i
t(·, 0) = ri

1,

,

where the dot signifies a time-derivative and the prime a spatial derivative.
In this representation we used capital letters for vertices in order to improve
the readability of the formulae. It is important to understand the coupling
conditions (1.6)4,5. Indeed, the first of these conditions simply expresses the
continuity of displacements across the vertex vJ . Without this condition the
network falls apart. The second condition reflects the physical law that the
forces at the vertex vJ , in the absence of additional external forces acting
on vJ , should add up to zero. Notice that the coupling at multiple nodes
vJ , those where |IJ | > 1, is a vectorial equation. This is in contrast to the
out-of-the-plane model, where no such vectorial couplings occur which, in
turn, makes the problem then independent of the particular geometry. In
the case treated here the geometry, represented by the triple (ei, e

⊥1

i , e⊥2

does play a crucial role. See Figure 3
In this paper we consider the time-invariant case with constant coefficients,
obtained from (1.6) using time-harmonics. We will also put ci = 0, thus
we do not consider an elastic coupling to the environment. Then we obtain
the classical Helmholtz problem locally on each edge together with nodal
conditions as above.

2. Self-adjoint operators on metric graphs in Rd

Using time-harmonics , i.e. ri(t, x) = eiωtri(x), i ∈ I, we can transform (1.6)
into the following Helmholtz-problem on the metric graph G.

(2.7)





Kir
′′

i + ω2ri = fi on (0, ℓi)

AD
J ri(vJ ) +BN

J r
′

i(vJ) = gJ i ∈ IJ , J ∈ JS

∑
i∈IJ

diJKir
′

i(vJ) = gJ J ∈ JM

ri(vJ) = rj(vJ) ∀i, j ∈ IJ .

.

We define
AD

J , B
N
J ∈ Rd,d, rank [AD

J , B
N
J ] = d,

rg(AD
J ) ⊥ rg(BN

J ).

At a multiple node vJ , J ∈ JM we may introduce matrices

(2.8) AJ , BJ ∈ Rd dJ×d dJ

such that
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Figure 3. Star-graph

(2.9) rank [AJ , BJ ] = d dJ .

If we introduce rJ ,KrJ ′

as

(2.10) rJ =
(
ri1(vJ), . . . , ridJ

(vJ )
)T

,

(2.11) KrJ ′

=
(
di1Ki1r

′
i1(vJ ), . . . , didJ

KidJ
r′idJ

(vJ )
)T

.

We may express the multiple-node conditions (2.7)3,4 as

(2.12) AJr
J +BJKr

J ′

= GJ , J ∈ JM .

In particular,
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(2.13) AJ =




Id −Id
Id 0 −Id
...

...
. . .

. . .

Id 0 · · · 0 −Id
0 0 · · · 0 0



,

(2.14) BJ =




0 · · · · · · · · · 0
...

...
0 · · · · · · · · · 0
Id Id · · · Id Id


 ,

(2.15) GJ = (0 . . . 0, gJ )T .

At a simple node one may likewise introduce

(2.16)

{
rS = ri(vS) S ∈ JS i ∈ IS

KrS′

= diSKir
′

i(vS) S ∈ JS i ∈ Is,
,

where, however, |IS | = dS = 1, and BD
J =: BS , A

D
J =: AS , gJ = gS . Then,

also the boundary condition (2.7)2 of simple nodes can be expressed as

(2.17) ASr
S +BSKr

S′

= gS s ∈ JS .

The rationale behind this notation becomes clear, if one considers the corres-
ponding Lagrange-identities for the operator

(2.18) Amaxr := (Kir
′′

i + ω2ri)i∈I =: A0r

on

(2.19) Dmax = H0 =

N∏

i=1

L2(0, ℓi)
d, N = |N |.

We take A0 as the differential expression, rather than the operator. We
introduce the bilinear form

(r, w)1 :=

N∑

i=1

ℓi∫

0

Ki r
′

i · w
′

i dx

for all r, w ∈ H1 :=
N∏

i=1

H1(0, ℓi)
d. In order to perform integration by parts,

wen consider r, w ∈ H2 :=
N∏

i=1

H2(0, ℓi)
d. Then

(r, w)1 =
N∑

i=1

ℓi∫

0

Ki r
′

i ·w
′

i dx =
∑

J∈J

∑

i∈IJ

diJK
′

i(vJ)wi(vJ)−
N∑

i=1

ℓi∫

0

Ki r
′′

i wi dx
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and

N∑
i=1

ℓi∫
0

−Ki r
′′

i wi dx = − ∑
J∈J

∑
i∈IJ

diJ ·Ki r
′

i(vJ)wi(vJ)

+
∑

J∈J

∑
i∈IJ

ri(vJ)diJKiw
′

i(vJ)

+
N∑

i=1

ℓi∫
0

ri(−Kiw
′′

i )dx.

We define the symplectic form for each node vJ

(2.20) 〈r, w〉J :=
∑

i∈IJ

ri(vJ)diJKiw
′

i (vJ ) −
∑

i∈IJ

diJKir
′
i(vJ)wi(vJ).

This can be represented as

IJ =

(
0 Id dJ

−Id dJ
0

)

〈r, w〉J = 〈(rJ ,KrJ ′

)T , JJ (wJ ,KwJ ′

)〉

=

〈(
rJ

KrJ ′

)
,

(
0 I3dJ

−I3dJ
0

) (
wJ

KwJ ′

)〉

= 〈rJ ,KwJ ′〉 − 〈KrJ ′

, wJ 〉

=
∑

i∈IJ

ri(vJ)diJKiw
′

i(vJ ) − ∑
i∈JJ

diJKir
′

I(vJ)wi(vJ).

We, thus, have the identity

(2.21) (Amaxr, w)0 = 〈r, w〉J + (r,Amaxw)0,

where

(r, w)0 =
N∑

i=1

ℓi∫

0

r w dx ∀ r, w ∈ H0.

If we define D∞ =
N∏

i=1

C∞
0 (0, ℓi), then obviously the minimal operator

(2.22) A0, D(A0) := D∞

is symmetric i.e.

(2.23) (A0r, w)0 = (r,A0w)0, ∀ r ∈ D∞

Definition 2.1. We define the maximal and the minimal operator on the
metric graph G by (2.18),(2.22), respectively. Let the operator AA,B between
the minimal and the maximal operator on G be defined as follows.

(2.24) AA,Br = (−Kir
′′

i )Ni=1, D(AA,B) = DA,B
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(2.25) DA,B := {r ∈ H2

∣∣∣∣
ASrS +BSKr

′

S = 0, S ∈ JS

AJrJ +BJKr
′

J = 0, J ∈ JM

}
.

Theorem 2.1. Let the operator AA,B be given by Definition 2.1. Let AJB
∗
J

be self-adjoint and rank[AJ , BJ ] = d dJ . Then AA,B is a self-adjoint exten-
sion of A0 and all self-adjoint extension of A0 are parametrized by such
matrices.

Proof. Let

(2.26)





(
rJ

KJr
′

J

)
=

(
A∗

J

B∗
J

)
φ

(
wJ

KJw
′

J

)
=

(
A∗

J

B∗
J

)
ψ

with φ, ψ ∈ Rd dJ . Then

〈(rJ ,KJr
J ′

)T , JJ(wJ , KJ w
J ′

)T 〉 =

〈(
A∗

J

B∗
J

)
φ,

(
0 I

−I 0

)(
A∗

J

B∗
J

)
ψ

〉

= 〈φ, (AJB
∗
J −BJA

∗
J)ψ〉

= 0

(2.27) iff (AJB
∗
J)∗ = AJB

∗
J .

Moreover, if

(
rJ

KrJ ′

)
= JJ

(
A∗

J

B∗
J

)
φ

and

(
wJ

KwJ ′

)
= JJ

(
A∗

J

B∗
J

)
ψ,

then, according to J2
J = −I, we have

(2.28)〈(
rJ

KrJ ′

)
, JJ

(
wJ

KwJ ′

)〉
=

〈
JJ

(
A∗

J

B∗
J

)
φ, JJ

(
JJ

(
A∗

J

B∗
J

)
ψ

)〉

= − 〈JJ

(
A∗

J

B∗
J

)
φ,

(
A∗

J

B∗
J

)
ψ〉

= 0

according to (2.27). However,

(2.29) (AJ , BJ)JJ

(
A∗

J

B∗
J

)
φ = (AJB

∗
J −BJA

∗
J)φ = 0,

again according to (2.27).
We have a parametrization of elements of ker(AJ , BJ), namely:
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(2.30) z ∈ ker(AJ , BJ) iff z ∈ rg
(
JJ

(
A∗

J

BJ

))

and (2.28) shows that

(2.31) 〈r, w〉J = 0 ∀ r, w ∈ ker(AJ , BJ).

�

We assume in the sequel (2.27).
As [AJ , BJ ] is of maximal rank and AJB

∗
J is selfadjoint, the right-inverse

(2.32) RAB :=

(
A∗

J

B∗
J

) [
(AJ , BJ)

(
A∗

J

B∗
J

)]−1

exists and [AJ , BJ ]RA,Bz = z ∀ z ∈ Rd dJ .

But [AJBJ ]

(
A∗

J

B∗
J

)
= AJA

∗
J +BJB

∗
J .

Let PJ , P̃J be the orthoprojectors onto kerBJ and kerB∗
J , respectively. Let

QJ , Q̃J be the corresponding complementary operators, that map onto R =

rg(B∗
J) and R̃ = rg(BJ), respectively.

(2.33)
I = PJ ⊕QJ = P̃J ⊕ Q̃J

Rd dJ = kerBJ ⊕ rg(B∗
J) = kerB∗

J ⊕ rg(BJ ).

We consider the mappings

(2.34) B̃J := Q̃JBJQJ : R −→ R̃, CJ := B̃−1
J AJ .

Then CJ is self-adjoint. Assume

(2.35) PJ rJ = 0, CJ QJ rJ +QJ Kr
′

J = 0

holds, then

B̃−1
J (AJr

J +BJKr
J ′

) =

B̃−1
J AJ(QJ + PJ )rJ + (QJ + PJ)B̃−1

J BJKr
J ′

=

CJQJr
J + CJPJr

J +QJKr
J ′

= 0.

Hence

(2.36) AJr
J +BJKr

J ′

= 0.

The reverse direction is also true.

Corollary 2.1. Let AA,B be self-adjoint according to Theorem 2.1. Then
there are operators P,Q,C given by (2.33),(2.34) such that (2.36) is equiv-
alent to (2.35).
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We may then introduce the space

(2.37) V := {r ∈ H1 | PJr
J = 0 ∀J ∈ JM}

and compute

(r, w)1 =
N∑

i=1

ℓi∫
0

Kir
′

iw
′

i dx

= − ∑
J∈J

〈CJr
J , wJ 〉 + (A0r, w)0, ∀w ∈ V, r with (2.35)

.

We therefore define the following bilinear form on V × V:

(2.38) a(r, w) =

N∑

i=1

ℓi∫

0

Kir
′

i · w
′

i dx+
∑

J∈J
〈CJr

J , wJ 〉.

Then we have

a(r, w) = (A0r, w) ∀r ∈ D0, w ∈ V.

Example 2.1.

AJ =




I −I
... 0 −I
I . . . . . . −I
0 0


 BJ =




0 . . . 0
...
0 . . . 0
I I




kerBJ = {φ |∑φi = 0}
kerB∗

J = {φ | φdj
= 0}

rgB∗
J = {cE | Ei = I, i = 1, . . . , dJ}

rgBJ = {c (0, . . . , I)T }

AJA
∗
J ==




2I I . . . I 0

I 2I
. . . I

I . . . 2I
0 . . . . . . 0 0




BJB
∗
J ==




0 . . . 0
...
0 0
0 . . . 0 dJI




AJA
∗
J +BJB

∗
J =




I
. . .

dJI


 +




I
...
I
0


 (I, I . . . , I, 0)

Using the Sherman-Morrison-Woodbury formula we obtain
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(AJA ∗J +BJB∗)
−1 =




I
. . .

I
1
dJ
I


− 1

dJ




I . . . I 0
...
I . . . I 0
0 . . . 0 0




RABφ =




I . . . I 0
−I

. . . −I 0
0 0 I

...
...

0 0 I







φ1 − 1
dJ

dJ−1∑
i=1

φi

...

φdJ−1
− 1

dJ

dJ−1∑
i=1

φi

1
dJ

φdJ




=




dJ−1∑
i=1

φi − dJ

dJ

dJ−1∑
i=1

φi

−
(
φ2 − 1

dJ

dJ−1∑
i=1

φi

)

−
(
φdJ−i

− 1
dJ

dJ−1∑
i=1

φi

)

1
dJ

φ1

...




=




1
dJ

dJ−1∑
i=1

φi

−
(
φ1 − 1

dJ

dJ−1∑
i=1

φi

)

...

−
(
φdJ−i

− 1
dJ

dJ−1∑
i=1

φi

)

1
dJ

φdJ

...
1
dJ

φdJ




Now, PrJ = 0 ⇐⇒ rJ ∈ rg(B∗
J)

⇐⇒ ri1(vJ) = ri2(vJ ) = . . . = ridJ
(vJ)

=⇒ AJr
J = 0 =⇒ CJr

J = 0

=⇒ a(r, w) =

N∑

i=1

ℓi∫

0

Ki r
′

i · w
′

i dx

As it ist well-known for this case

Example 2.2.

AJ =




I −I
I 0 −I
...

...
. . .

. . .

I
... 0

. . . −I
−αI 0 · · · · · · 0



BJ =




0 . . . 0
...
0 . . . 0
I . . . I




PJr
J = 0 ⇐⇒ ri1(vJ) = . . . = ridJ

(vJ )
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AJr
J =




0
...
0
−αri1(vJ)




Q̃JBJQJx = AJ r =




0
...
0
−α ri1(vJ )




BJ




φ1

...
φdJ


 =




0
...
0
dy∑
i=1

φi




=




0
...
0
−αri1 (vJ)




N∑

i=1

ℓi∫

0

Ki r
′

i w
′

i dx−
∑

J∈J

α

dJ
ri1(vJ )wi1(vJ)

=
∑

J∈J

(
∑

J∈J
diJ Ki r

′

i (vJ) −
(
α ri1 (vJ)

)
)
wi1 (vJ ) + (A0 r, w)0.

3. Spectral problem and Steklov-Poincaré-maps for subgraphs

It is well-known that scalar self-adjoint problems on finite metric graphs with
certain connectivity properties have a discrete spectrum, see e.g. von Be-
low [28], Nicaise [22], Kuchment [13] and Post [25]. For vectorial self-adjoint
problems, in particular for the classical continuity- and Kirchhoff-condition
at multiple nodes, as in (2.7), see e.g. Lagnese, Leugering and Schmidt [15].
In particular, the spectrum consists of positive eigenvalues, if the graph sat-
isfies a path-constraint. Essentially that constraint says that from each node
there is a path to a Dirichlet node. As a result, the spectrum of a self-adjoint
operator on a metric graph is strongly related to the spectrum of the adja-
cency matrix of the graph itself. This correspondence is most evident in the
case of an equilateral homogenous metric graph, where equilateral indicates
that all edges have the same length. From this it is clear that the spectrum
is largely determined by the topology of the underlined discrete graph.
In reverse, it is therefore reasonable to ask in which way the topology of
a graph should be changed in order to maximize (or minimize) some given
merit (or cost) function that may or may not depend on the eigenvalues.
In this section we provide a first sketch of the possibilities of inserting a
subgraph into a given graph. For scalar problems on graphs this problem
has been considered in a PhD thesis by Ong [24], where the procedure to
insert a given graph at every node of the original graph has been termed
graph-decoration. The idea there is to delete eigenvalues from the original
graph which are related to those eigenvalues of the subgraphs ’decorating’
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(a) Reference configuration

−1 −0.5 0 0.5 1
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(b) with initial displacement
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(c) time: 1s
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−0.4

−0.2
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0.4

0.6

0.8

1

1.2

(d) time: 3s

Figure 4. Star-graph with a ’hole’ at its center

each multiple node. As always, we concentrate on a star-graph, as all other
situations can be composed out of such ’cells’.

Example 3.1. As for a homogenous situation, where we may also introduce
a potential, we consider

(3.39)

−r′′j + γjrj = λjrj x ∈ (0, ℓj)

rj(vD) = 0 ∀j ∈ ID,

rj(vJ) = rk(vJ) j, k ∈ IJ ,
∑

j∈IJ

djJr
′
j(vJ) = 0 J ∈ JM ,

See Figure 4
Even more specific, we consider a simple three-star with scalar displacement
(for the sake of convenience only) and γ = 0 we obtain the eigen-pairs

λk,γ,φk,γ
j :

1.) λk,0 = (
kπ

2
)2, φk,0

j =

√
2

3
cos(

k

2
πx), k odd , j = 1 : 3

2.) λk,0 = (kπ)2, φk,0
1 (x) = φk,0

2 (x) =
1√
3

sin(kπx),

φk,0
3 (x) = − 2√

3
sin(kπx)

Notice that ’individual’ eigenvalues correspond to Dirichlet conditions on
a given edge while ’structural’ eigenvalues correspond to eigenvalues of the
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incidence matrix. Spectral gaps according the structural eigenvalues may ap-
pear in general. See e.g. von Below[28], Nicaise [22] or Post[25] for a general
treatment of (3.39) in the scalar case.

If ω2 is not in the spectrum σ(A) of A, then problem (2.7) admits a unique
solution r. The proof is standard and, hence, is omitted. As the main con-
cern in this paper is the investigation of a metric graph under perturbations,
we proceed to consider a star-graph with the central node being inflated by
a subgraph. In other words, let Gs = (Vs, Es) be a subgraph of G. Further-
more, let ∂Gs denote the set of vertices in Vs adjacent to the nodes in G\Gs

in the remaining graph. For simplicity we assume that each vertex vJ ∈ ∂Gs

has only one edge from G \Gs attached to it, i.e.

(3.40) ∀vJ ∈ ∂Gs∃!i ∈ IG\Gs
: diJ 6= 0.

We consider the problem

(3.41)





Ki · r
′′

i + w2 ri = fi (0, ℓi) i ∈ IGs

ri(vJ ) = φJ i ∈ Is
J vJ ∈ ∂Gs

AJ r
J +BJ K rJ = 0 vJ ∈ V̇s,

Definition 3.1. Let ri be the solution of (3.41) i ∈ IGs. For vJ ∈ ∂Gs, i ∈
IJ and for φ = (φJ){J ;vJ∈∂Gs} we define the Steklov-Poincaré map by

(3.42) Λ(ω, Gs)φ =



∑

i∈Is
J

diJ Ki r
′

i (vJ )


 .

If we set n0 :=| ∂ Gs | then we have exactly n0 edges from E \Es connected
to vJ ∈ ∂ Gs. Let these indices be relabeled as e1, . . . , en0

. Then

(3.43)

{
ri(vj) = φJ , vJ ∈ ∂ Gs i ∈ IG\Gs

J

diJKi r
′

i (vJ ) + (Λ(ω, Gs)φ)J = 0

or in short

(3.44) dkJk
Kk r

′

k(vJk
) + Λ(ω, Gs)(r1(vJ1

) . . . rn0
(vJn0

)T )Jk
= 0

k = 1, . . . , is equivalent to

AJk
rJk +BJk

K rJ
′

k = 0 k = 1, . . . , n0

in the original formulation. Thus, loosely speaking, solving the problem with
the subgraph included, as described above, is equivalent to solving the prob-
lem on the graph without the subgraph but with nodal condition (2.7)3
replaced with boundary conditions (3.44). More precisely, we have:

Theorem 3.1. Let r be a solution of (2.7) and let vJ , J ∈ JM be a
multiple node with edge degree n0 = dJ . Resolve the node vJ into n0 sim-
ple nodes VJ := {vJ1

, . . . , vJn0
} such that the remaining graph Gr is given
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by V (Gr) := V (G) \ {vJ} ∪ VJ , Er = E, where we identify the n0 edges
connecting to VJ with those connecting to vJ in G. Consider a graph Gs

such that V (Gs) = ∂Gs∪
o

G, where |∂Gs| = n0. Connect VJ with the
n0 nodes from ∂Gs. Then the problem (2.7) on the new graph G∗ with
V (G∗) = V (Gr) ∪ V (Gs), E(G∗) = E(Gr) ∪ E(Gs), is equivalent to the
problem (2.7) on Gr with nodal conditions (3.44).

Remark 3.1. The methodology behind Theorem 3.1 is based on the idea
of domain decomposition using the Steklov-Poincar’e map. Iterative domain
decomposition for problems on metric graphs have been considered in Lagnese
and Leugering [16] even for networked 2-d partial differential equations. This
technique will be used in a forthcoming study for the numerical realization
of complex graph problems.
In the context of inverse problems on metric graphs see Avdonin, Leugering
and Mykhailov [2]
Results analogous to Theorem 3.1 have been provided in the scalar case of
quantum graphs by Ong [24], Kuchment [13],Post [25] and others. Kuchment
and Ong denote the procedure described in Theorem 3.1 as decoration. They
consider in addition the problem of possible band-gaps resulting from this
decoration. A similar analysis for the vectorial problems discussed here is
under way, and beyond the scope of this paper.

4. A star with a subgraph included at ist center

As described in the last section, using the Steklov-Poincaré map defined
in Definition 3.1 we can decompose the graph G into star-graphs. We thus
confine ourselves with just a single star-graph with a single multiple node
v0
J ∈ V . Assume that dJ0 = n. We may again relabel the edge indices
i = 1, . . . , n of the edges incident at v0

J .
To simplify notation we assume w.l.o.g. that the edges ei start at v0

J i.e.
diJ0 = −1 i = 1, . . . , n. We introduce n new vertices and label those
v1, . . . , vn at the points δρi ei, ρi > 0 sufficiently small such that δρi < ℓi.
We then cut out the partial edges eδi := [0, δρi] from the star graph, and
connect the newly created vertices through a finite graph Gs = (Vs, Es). We
confine ourselves with a subgraph Gs with n = |Vs|, thus, ∂Gs = Gs and all
nodes of Gs are connected to VJ = {v1, . . . vn}. See Figure 5 for an inclusion
with internal multiple node. Notice that we confine ourselves with subgraphs
without internal nodes. This is, however, just for the sake of simplicity. No
additional mathematical difficulty occurs in the more general case.

(4.45) eij :=





ρi ei − ρj ej
‖ρi ei − ρiej‖ := τiJ

if as
ij 6= 0

0 if as
ij = 0

where as
iJ is the adjacency matrix of Gs. The length of the edge with unit

vector eij is ℓij = δ τij.
At each vertex v1, . . . , vn we introduce Dirichlet data φi i = 1, . . . , n. We
consider the Steklov - Poincaré map for the subgraph Gs with respect to the
vertices {v1, . . . , vn} =: ∂ Gs.
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(b) Planar displacement

Figure 5. Star-graph with inclusion at the center

(4.46)





Kij r
′′

ij + w2 rij = fij (0, ℓij)

rij (0) = Φi

rij (ℓij) = Φi.

We then compute dijKijr
′
ij(vj) and compose for vj

(4.47)
∑

i∈Is
j

dijKijr
′
ij(vj)

In particular, we have

rij(x) = sinωK
− 1

2

ij xaij + cosωK
− 1

2

ij xbij

rij(0) = bij = Φi, ∀j ∈ Ii

rij(ℓij) = sinωK
− 1

2

ij ℓijaij + cosωK
− 1

2

ij ℓijΦi = Φj.

Hence,

aij =

(
sinωK

− 1

2

ij ℓij

)−1(
Φj − cosωK

− 1

2

ij ℓijΦi

)

and therefore

r′ij(0) = ωK
− 1

2

ij (sinωK
− 1

2

ij ℓij)
−1

(
Φj − cosωK

− 1

2

ij ℓijΦi

)

r′ij(0) starting at vj into vi and

r′ij(ℓij) = ωK
− 1

2

ij cotωK
− 1

2

ij ℓij

(
Φj − cosωK

− 1

2

ij ℓijΦi

)

−ωK− 1

2

ij sinωK
− 1

2

ij ℓijΦi.

Inserting these expressions into (4.47) we obtain

(4.48)

∑

i∈Is
j

dijKijr
′
ij(vj) = ω



∑

i∈Is
j

K
1

2

ij cotωK
− 1

2

ij


Φj

−ω
∑

i∈Is
j

K
1

2

ij(sinωK
− 1

2

ij ℓij)
−1Φi, j = 1, . . . n
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We now use ri(δρi) = Φi, i = 1. . . . n in (4.48) and recall that dii = −1, i =
1, . . . n. Thus, the nodal condition for rj at vj is given by

(4.49)

Kjr
′
j(δρj) = ω



∑

i∈Is
j

K
1

2

ij cotωK
− 1

2

ij ℓij


 rj(δρj)

−ω
∑

i∈Is
j

K
1

2

ij(sinωK
− 1

2

ij ℓij)
−1ri(δρi), i = 1, . . . , n.

Example 4.1. We assume a planar graph G and Gs a cycle connecting the
vertices v1, . . . , vn. Assume further that the local stiffness matrices are all
the same, e.g. Kij = κ2I, and the graph Gs is symmetric and 2-regular with
ℓij = δτ . Then (4.49) reads
(4.50)

Kjr
′
j(δρj) =

ωκ

sin(ωκ−1δτ)



2 cos(ωκ−1δτ)rj(δρj) −

∑

i∈Ij

ri(δρi)



 , j = 1, . . . , n.

5. Asymptotic analysis

We derive an auxiliary system from the problem on star graph with a hole:

(5.51)





Kir
′′
i + ω2ri = 0 in (δρi, ℓi)

ri(ℓi) = ui

Kir
′
i(δρi) = ω



∑

j∈Is
i

K
1

2

ij cotωK
− 1

2

ij ℓij


 ri(δρi)

−ω
∑

j∈Is
i

K
1

2

ij(sinωK
− 1

2

ij ℓij)
−1rj(δρj),

.

First of all we derive an asymptotic expansion for the Steklov-Poincaré map
in the right hand side of (5.51)1. To this end we notice

(5.52) (sinωK
− 1

2

ij ℓij)
−1 = (ωK

− 1

2

ij δτij)
−1 +

1

6
(ωK

− 1

2

ij δτij) +O(δ3)

and

(5.53) cosωK
− 1

2

ij ℓij = I − 1

2
ω2K

− 1

2

ij δ2τ2
ij +O(δ4).
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Then (4.48) has the expansion
(5.54) ∑

j∈Is
i

djiKijr
′
ji(vi) =

1

δ







∑

j∈Is
i

1

τij
Kij −

1

3
ω2δ2τij


Φi −

∑

j∈Is
i

[
1

τij
Kij +

1

6
ω2δ2τij

]
Φj +O(δ3)





=
1

δ







∑

j∈Is
i

1

τij
Kij


Φi −

∑

j∈Is
i

1

τij
KijΦj





−δω
2

6







∑

j∈Is
i

2τij


Φi + ω2τijΦj



+O(δ2).

In matrix notation this reads as
(5.55) 


∑

j∈Is
i

djiKijr
′
ji(vj)




n

i=1

=

1

δ




∑
j∈Is

1

1
τ1j
K1j − 1

τ12
K12 . . . . . . − 1

τ1n
K1n

− 1
τ12
K12

∑
j∈Is

2

1
τ2j
K2j . . . . . . . . .

. . . . . .
. . . . . .

. . . . . .
. . . . . .

− 1
τ1n
K1n − 1

τ2n
K2n . . . . . .

∑
j∈Is

n

1
τjn
Kjn







Φ1

Φ2

·
·
·
·
·
Φn




−ω
2δ

6




2
∑

j∈Is
1

τ1j τ12 . . . . . . τ1n

τ12 2
∑

j∈Is
2

τ2j . . . . . . . . .

. . . . . .
. . . . . .

. . . . . .
. . . . . .

τ1n τ2n . . . . . . 2
∑

j∈Is
n

τjn







Φ1

Φ2

·
·
·
·
·
Φn




+O(δ2)I

=:
1

δ
A0Φ − δA1Φ +O(δ2)I.

We introduce the asymptotic expansions

(5.56) rδ
i (x) = r0i (x) + δr̃i(x) + δ2 ˜̃ri(x) +O(δ2)

and

r0i (δρi) = r0i (0) + δρi(r
0
i )

′(0) +O(δ2)(5.57)

r0i (δρi) = r0i (0) + δρi(r
0
i )

′(0) +O(δ2).
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Comparing coefficients, after differentiating (5.56) twice with respect to x

and pre-multiplying by Ki, implies that r0i , r̃i,
˜̃ri solve the Helmholtz equa-

tion Kir
′′
i + ω2ri = 0. Therefore (5.57) implies

Ki(r
0
i )

′(δρi) = Ki(r
0
i )

′(0) − ω2δρir
0
i (0) +O(δ2)(5.58)

Ki(r̃
0
i )

′(δρi) = Ki(r̃
0
i )

′(0) − ω2δρir̃
0
i (0) +O(δ2).

We obtain

(5.59)

Ki(r
δ
i )

′(δρi) = Ki(r
0
i )

′(0) + δ
(
Kir̃

′
i(0) − ρiω

2r0i (0)
)

+δ2
(
Ki

˜̃r′′i (0) − ρiω
2r̃(0)

)
+O(δ2)

=
1

δ







∑

j

Kij

τij


Φi −

∑

j

Kij

τij
Φj





−δω2





1

3



∑

j

τij


Φi +

1

6

∑

j

τijΦj


+O(δ2).

Now, Φi = rδ
i (δρi) and hence

Φi = r0i (0) + δ(ρi(r
0
i )

′(0) + r̃i(0)) + δ2(ρ2
i (r

0
i )

′′(0) + ρir̃
′(0)) +O(δ3).

Therefore, (5.59) leads, after some calculus and by comparing powers of δ,
to the following identities ∀i ∈ I:

(5.60)
∑

j

Kij

τij
(r0i )(0) =

∑

j

Kij

τij
r0j (0),

(5.61)

Ki(r
0
i )

′(0) =



∑

j

Kij

τij


 ρi(r

0
i )

′(0)

−
∑

j

Kij

τij
ρj(r

0
j )

′(0)

+







∑

j

Kij

τij


 r̃(0) −

∑

j

Kij

τij
r̃j(0)



 ,

(5.62)

Ki(r̃i)
′(0) − ω2ρir

0
i =



∑

j

Kij

τij


(ρir̃

′
i(0) + ˜̃ri(0) − ρ2

iω
2K−1

i r0i
)

−
∑

j

Kij

τij

(
ρir̃

′
j(0) + ˜̃rj(0) − ρ2

jω
2K−1

j r0j

)

−ω2


1

3



∑

j

Kij

τij


 r0i (0) +

1

6

∑

j

Kij

τij
r0j (0)


 .

Now, (5.60) implies

(5.63) r0i (0) = r0j (0) =: r0(0),
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while (5.60),(5.61) imply

(5.64)
∑

i

Ki(r
0
i )

′(0) = 0.

Indeed, conditions (5.63) and (5.64) are precisely the nodal conditions for
a star graph with n edges coonected at x = 0. Thus, (r0i )i=1,...,n solves the
unperturbed problem, as it should. Adding up (5.62) we obtain

(5.65)
∑

j

Ki(r̃i)
′(0) = ω2



∑

i

ρj −
1

2

∑

ij

τij


 r0(0) =: G1(r0(0))

Still, rewriting (5.64) we obtain

(5.66)



∑

j

Kij

τij


 r̃i(0) −

∑

j

Kij

τij
r̃j(0)

= Ki(r
0
i )

′(0) −



∑

j

Kij

τij


 ρi(r

0
i )

′(0) +
∑

j

Kij

τij
ρj(r

0
j )

′(0)

:= G0((r0)′(0))i.

We have the following boundary condition

ui = rδ
i (ℓi) = r0i (ℓi) + δr̃i(ℓi) +O(δ2)

which implies

(5.67) r̃i(ℓi) = 0.

Collecting (5.65),(5.66) and (5.67) together with the fact, that r̃i solves the
Helmoltz equation locally on the edge i, we obtain the following system for
r̃:

(5.68)





Kir̃
′′ + ω2r̃i = 0

r̃i(ℓi) = 0


∑

j

Kij

τij


 r̃i(0) −

∑

j

Kij

τij
r̃j(0) = G0((r0)′(0))i

∑

j

Ki(r̃i)
′(0) = G1(r0(0))

.

We proceed to show that this system (5.68) is actually self-adjoint. Indeed,
if we define

(5.69) B =




0 0 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
I I . . . I I




andG0 = (G0((r0)′(0))1, . . . G0((r0)′(0))n)T as well asG1 = (0, 0, . . . , G1(r0(0)))T ,
r̃(0) = (r̃1(0), . . . , r̃n(0))T , r̃′(0) = (r̃′1(0), . . . , r̃

′
n(0))T , we obtain

(5.70) A0r̃(0) = G0, BKr̃′(0) = G1.
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It can be shown that the LU-decomposition A0 = LU is such that L−1B = B
and, hence, [U ,B] is equivalent to [A0,B] in the sense that the nodal condi-
tion A0r̃(0) = G0, BKr̃′(0) = G11 can be rewritten as U r̃(0)+BKr̃′(0) = G,
where G = L−1K(r0)′(0) − Uρ(r0)′(0) + BG1. The matrix UB∗ is indeed
self-adjoint and [U ,B] has full rank, such that that (5.68) is a self-adjoint
problem. Similarly, on can derive the following self-adjoint system for the
second order term ˜̃r in (5.56).

(5.71)





Ki
˜̃r′′ + ω2 ˜̃ri = 0

˜̃ri(ℓi) = 0

Ki
˜̃r′(0) = ρiω

2r̃i(0)

.

Remark 5.1. If we introduce

(5.72) r̂i(x) := r̃i(x) + ρi(r
0
i )

′(x), i = 1, . . . , n,

then r̂ satisfies

(5.73)





Kir̂
′′ + ω2r̂i = 0

r̂i(ℓi) = ρi(r
0
i )

′(ℓi)

∑

j

Kij

τij


 r̂i(0) −

∑

j

Kij

τij
r̂j(0) = Ki(r

0
i )

′(0)

∑

j

Ki(r̂i)
′(0) = −ω2 1

2

∑

ij

τijr
0
i (0)

.

Theorem 5.1. Consider the solution rδ of the perturbed problem (5.51).
Let the asymptotic expansion (5.56) be given. Then, the zeroth order term
r0 satisfies the self-adjoint equations of the unperturbed n-star-graph, while
the first order term r̃ and the second order term ˜̃r satisfies the self-adjoint
problems (5.68), (5.71), respectively.

Remark 5.2. Theorem 5.1 is in clear analogy to similar problems in 2-D or
3-D. However, it is also clear that the perturbation in ’digging a hole’ into
a graph is regular, while similar perturbations for 2-D or 3-D problems are
singular. This reflects the fact that the Green function for the locally 1-D
problem is proportional to the absolute value function, where in 2-D or 3-D
it is proportional to ln or 1/(·), respectively.

6. Topological sensitivity for the total energy

In this section we consider the sensitivity of the energy with respect to
changes in the topology. We mainly focus on graph inclusions as in the last
section. For the sake of simplicity we consider a star-graph with n edges as
before. We recall the energy of this system:

(6.74) E0(r
0) =

1

2

n∑

i=1

ℓi∫

0

Kir
′
i · r′i − ω2r2i dx.
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Using the boundary and nodal conditions (2.7) we have after integrating by
parts

(6.75)
E0(r

0) =
1

2

n∑

i=1

ℓi∫

0

Kir
′
i · r′i − ω2r2i dx

=
1

2
〈S(r0), r0〉,

where

(6.76) S(r0) := (Ki(r
0
i )

′(0))ni=1

is the Steklov-Poincaré operator at the central node. Notice that the center
is located at x = 0 for all participating edges, and hence diJ = −1,∀i ∈ IJ .
We now consider the energy in the n principal edges of the perturbed system,
i.e. the edges of the star that has been perturbed by inserting the subgraph
(hole).

(6.77) E0(r
δ) =

1

2

n∑

i=1

ℓδ
i∫

0

Ki(r
δ
i )

′ · (rδ
i )

′ − ω2(rδ
i )

2dx.

Again, integrating by parts we obtain
(6.78)

E0(r
δ) =

1

2

n∑

i=1

ℓδ
i∫

0

Ki(r
δ
i )

′ · (rδ
i )

′ − ω2(rδ
i )

2dx

=
1

2

n∑

i=1

Ki(r
δ
i )

′(ℓi) · (rδ
i )

′(ℓi) −
1

2

n∑

i=1

Ki(r
δ
i )

′(δρi) · (rδ
i )

′(δρi)

=
1

2

n∑

i=1

Ki((r
0
i )

′(ℓi) + δr̃′i(ℓi) + δ2 ˜̃r′(ℓi) +O(δ3)) · (r0i (ℓi) + δr̃(ℓi) +O(δ2))

−1

2

n∑

i=1

Ki(r
δ
i )

′(δρi)r
δ
i (δρi),

where we have used (5.56). We recall (3.42),(3.43), (3.44) and (4.48), leading
to (5.51) and (5.55). If we insert the asymptotic expansion, we obtain
(6.79)

n∑

i=1

Ki(r
δ
i )

′(δρi) · rδ
i (δρi)

= δ
{
〈A0(r̃(0) + ρ(r0)′(0)), r̃(0) + ρ(r0)′(0))〉 − 〈A1r

0(0), r0(0)〉
}

=

n∑

i=1

Ki(r
0
i )

′(0)r0i (0)

+δ





n∑

i=1

Ki(r
0
i )

′(0) · (r̃(0) + ρir
0
i (0)) −

ω2

2
(
∑

ij

τij)r
0(0) · r0(0)



+O(δ2).
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We go back to (6.78). We have

(6.80)

n∑

i=1

Ki(r
δ
i )

′(ℓi) · (rδ
i )(ℓi)

=
n∑

i=1

Ki(r
0
i )

′(ℓi) · r0i (ℓi)

+δ

{
n∑

i=1

Kir̃
′(ℓi) · r0i (ℓi) +Ki(r

0
i )

′(ℓi)) · r̃i(ℓi)
}

+O(δ2).

But, according to (5.68) r̃(ℓi) = 0, and r0i (ℓi) = ui, i = 1, . . . , n. We thus
obtain

(6.81)

E0(r
δ) =

n∑

i=1

Ki(r
δ
i )

′(ℓi) · (rδ
i )(ℓi) −

n∑

i=1

Ki(r
δ
i )

′(δρi) · rδ
i (δρi)

= E0(r
0) + δ

{
n∑

i=1

Kir̃
′(ℓi) · r0i (ℓi)

−
n∑

i=1

Ki(r
0
i )

′(0) · (r̃(0) + ρi(r
0
i )

′(0)) +
ω2

2
(
∑

ij

τij)r
0(0) · r0(0)





+O(δ2).

We need to add the energy stored in the subgraph. To this end we introduce
expansions of rδ

ij. However, as the lengths ℓij = δτij are already first order,
we only need first order expansions here.

(6.82)

rδ
ij(x) =: r0ij(x) +O(δ)

rij(δτij) = r0ij(0) + δτij(r
0)′ij(0)

(rδ
ij)

′(δτij) = (r0ij)
′(0) − δτijω

2K−1
ij r

0
ij(0).

We use (6.82) in order to derive the following expansion

(6.83)

∑

ij

Kij(rδij)
′(δτij)r

δ
ij(δτij) −Kij(r

δ
ij(0)r

δ
ij(0)

= −δ1

2

∑

ij

(
ω2τijr

0
ij(0)

2 − τijKij(r
0
ij)

′(0)(r0ij)
′(0)
)
.

Actually, the second part in the expansion (6.87) is equal to the Steklov-
Poncaré operator times displacements of the subgraph. Indeed, by (3.44),
(4.48) and (6.79), the energy stored in the subgraph has the expansion

(6.84) Eδ(r
δ) = −δ1

2

∑

ij

(
ω2τijr

0
ij(0)

2 − τijKij(r
0
ij)

′(0)(r0ij)
′(0)
)
.
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Therefore, the total energy of the perturbed system has the asymptotic
expansion

(6.85)

E(rδ) = E0(r
δ) + Eδ(r

δ)

= E0(r
0) + δ

{
n∑

i=1

Kir̃
′(ℓi) · r0i (ℓi)

−
n∑

i=1

Ki(r
0
i )

′(0) · (r̃(0) + ρi(r
0
i )

′(0)) +
ω2

2
(
∑

ij

τij)r
0(0) · r0(0)

−1

2

∑

ij

(
ω2τijr

0
ij(0)

2 − τijKij(r
0
ij)

′(0)(r0ij)
′(0)
)


 .

We may use r̂ to simplify (6.84). We notice that

(rij
0)′(0) =

1

τij
(r̂j(0) − r̂(0)j)

and therefore

(6.86)

Eδ(rδ) = E0(r
0)

+δ
1

2

∑

i

{
ρiKi(r

0
i )

′(ℓi)(r
0
i )

′(ℓi) − 2Kir̂(0)(r
0
i )′(0) + ω2ρir

0
i (ℓi)

2

−ω2 1

2

∑

j↔i

τijr
0
i (0)

2 +
1

2

∑

j↔i

Kij

τij
(r̂j(0) − r̂i(0))

2



 .

We define the topological derivative of the energy.

Definition 6.1. Let Eδ(rδ) and E0(r
0) be the energies corresponding to the

perturbed and the unperturbed graph, respectively. Then the limits, if it exists,

(6.87)
1

δ

(
Eδ(rδ) − E0(r

0)
)

=: T (r0(0), (r0)′(0))

is called the topological derivative of E at the center node of the star-graph.

The asymptotic expansion of the energy given by (6.86) is still not explicit,
as it involves the solution r̂ of the auxiliary system (5.73). This solution,
however is completely determined by the solution and its derivative at zero,
r0(0), (r0)′(0), of the original unperturbed problem. Also, r0(ℓi), (r

0
i )

′(ℓi)
can be expressed by r0(0), (r0)′(0) by solving on the individual edges once
the corresponding data (Dirichlet or Neumann) are given. Thus, solving the
auxiliary problem in terms of these values gives a quadratic form

(6.88)

〈P (r0(0), (r0)′(0)), (r0(0), (r0)′(0))〉

=
1

2

∑

i

{
ρiKi(r

0
i )

′(ℓi)(r
0
i )

′(ℓi) − 2Kir̂(0)(r
0
i )

′(0) + ω2ρir
0
i (ℓi)

2

−ω2 1

2

∑

j↔i

τijr
0
i (0)

2 +
1

2

∑

j↔i

Kij

τij
(r̂j(0) − r̂i(0))

2



 .

The matrix P in (6.88) can be viewed as an analogue of the polarization
matrix in 2-D and 3-D elasticity problems. See [20].
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Theorem 6.1. Under the assumption above, the sensitivity of the energy
associated with the star-graph containing a cyclic subgraph (hole) with respect
to letting δ → 0 is given by

(6.89) T (r0(0), (r0)′(0)) = P (r0(0), (r0)′(0)), (r0(0), (r0)′(0))〉,
where P according to (6.88) is given by the solution of (5.73).

Example 6.1. We consider as a simple case the situation where the mate-
rial is completely homogenous and the geometry of the hole is symmetric i.e.
Ki = κI, ρi = ρ, ℓi = ℓ i = 1, . . . , n, Kij = κI, τij = τ∀i, j. The latter as-
sumption implies that we have a subgraph that is complete (fully connected).
In this situation we can explicitly compute r̃, the solution of the auxiliary
problem (5.68). Indeed, after some elementary calculus we arrive at

(6.90)

r̂i(0) = − ω

κ
1

2

tan(ωκ−
1

2 ℓ)(ρ− nτ

n
)r0(0) + (

τ

n
− ρ)

ωκ−
1

2

sinωκ−
1

2 ℓ
ui + (ρr0i )

′(0).

The solution of the unperturbed system r0 can also be given explicitly. In
order to actually compute the sensitivity of the total energy with respect to
inserting a symmetric fully connected subgraph, we use the Dirichlet bound-
ary condition ri(ℓ) = ui, i = 1 . . . , n.. In particular,

(6.91) r0i (ℓ) = ui = sinωκ−
1

2 ℓ
κ

1

2

ω
(r0i )

′(0) + cosωκ−
1

2 ℓr0(0),

(6.92)

r0i (0) =
1

n

1

cosωκ−
1

2 ℓ

∑

j

uj =: r0(0)

(r0i )
′(0) =

ωκ−
1

2

sinωκ−
1

2 ℓ
(ui −

1

n

∑

j

uj).

This gives the topological gradient in terms of the inputs u as follows
(6.93)

T (r0(0), (r0)′(0))

=
ω2

2

{(
ρ(tan2(ωκ−

1

2 ℓ) − cot2(ωκ−
1

2 ℓ)) − τn

2 cos2(ωκ−
1

2 ℓ)

)
1

n
|
∑

i

ui|2

+
ρ

sin2(ωκ−
1

2 ℓ)

∑

i

|ui|2
}

− κ
1

2ω

sin(ωκ−
1

2 ℓ)

∑

i

r̂(0)(ui −
1

n

∑

j

uj) +
κn

2τ

∑

i∈I

∑

i↔j

|r̂i(0) − r̂j(0)|2.

Example 6.2. In this example we are even more specific, in that we assume
that r0(ℓ) = ui = µei, i = 1, . . . , n, where

∑
i

ei = 0 which corresponds

to a symmetric displacement at all simple nodes of the star-graph. In this
situation we conclude with

(6.94) T (0, u) = ω2 1

sin2 ωκ−
1

2 ℓ
(ρn− τ)µ2.
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It follows in particular that for a three-star, where ρ =
√

3
3

,τ = 1

(6.95) T (0, u) = ω2 1

sin2 ωκ−
1

2 ℓ
(
√

3 − 1)µ2 > 0.

Thus, the three-star under 120◦ degree angles is energetically optimal with
respect to the edge-degree. The analogous result has been shown in [18] for a
string with Wrinkler support.

Example 6.3. The situation is similar for 4 strings in R3 where ρ = 1
4

√
6

and

(6.96) T (0, u) = ω2 1

sin2 ωκ−
1

2 ℓ
(
√

6 − 1)µ2 > 0,

which shows that also that configuration is energetically optimal under sym-
metric boundary conditions. Indeed, for six edges ρ = 1 and this is exactly
the bounding case where cutting out a hole (i.e. including a cyclic subgraph)
compensates the total loss of the edges that had been shortened. In this case

(6.97) T (0, u) = −ω2 3

sin2 ωκ−
1

2 ℓ
µ2 < 0,

which implies that releasing the edge-degree 6 of the central node to a series
of 6 nodes with degree 3 is favored. This result strongly suggests that hexag-
onal structures are energetically optimal. This is common place in material
sciences where one deals with foam-structures.

7. Compliance optimization

Energy, as a functional to optimize is strongly related to the widely used
compliance-functional. This amounts to minimizing

(7.98) J (r, f, g) :=
∑

i∈I

ℓi∫

0

fi · ridx+
∑

J∈J

∑

i∈IJ

gJ · rj(vJ),

where r solves (2.7). In order to stay in the context of this presentation, we
allow for nodal forces only, keeping the more general case including spatial
varying coefficients for a future publication. In this case the energy is given
by

(7.99) E(r) :=
1

2

∑

iI

ℓi∫

0

Kir
′
i · r′i − ω2ri · ridx−

∑

J∈J

∑

i∈IJ

gJ · ri(vJ)

and as r solves the variational problem

(7.100)
∑

i∈I

ℓi∫

0

Kir
′
i · w′

i − ω2ri · widx =
∑

J∈J

∑

i∈IJ

gJ · wi(vJ),

the compliance functional can be expressed for a solution of (7.100) as

(7.101)
∑

J∈J

∑

i∈IJ

gj · rj(vJ) = −2E(r).
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Therefore, one may use (6.86), where, however, the solution r0 has to be
evaluated for the problem with nodal forces at the simple nodes. Then the
quantities of interest are

r0i (0) = − 1

ω



∑

j

K
1

2

j tanωK
− 1

2

j ℓj




−1
∑

i

(
cosωK

− 1

2

i ℓi

)−1

gi,

(r0i )
′(0) = K

− 1

2

i

1

ω

(
K

− 1

2

i ω

(
cosωK

− 1

2

i ℓi

)−1

gi

− 1

ω
tanωK

− 1

2

i ℓi




∑

j

(
K

− 1

2

j ℓi

)− 1

2 ∑

i

(
cosωK

− 1

2

i ℓi

)−1

gi






 ,(7.102)

ri(ℓi) = sinωK
− 1

2

i ℓi
K

1

2

i

ω
(r0i )

′(0) + sinωK
− 1

2

i ℓir
0
i (0).

We may now introduce (7.102) into (6.86) in order to evaluate the topological
gradient for the energy functional in this case. We refrain from doing this
here in the full complexity, as no new mathematical insight is to be expected
from this. Now, minimizing the compliance is typically accompanied with
penalizing the total volume. In the context of our elastic network we come
to penalize the total length. Indeed, the stiffness operators Ki involve, in
the context of linear elasticity, the cross section and the Young modulus.
Therefore, we would have to separate the cross-sectional part and multiply
with the length. As in our example we will be dealing with homogenous
material, we just take the total length as a measure.

(7.103) P(ℓδ) := α



∑

i

(ℓi − δρi) +
1

2

∑

i

∑

j∈Is
j

(δτij)


 ,

where obviously P(ℓ0) = α
∑
i

ℓi is the total length of the unperturbed star-

graph. We then obtain

(7.104)
1

δ

{
P(ℓδ) −P(ℓ0)

}
= α


1

2

∑

i

∑

j∈Is
i

τij −
∑

i

ρi


 .

As to be expected, the penalized compliance minimization turns out to be
a balance between energy- and ’perimeter’-sensitivity. We give a canonical
example.

Example 7.1. We assume that the material is homogenous, as in the other
examples. We pull at each end of the elastic star-network with a force gi.
Moreover, we assume that the sum of forces is zero

∑
i

gi = 0. We also

consider a planar situation with a 2-regular cycle as subgraph. In this case
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some calculus shows that (7.102) reduces to

r0i (0) = − 1

ω
cot(ωκ−

1

2 ℓ)
1

n

∑

i

gi = 0(7.105)

(r0i )
′(0) =

1

κ

1

cosωκ−
1

2 ℓ


gi −

1

n

∑

j

gj




=
1

κ

1

cosωκ−
1

2 ℓ
gi,(7.106)

r0i (ℓ) = sinωκ−
1

2 ℓ
κ

1

2

ω
(r0i )

′(0) + cosωκ−
1

2 ℓr0i (0)(7.107)

=
1

κ
1

2ω
tan(ωκ

1

2 ℓ)gi.

Moreover, the first order variation r̂ of (5.73) gives

r̂i(ℓ) = ρ(r0i )
′(ℓ) = ρ

1

κ

1

cosωκ−
1

2 ℓ
gi(7.108)

r̂i(0) =
1

nκ

1

cosωκ−
1

2 ℓ
gi.

This gives the total sensitivity

(7.109) T (r) = − 1

nκ

1

cosωκ−
1

2 ℓ
(ρn− 1)

∑

i

g2
i + αn (1 − ρ) .

In case of a symmetric three-star n = 3, τij = 1, ρ =
√

3
3

where one pulls
at each end such that the system is in equilibrium

∑
i

gi = 0, then with we

obtain

(7.110) T (r) = − 1

3κ

1

cosωκ−
1

2 ℓ

(√
3 − 1

)∑

i

g2
i + α3

(
1 −

√
3

3

)
.

This shows that if one takes α sufficiently large, thereby insisting on the
volume constraint, then no hole is favored depending on how close ω is to
πkκ

1

2

ℓ
, whereas otherwise a hole may be favorable.

8. Other functionals and graph operations

Besides the energy and the compliance we can also consider other cost func-
tionals,such as tracking-type functions.

(8.111) J (r) :=
1

2

∑

i∈I

ℓi∫

0

|ri − rd
i |2dx,

where rd
i ∈ C0(0, ℓi) is a profile to be tracked by the solutions ri of (2.7).

Now, let rδ be the solution of the perturbed problem and set

(8.112) J δ(rδ) :=
1

2

∑

i∈I

ℓi∫

δρi

|rδ
i − rd

i |2dx+
1

2

∑

i∈I,j∈Is
j

δτij∫

0

|rij − rd
ij |2dx.
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In this case the topological derivative can be calculated as follows.
(8.113)

1

δ

{
J δ(rδ) − J (r0)

}
= T (r)

=
∑

i

ℓi∫

0

r̃i ·
(
r0i − rd

i

)
dx

∑

i

|r0i (0) − rd
i (0)|2 −

∑

i∈I,j∈Is
j

τij|r̃i(0) + ρi(r
0
i )

′(0)|2.

We may introduce the adjoint p = (pi)i corresponding to r0 as follows.

(8.114)





Kip
′′
i + ω2pi = r0i − rd

i in (0, ℓi)

pi(ℓi) = 0

pi(0) = pj(0), i 6= j = 1, . . . , n
n∑

i=1

Kip
′
i(0) = 0

.

Then integrating by parts and using the boundary and nodal conditions for
r̃,

∑

i

ℓi∫

0

r̃i(Kip
′′
i + ω2pi)dx = −

∑

i

Kip
′
i(0)r̃i(0) + ω2



∑

i

ρi −
1

2

∑

ij

τij


 r0(0)p(0).

Indeed, the expression
∑
i

Kip
′
i(0)r̃i(0) can be expressed in terms of a qua-

dratic form using the pseudoinverse RA,B (2.32). Thereby, one can define an
analogue of the polarization matrix. Notice that r0i (0), pi(0) are indepen-
dent of i. Indeed, it can be shown, that the following explicit representation
holds.
(8.115)

p(0) = −
(
ω
∑

i

K
1

2

i cotωK
− 1

2

i ℓi

)−1

·
∑

i

ℓi∫

0

(
sinωK

− 1

2

i ℓi

)−1

sin(ωK
− 1

2

i (ℓi − s)){r0i − rd
i }(s)ds

p′i(0) = −ωK− 1

2

i cot(ωK
− 1

2

i ℓi)p(0)

+K−1
i

ℓi∫

0

(
sinωK

− 1

2

i ℓi

)−1

sin(ωK
− 1

2

i (ℓi − s)){r0i − rd
i }(s)ds.
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We put this together with (8.113) and obtain.

(8.116)

T (r) = −
∑

i

Kip
′
i(0)r̃i(0)

+ω2



∑

i

ρi −
1

2

∑

ij


 r0(0)p(0) −

∑

i

|r0i (0) − rd
i (0)|2

−
∑

i∈I,j∈Is
j

τij|r̃i(0) + ρi(r
0
i )

′(0)|2.

Example 8.1. If we assume homogenous material and Dirichlet conditions
r0i (ℓ) = ui where we may consider the standard symmetric scenario

∑
ei = 0

and ui = µei then

(8.117) T (r) = −
(
∑

i

p′i(0) · ei
)
µ− ω2(ρn− 1)2

1

sinωℓ
µ2 −

∑

i

|rd
i (0)|2.

Obviously, depending on the load at 0, the frequency ω, the topology given by
the unite vectors ei and the adjoint p, (8.1) provides a positive or a negative
sensitivity.

Remark 8.1. We remark that more complicated functionals can be investi-
gated with respect to topological sensitivities along the same line. It is clear
that as the load and topological scenario becomes asymmetric, it is more
likely that the topological gradient is negative for a range of frequencies. Ro-
bustness issues with respect to frequencies, however, are beyond this paper
and will be investigated in a forthcoming publication.

Remark 8.2. As has been demonstrated in Leugering and Sokolowski [18],
on can also compute the sensitivities of the energy, the compliance and other
functionals with respect to introducing a single edge or with respect to re-
leasing a node of degree, say n, into one of degree n− 1 and one with degree
3. We do not want to overload this paper with these additional possibilities.
It is, however, clear that everything can be done in the framework developed
here.
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Foundations and Applications 1994.

[16] J. E. Lagnese and G. Leugering, Domain decomposition methods in optimal control of
partial differential equations., ISNM. International Series of Numerical Mathematics
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Nancy I BP 239 54506 Vandoeuvre-Lès-Nancy Cedex France

E-mail address: Jan.Sokolowski at iecn.u-nancy.fr


	1. Introduction
	2. Self-adjoint operators on metric graphs in Rd
	3. Spectral problem and Steklov-Poincaré-maps for subgraphs
	4. A star with a subgraph included at ist center
	5. Asymptotic analysis
	6. Topological sensitivity for the total energy
	7. Compliance optimization
	8. Other functionals and graph operations
	References

