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We consider second order problems on metric graphs under given boundary and nodal conditions. We consider the problem of changing the topology of the underlying graph in that we replace a multiple node by an imported subgraph, or, in reverse, concentrate a subgraph to a single node or delete or add edges, respectively. We wish to do so in some optimal fashion. More precisely, given a cost function we may look at such operations in order to find an optimal topology of the graph. Thus, finally we are looking into the topological gradient of an elliptic problem on a graph.

Introduction

Ordinary or time-dependent partial differential equations on metric graphs are a subject of great importance in various applications. In contrast to such objects on discrete graphs, see e.g. [START_REF] Neuberger | Nonlinear Elliptic Partial Difference Equations on Graphs[END_REF], where only node-to-node relations and consequently discrete linear and nonlinear partial difference equations are considered, on a metric graph we consider a material variable x along each individual edge, such that we can introduce local equations, i.e. differential equations, possibly with varying coefficients along edges, which are then to be coupled at the inner vertices. Such couplings, as seen below, depend on the local equations, and more importantly, can be parametrized by generalized Kirchhoff conditions. To this end, one can introduce Sturm-Liouville type operators on metric graphs and discuss the problem of characterizing self-adjoint nodal conditions. It is interesting to observe that the development of differential equations on metric graphs has taken place in parallel, for mechanical structures (see e.g. [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF]) and, more recently, for quantum graphs (see e.g. [START_REF] Kostrykin | Kirchhoff's rule for quantum wires[END_REF]). While in mechanical networks typically vectorial quantities are to be considered, quantum graph problems are genuinely scalar. The problem for scalar equations, in particular motivated by quantum graphs, has been solved by Kostrykin and Schrader [START_REF] Kostrykin | Kirchhoff's rule for quantum wires[END_REF]. For mechanical systems, typically the classical Kirchhoff condition has been used (see Lagnese et.al. [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF], Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF]. In this paper we extend the theory to vectorial equations, that, in the context of mechanics, account for longitudinal, vertical and lateral motion along an edge -even twist and shearing can be included when dealing with Timoshenko-beams along edges.

Moreover, the optimization of the topology of the metric graph 'carrying a process' is of paramount interest in many applications. Edgewise linear problems on graphs in that context reduce to truss-like structures and the topology optimization thereof has been of vital interest in structural mechanics (cf. e.g. Rozvany and Kocvara and Zowe [START_REF] Rozvany | Topology optimization of multi-purpose structures[END_REF][START_REF] Kočvara | How mathematics can help in design of mechanical structures[END_REF] as well as Mroz and Bojczuk [START_REF] Mróz | Finite topology variations in optimal design of structures[END_REF] where only longitudinal strains are transmitted). Also in the context of flow problems in branching vascular and irrigational systems ( cf. e.g. Durand [START_REF] Durand | Architecture of optimal transport networks[END_REF] for flow in branching vascular systems, de Wolf [START_REF] Wolf | Optimal dimensioning of pipe networks with application to gas transmission networks[END_REF] for flow in gas pipe-networks, and Brenot et.al. [START_REF] Bernot | Branched transportation networks[END_REF] for irrigational networks ), problems of optimal topology have been analyzed in recent years. See Klarbring et.al. [START_REF] Klarbring | Topology optimization of flow networks[END_REF] Locally varying problems, as discussed here, relate to elasticity problems on metric graphs. We leave the corresponding treatment of beams and, hence, frame-structures to a forthcoming publication. Such elastic 3-D gridstructures, where a thickness parameter and local stiffness is involved, can be taken as being representative of material structures like ceramic, polymeric or metallic foams, but also they can be taken in the context of carbon nano-tubes as the mechanical structure carrying other processes, like lighttransmission. Is is well-known, see e.g. the work of Kuchment [START_REF] Kuchment | Qunatum graphs I, some basic structures[END_REF][START_REF] Kuchment | Qunatum graphs II, some spectral properties of quantum and combinatorial graphs[END_REF], Post [START_REF] Post | Spectral analysis of metric graphs an their related spaces[END_REF], Exner and Post [START_REF] Exner | Quantum netowrks modeled by graphs[END_REF] and many others, that the topology of such metric graphs plays an important role in the study of their physical properties. In particular, the spectrum of such an operator on a metric graph is largely determined by the underlying discrete graph structure. See the work of von Below [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2networks[END_REF], see also Nicaise [START_REF] Nicaise | Spectre des reseaux topologiques finis[END_REF]. The occurance of so-called bandgaps is thus crucially related to the spectrum of the incidence matrix of the graph (see definition below). Thus, changing the incidence matrix at a given multiple node results in changing the spectrum. Also the inverse problem of determining the physical properties of an underlined metric graph problem including its topology has been of much interest recently. See Belishev [START_REF] Belishev | Boundary spectral inverse problem on a class of graphs (trees) by the BC method[END_REF], Belishev and Vakulenko [START_REF] Belishev | Inverse problems on graphs: recovering the tree of strings by the BC-method[END_REF], Avdonin and Kurasov [START_REF] Avdonin | Inverse problems for quantum trees[END_REF] and Avdonin, Leugering and Mykhailov [START_REF] Avdonin | On an inverse problem for tree-like networks of elastic strings[END_REF]. In these articles the Steklov-Poincaré map plays a key role. In material sciences on asks the reverse question: how can we achieve a certain desired optimal band-gap structure in changing the topology of the graph. Moreover, in the context of meta-materials one asks for auxetic structures, such that the global bulk material, a homogenized one, has, say, a negative Poisson ratio. Questions of this sort necessitate a variational theory of topology changes, a topological sensitivity analysis of differential operators on metric graphs. A first paper in this direction is Leugering and Sokolowski [START_REF] Leugering | Topological sensitivity analysis for elliptic problems on graphs[END_REF]. We need to introduce some notation. We consider a simple graph (

V, E) = G in R d , d = 2, 3, with vertices V = {v J |J ∈ J } and edges E = {e i |i ∈ I}. Let m = |J |, n = |I|
be the numbers of vertices and edges, respectively. In general the edge-set may be a collection of smooth curves in R 2 , parametrized by their arc lengths. The restriction to straight edges is for the sake of simplicity only. The more general case, which is of course also interesting in the combination of shape and topology optimization, can also be handled. However this is beyond these notes.

Figure 1. A typical graph

We associate to the edge e i the unit vector e i aligned along the edge. (e ⊥ i ) 1 , (e ⊥ i ) 2 denote the orthogonal unit vectors. In the planar case we only have e ⊥ i Given a node v J we define

I J := {i ∈ I|e i is incident at v J }
the incidence set, and d J = |I J | the edge degree of v J . The set of nodes splits into simple nodes J S and multiple nodes J M according to d J = 1 and d J > 1, respectively. On G we consider a vector-valued function r representative of the displacement of the network (see Figure 2)

(1.1) r : G → R np := Π p i i∈I R, p i ≥ 1 ∀i ∈ I.
The numbers p i represent the degrees of freedom of the physical model used to describe the behavior of the edge with number i. For instance, p = 1 is representative of a heat problem, whereas p = 2, 3 is used in an elasticity context on graphs in 2 or 3 dimensions. The p i 's may change in the network in principle. However, in this paper we insist on p i = p = 2, ∀i in the planar case. See Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF] and Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] for details on the modeling. Once the function r is understood as being representative of, say, a deformation of the graph, we may localize it to the edges (1.2)

r i := r| e i : [α i , β i ] → R p , i ∈ I,
where e i is parametrized by x ∈ [α i , β i ] =: I i ,0 ≤ α i < β i , ℓ i := β i -α i . See Figure 2
We introduce the incidence relation

d iJ := 1 if e i ends at v J -1 if e i starts at v J . X Y Figure 2. Representation of planar displacement
Accordingly, we define

x iJ := 0 if d iJ = -1 ℓ i if d iJ = 1.
We will use the notation r i (v J ) instead of r i (x iJ ). In order to represent the material considered on the graph, we introduce stiffness matrices

K i = E i diag(κ i , κ ⊥ 1 i , κ ⊥ 2 i )E T i , (1.3) 
E i = (e i , e ⊥ 1 i , e ⊥ 2 i ) ∈ R d,d . (1.4)
Obviously, the longitudinal stiffness is given by κ i , whereas the transverse ans lateral stiffness is given by κ ⊥ 1 i , κ ⊥ 2 i . This can be related to 1-d analoga of the Lamé parameters. In general, the stiffness parameters can vary along the edge. We introduce Dirichlet and Neumann simple nodes as follows. As the displacements and, consequently, the forces are vectorial quantities, we may consider nodes, where the longitudinal (or tangential) displacement or forces are kept zero, while the transverse displacements of forces are not constrained, and the other way round. We thus define

J t D := {J ∈ J S |r i (v J ) • e i = 0}, J n D := {J ∈ J S |r i (v J ) • e ⊥ i = 0}, J t N := {J ∈ J S |d iJ K i r ′ i (v J ) • e i = 0}, J n N := {J ∈ J S |d iJ K i r ′ i (v J ) • e ⊥ i = 0}
, for the planar situation, the 3-d case being completely analogous. Notice that these sets are not necessarily disjoint. Obviously, the set of completely clamped vertices can be expressed as

(1.5) J 0 D := J t D ∩ J n D
Similarly, a vertex with completely homogenous Neumann conditions is expressed as J n N ∩ J t N . At tangential Dirchlet nodes in J t D we may, however, consider normal Neumann-conditions as in J n N and so on. The system of equations governing the full transient motion is then given by

(1.6)                            ρr i -(K i (r i ) ′ ) ′ + c i r i = f i ∈ (0, ℓ i ) r i (v D ) = u D , i ∈ I D , D ∈ J D d iJ (r i ) ′ (v N ) = g J i ∈ I N , N ∈ J N r i (v J ) = r j (v J ) i, j ∈ I J , J ∈ J M i∈I J d iJ (K i (r i ) ′ )(v J ) = 0 J ∈ J M r i (•, 0) = r i 0 , r i t (•, 0) = r i 1 ,
, where the dot signifies a time-derivative and the prime a spatial derivative.

In this representation we used capital letters for vertices in order to improve the readability of the formulae. It is important to understand the coupling conditions (1.6) 4,5 . Indeed, the first of these conditions simply expresses the continuity of displacements across the vertex v J . Without this condition the network falls apart. The second condition reflects the physical law that the forces at the vertex v J , in the absence of additional external forces acting on v J , should add up to zero. Notice that the coupling at multiple nodes v J , those where |I J | > 1, is a vectorial equation. This is in contrast to the out-of-the-plane model, where no such vectorial couplings occur which, in turn, makes the problem then independent of the particular geometry. In the case treated here the geometry, represented by the triple (e i , e ⊥ 1 i , e ⊥ 2 does play a crucial role. See Figure 3 In this paper we consider the time-invariant case with constant coefficients, obtained from (1.6) using time-harmonics. We will also put c i = 0, thus we do not consider an elastic coupling to the environment. Then we obtain the classical Helmholtz problem locally on each edge together with nodal conditions as above.

Self-adjoint operators on metric graphs in R d

Using time-harmonics , i.e. r i (t, x) = e iωt r i (x), i ∈ I, we can transform (1.6) into the following Helmholtz-problem on the metric graph G.

(2.7) If we introduce r J , Kr J ′ as (2.10)

             K i r ′′ i + ω 2 r i = f i on (0, ℓ i ) A D J r i (v J ) + B N J r ′ i (v J ) = g J i ∈ I J , J ∈ J S i∈I J d iJ K i r ′ i (v J ) = g J J ∈ J M r i (v J ) = r j (v J ) ∀i, j ∈ I J . . We define A D J , B N J ∈ R d,d , rank [A D J , B N J ] = d, rg(A D J ) ⊥ rg(B N J ). At a multiple node v J , J ∈ J M we may introduce matrices (2.8) A J , B J ∈ R d d J ×d d J
r J = r i 1 (v J ), . . . , r i d J (v J ) T , (2.11 
)

Kr J ′ = d i 1 K i 1 r ′ i 1 (v J ), . . . , d i d J K i d J r ′ i d J (v J ) T .
We may express the multiple-node conditions (2.7) 3,4 as (2.12)

A J r J + B J Kr J ′ = G J , J ∈ J M .
In particular, (2.13)

A J =        I d -I d I d 0 -I d . . . . . . . . . . . . I d 0 • • • 0 -I d 0 0 • • • 0 0        , (2.14) B J =      0 • • • • • • • • • 0 . . . . . . 0 • • • • • • • • • 0 I d I d • • • I d I d      , (2.15 
)

G J = (0 . . . 0, g J ) T .
At a simple node one may likewise introduce

(2.16) r S = r i (v S ) S ∈ J S i ∈ I S Kr S ′ = d iS K i r ′ i (v S ) S ∈ J S i ∈ I s ,
, where, however, |I S | = d S = 1, and B D J =: B S , A D J =: A S , g J = g S . Then, also the boundary condition (2.7) 2 of simple nodes can be expressed as (2.17)

A S r S + B S Kr S ′ = g S s ∈ J S .
The rationale behind this notation becomes clear, if one considers the corresponding Lagrange-identities for the operator (2.18)

A max r := (K i r ′′ i + ω 2 r i ) i∈I =: A 0 r on (2.19) D max = H 0 = N i=1 L 2 (0, ℓ i ) d , N = |N |.
We take A 0 as the differential expression, rather than the operator. We introduce the bilinear form (r, w)

1 := N i=1 ℓ i 0 K i r ′ i • w ′ i dx for all r, w ∈ H 1 := N i=1 H 1 (0, ℓ i ) d .
In order to perform integration by parts,

wen consider r, w ∈ H 2 := N i=1 H 2 (0, ℓ i ) d . Then (r, w) 1 = N i=1 ℓ i 0 K i r ′ i •w ′ i dx = J∈J i∈I J d iJ K ′ i (v J )w i (v J )- N i=1 ℓ i 0 K i r ′′ i w i dx and N i=1 ℓ i 0 -K i r ′′ i w i dx = - J∈J i∈I J d iJ • K i r ′ i (v J )w i (v J ) + J∈J i∈I J r i (v J )d iJ K i w ′ i (v J ) + N i=1 ℓ i 0 r i (-K i w ′′ i )dx.
We define the symplectic form for each node v J

(2.20) r, w J :=

i∈I J r i (v J )d iJ K i w ′ i (v J ) - i∈I J d iJ K i r ′ i (v J )w i (v J ).
This can be represented as

I J = 0 I d d J -I d d J 0 r, w J = (r J , Kr J ′ ) T , J J (w J , Kw J ′ ) = r J Kr J ′ , 0 I 3d J -I 3d J 0 w J Kw J ′ = r J , Kw J ′ -Kr J ′ , w J = i∈I J r i (v J )d iJ K i w ′ i (v J ) - i∈J J d iJ K i r ′ I (v J )w i (v J ).
We, thus, have the identity

(2.21) (A max r, w) 0 = r, w J + (r, A max w) 0 , where (r, w) 0 = N i=1 ℓ i 0 r w d x ∀ r, w ∈ H 0 . If we define D ∞ = N i=1
C ∞ 0 (0, ℓ i ), then obviously the minimal operator

(2.22) A 0 , D(A 0 ) := D ∞ is symmetric i.e. (2.23) (A 0 r, w) 0 = (r, A 0 w) 0 , ∀ r ∈ D ∞ Definition 2.1.
We define the maximal and the minimal operator on the metric graph G by (2.18), (2.22), respectively. Let the operator A A,B between the minimal and the maximal operator on G be defined as follows.

(2.24)

A A,B r = (-K i r ′′ i ) N i=1 , D(A A,B ) = D A,B (2.25) D A,B := {r ∈ H 2 A S r S + B S Kr ′ S = 0, S ∈ J S A J r J + B J Kr ′ J = 0, J ∈ J M .
Theorem 2.1. Let the operator A A,B be given by Definition 2.1. Let A J B * J be self-adjoint and rank[A J , B J ] = d d J . Then A A,B is a self-adjoint extension of A 0 and all self-adjoint extension of A 0 are parametrized by such matrices.

Proof. Let

(2.26)

         r J K J r ′ J = A * J B * J φ w J K J w ′ J = A * J B * J ψ with φ, ψ ∈ R d d J . Then (r J , K J r J ′ ) T , J J (w J , K J w J ′ ) T = A * J B * J φ, 0 I -I 0 A * J B * J ψ = φ, (A J B * J -B J A * J )ψ = 0 (2.27) iff (A J B * J ) * = A J B * J . Moreover, if r J Kr J ′ = J J A * J B * J φ and w J Kw J ′ = J J A * J B * J ψ,
then, according to J 2 J = -I, we have

(2.28) r J Kr J ′ , J J w J Kw J ′ = J J A * J B * J φ, J J J J A * J B * J ψ = -J J A * J B * J φ, A * J B * J ψ = 0
according to (2.27). However,

(2.29) (A J , B J )J J A * J B * J φ = (A J B * J -B J A * J )φ = 0,
again according to (2.27).

We have a parametrization of elements of ker(A J , B J ), namely:

(2.30) z ∈ ker(A J , B J ) iff z ∈ rg J J A * J B J and (2.28) shows that (2.31) r, w J = 0 ∀ r, w ∈ ker(A J , B J ).
We assume in the sequel (2.27).

As [A J , B J ] is of maximal rank and

A J B * J is selfadjoint, the right-inverse (2.32) R AB := A * J B * J (A J , B J ) A * J B * J -1 exists and [A J , B J ] R A,B z = z ∀ z ∈ R d d J . But [A J B J ] A * J B * J = A J A * J + B J B *
J . Let P J , P J be the orthoprojectors onto ker B J and ker B * J , respectively. Let Q J , Q J be the corresponding complementary operators, that map onto R = rg(B * J ) and R = rg(B J ), respectively.

(2.33)

I = P J ⊕ Q J = P J ⊕ Q J R d d J = ker B J ⊕ rg(B * J ) = ker B * J ⊕ rg(B J
). We consider the mappings (2.34)

B J := Q J B J Q J : R -→ R, C J := B -1 J A J . Then C J is self-adjoint. Assume (2.35) P J r J = 0, C J Q J r J + Q J Kr ′ J = 0 holds, then B -1 J (A J r J + B J Kr J ′ ) = B -1 J A J (Q J + P J )r J + (Q J + P J ) B -1 J B J Kr J ′ = C J Q J r J + C J P J r J + Q J Kr J ′ = 0. Hence (2.36) A J r J + B J Kr J ′ = 0.
The reverse direction is also true.

Corollary 2.1. Let A A,B be self-adjoint according to Theorem 2.1. Then there are operators P, Q, C given by (2.33),(2.34) such that (2.36) is equivalent to (2.35).

We may then introduce the space (2.37)

V := {r ∈ H 1 | P J r J = 0 ∀J ∈ J M } and compute (r, w) 1 = N i=1 ℓ i 0 K i r ′ i w ′ i dx = - J∈J C J r J , w J + (A 0 r, w) 0 , ∀w ∈ V, r with (2.

35)

.

We therefore define the following bilinear form on V × V:

(2.38) a(r, w) = N i=1 ℓ i 0 K i r ′ i • w ′ i dx + J∈J C J r J , w J .
Then we have

a(r, w) = (A 0 r, w) ∀r ∈ D 0 , w ∈ V.
Example 2.1.

A J =      I -I . . . 0 -I I . . . . . . -I 0 0      B J =      0 . . . 0 . . . 0 . . . 0 I I      kerB J = {φ | φ i = 0} kerB * J = {φ | φ d j = 0} rgB * J = {cE | E i = I, i = 1, . . . , d J } rgB J = {c (0, . . . , I) T } A J A * J ==      2I I . . . I 0 I 2I . . . I I . . . 2I 0 . . . . . . 0 0      B J B * J ==      0 . . . 0 . . . 0 0 0 . . . 0 d J I      A J A * J + B J B * J =    I . . . d J I    +      I . . . I 0      (I, I . . . , I, 0)
Using the Sherman-Morrison-Woodbury formula we obtain

(A J A * J +B J B * ) -1 =      I . . . I 1 d J I      - 1 d J      I . . . I 0 . . . I . . . I 0 0 . . . 0 0      R AB φ =          I . . . I 0 -I . . . -I 0 0 0 I . . . . . . 0 0 I                   φ 1 -1 d J d J -1 i=1 φ i . . . φ d J -1 -1 d J d J -1 i=1 φ i 1 d J φ d J          =                d J -1 i=1 φ i -d J d J d J -1 i=1 φ i -φ 2 -1 d J d J -1 i=1 φ i -φ d J -i -1 d J d J -1 i=1 φ i 1 d J φ 1 . . .                =                     1 d J d J -1 i=1 φ i -φ 1 -1 d J d J -1 i=1 φ i . . . -φ d J -i -1 d J d J -1 i=1 φ i 1 d J φ d J . . . 1 d J φ d J                     Now, P r J = 0 ⇐⇒ r J ∈ rg(B * J ) ⇐⇒ r i 1 (v J ) = r i 2 (v J ) = . . . = r i d J (v J ) =⇒ A J r J = 0 =⇒ C J r J = 0 =⇒ a(r, w) = N i=1 ℓ i 0 K i r ′ i • w ′ i dx
As it ist well-known for this case Example 2.2.

A J =        I -I I 0 -I . . . . . . . . . . . . I . . . 0 . . . -I -αI 0 • • • • • • 0        B J =      0 . . . 0 . . . 0 . . . 0 I . . . I      P J r J = 0 ⇐⇒ r i 1 (v J ) = . . . = r i d J (v J ) A J r J =      0 . . . 0 -α r i 1 (v J )      Q J B J Q J x = A J r =      0 . . . 0 -α r i 1 (v J )      B J    φ 1 . . . φ d J    =        0 . . . 0 dy i=1 φ i        =      0 . . . 0 -αr i 1 (v J )      N i=1 ℓ i 0 K i r ′ i w ′ i dx - J∈J α d J r i 1 (v J ) w i 1 (v J ) = J∈J J∈J d i J K i r ′ i (v J ) -α r i 1 (v J ) w i 1 (v J ) + (A 0 r, w) 0 .

Spectral problem and Steklov-Poincaré-maps for subgraphs

It is well-known that scalar self-adjoint problems on finite metric graphs with certain connectivity properties have a discrete spectrum, see e.g. von Below [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2networks[END_REF], Nicaise [START_REF] Nicaise | Spectre des reseaux topologiques finis[END_REF], Kuchment [START_REF] Kuchment | Qunatum graphs II, some spectral properties of quantum and combinatorial graphs[END_REF] and Post [START_REF] Post | Spectral analysis of metric graphs an their related spaces[END_REF]. For vectorial self-adjoint problems, in particular for the classical continuity-and Kirchhoff-condition at multiple nodes, as in (2.7), see e.g. Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF]. In particular, the spectrum consists of positive eigenvalues, if the graph satisfies a path-constraint. Essentially that constraint says that from each node there is a path to a Dirichlet node. As a result, the spectrum of a self-adjoint operator on a metric graph is strongly related to the spectrum of the adjacency matrix of the graph itself. This correspondence is most evident in the case of an equilateral homogenous metric graph, where equilateral indicates that all edges have the same length. From this it is clear that the spectrum is largely determined by the topology of the underlined discrete graph.

In reverse, it is therefore reasonable to ask in which way the topology of a graph should be changed in order to maximize (or minimize) some given merit (or cost) function that may or may not depend on the eigenvalues.

In this section we provide a first sketch of the possibilities of inserting a subgraph into a given graph. For scalar problems on graphs this problem has been considered in a PhD thesis by Ong [START_REF] Beng | Spectral problems of optimal wave guides and quantum graphs[END_REF], where the procedure to insert a given graph at every node of the original graph has been termed graph-decoration. The idea there is to delete eigenvalues from the original graph which are related to those eigenvalues of the subgraphs 'decorating' As always, we concentrate on a star-graph, as all other situations can be composed out of such 'cells'.

Example 3.1. As for a homogenous situation, where we may also introduce a potential, we consider

(3.39) -r ′′ j + γ j r j = λ j r j x ∈ (0, ℓ j ) r j (v D ) = 0 ∀j ∈ I D , r j (v J ) = r k (v J ) j, k ∈ I J , j∈I J d jJ r ′ j (v J ) = 0 J ∈ J M ,
See Figure 4 Even more specific, we consider a simple three-star with scalar displacement (for the sake of convenience only) and γ = 0 we obtain the eigen-pairs λ k,γ ,φ k,γ j :

1.) λ k,0 = ( kπ 2 ) 2 , φ k,0 j = 2 3 cos( k 2 πx), k odd , j = 1 : 3 2.) λ k,0 = (kπ) 2 , φ k,0 1 (x) = φ k,0 2 (x) = 1 √ 3 sin(kπx), φ k,0 3 (x) = - 2 √ 3 sin(kπx)
Notice that 'individual' eigenvalues correspond to Dirichlet conditions on a given edge while 'structural' eigenvalues correspond to eigenvalues of the incidence matrix. Spectral gaps according the structural eigenvalues may appear in general. See e.g. von Below [START_REF] Below | A characteristic equation associated to an eigenvalue problem on c 2networks[END_REF], Nicaise [START_REF] Nicaise | Spectre des reseaux topologiques finis[END_REF] or Post [START_REF] Post | Spectral analysis of metric graphs an their related spaces[END_REF] for a general treatment of (3.39) in the scalar case.

If ω 2 is not in the spectrum σ(A) of A, then problem (2.7) admits a unique solution r. The proof is standard and, hence, is omitted. As the main concern in this paper is the investigation of a metric graph under perturbations, we proceed to consider a star-graph with the central node being inflated by a subgraph. In other words, let G s = (V s , E s ) be a subgraph of G. Furthermore, let ∂G s denote the set of vertices in V s adjacent to the nodes in G \ G s in the remaining graph. For simplicity we assume that each vertex v J ∈ ∂G s has only one edge from G \ G s attached to it, i.e.

(3.40)

∀v J ∈ ∂G s ∃!i ∈ I G\Gs : d i J = 0.
We consider the problem

(3.41)        K i • r ′′ i + w 2 r i = f i (0, ℓ i ) i ∈ I Gs r i (v J ) = φ J i ∈ I s J v J ∈ ∂G s A J r J + B J K r J = 0 v J ∈ Vs , Definition 3.1.
Let r i be the solution of (3.41) i ∈ I Gs . For v J ∈ ∂G s , i ∈ I J and for φ = (φ J ) {J;v J ∈∂Gs} we define the Steklov-Poincaré map by

(3.42) Λ(ω, G s )φ =   i∈I s J d iJ K i r ′ i (v J )   .
If we set n 0 :=| ∂ G s | then we have exactly n 0 edges from E \ E s connected to v J ∈ ∂ G s . Let these indices be relabeled as e 1 , . . . , e n 0 . Then

(3.43) r i (v j ) = φ J , v J ∈ ∂ G s i ∈ I G\Gs J d iJ K i r ′ i (v J ) + (Λ(ω, G s ) φ) J = 0 or in short (3.44) d kJ k K k r ′ k (v J k ) + Λ(ω, G s )(r 1 (v J 1 ) . . . r n 0 (v Jn 0 ) T ) J k = 0 k = 1, . . . , is equivalent to A J k r J k + B J k K r J ′ k = 0 k = 1, .
. . , n 0 in the original formulation. Thus, loosely speaking, solving the problem with the subgraph included, as described above, is equivalent to solving the problem on the graph without the subgraph but with nodal condition (2.7) 3 replaced with boundary conditions (3.44). More precisely, we have: Theorem 3.1. Let r be a solution of (2.7) and let v J , J ∈ J M be a multiple node with edge degree n 0 = d J . Resolve the node v J into n 0 simple nodes V J := {v J 1 , . . . , v Jn 0 } such that the remaining graph G r is given by V (G r ) := V (G) \ {v J } ∪ V J , E r = E, where we identify the n 0 edges connecting to

V J with those connecting to v J in G. Consider a graph G s such that V (G s ) = ∂G s ∪ o G, where |∂G s | = n 0 . Connect V J with the n 0 nodes from ∂G s . Then the problem (2.7) on the new graph G * with V (G * ) = V (G r ) ∪ V (G s ), E(G * ) = E(G r ) ∪ E(G s )
, is equivalent to the problem (2.7) on G r with nodal conditions (3.44).

Remark 3.1. The methodology behind Theorem 3.1 is based on the idea of domain decomposition using the Steklov-Poincar'e map. Iterative domain decomposition for problems on metric graphs have been considered in Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] even for networked 2-d partial differential equations. This technique will be used in a forthcoming study for the numerical realization of complex graph problems. In the context of inverse problems on metric graphs see Avdonin, Leugering and Mykhailov [START_REF] Avdonin | On an inverse problem for tree-like networks of elastic strings[END_REF] Results analogous to Theorem 3.1 have been provided in the scalar case of quantum graphs by Ong [START_REF] Beng | Spectral problems of optimal wave guides and quantum graphs[END_REF], Kuchment [START_REF] Kuchment | Qunatum graphs II, some spectral properties of quantum and combinatorial graphs[END_REF],Post [START_REF] Post | Spectral analysis of metric graphs an their related spaces[END_REF] and others. Kuchment and Ong denote the procedure described in Theorem 3.1 as decoration. They consider in addition the problem of possible band-gaps resulting from this decoration. A similar analysis for the vectorial problems discussed here is under way, and beyond the scope of this paper.

A star with a subgraph included at ist center

As described in the last section, using the Steklov-Poincaré map defined in Definition 3.1 we can decompose the graph G into star-graphs. We thus confine ourselves with just a single star-graph with a single multiple node v 0 J ∈ V . Assume that d J0 = n. We may again relabel the edge indices i = 1, . . . , n of the edges incident at v 0 J . To simplify notation we assume w.l.o.g. that the edges e i start at v 0 J i.e. d iJ0 = -1 i = 1, . . . , n. We introduce n new vertices and label those v 1 , . . . , v n at the points δρ i e i , ρ i > 0 sufficiently small such that δρ i < ℓ i . We then cut out the partial edges e δ i := [0, δρ i ] from the star graph, and connect the newly created vertices through a finite graph G s = (V s , E s ). We confine ourselves with a subgraph G s with n = |V s |, thus, ∂G s = G s and all nodes of G s are connected to V J = {v 1 , . . . v n }. See Figure 5 for an inclusion with internal multiple node. Notice that we confine ourselves with subgraphs without internal nodes. This is, however, just for the sake of simplicity. No additional mathematical difficulty occurs in the more general case. ρ i e i -ρ j e j ρ i e i -ρ i e j := τ iJ if a s ij = 0 0 if a s ij = 0 where a s iJ is the adjacency matrix of G s . The length of the edge with unit vector e ij is ℓ ij = δ τ ij . At each vertex v 1 , . . . , v n we introduce Dirichlet data φ i i = 1, . . . , n. We consider the Steklov -Poincaré map for the subgraph G s with respect to the vertices {v 1 , . . . , v n } =: ∂ G s . 

   K ij r ′′ ij + w 2 r ij = f ij (0, ℓ ij ) r ij (0) = Φ i r ij (ℓ ij ) = Φ i .
We then compute d ij K ij r ′ ij (v j ) and compose for v j (4.47)

i∈I s j d ij K ij r ′ ij (v j )
In particular, we have

r ij (x) = sin ωK -1 2 ij xa ij + cos ωK -1 2 ij xb ij r ij (0) = b ij = Φ i , ∀j ∈ I i r ij (ℓ ij ) = sin ωK -1 2 ij ℓ ij a ij + cos ωK -1 2 ij ℓ ij Φ i = Φ j .
Hence,

a ij = sin ωK -1 2 ij ℓ ij -1 Φ j -cos ωK -1 2 ij ℓ ij Φ i and therefore r ′ ij (0) = ωK -1 2 ij (sin ωK -1 2 ij ℓ ij ) -1 Φ j -cos ωK -1 2 ij ℓ ij Φ i r ′ ij (0) starting at v j into v i and r ′ ij (ℓ ij ) = ωK -1 2 ij cot ωK -1 2 ij ℓ ij Φ j -cos ωK -1 2 ij ℓ ij Φ i -ωK -1 2 ij sin ωK -1 2 ij ℓ ij Φ i .
Inserting these expressions into (4.47) we obtain (4.48)

i∈I s j d ij K ij r ′ ij (v j ) = ω   i∈I s j K 1 2 ij cot ωK -1 2 ij   Φ j -ω i∈I s j K 1 2 ij (sin ωK -1 2 ij ℓ ij ) -1 Φ i , j = 1, . . . n
We now use r i (δρ i ) = Φ i , i = 1. . . . n in (4.48) and recall that d ii = -1, i = 1, . . . n. Thus, the nodal condition for r j at v j is given by (4.49)

K j r ′ j (δρ j ) = ω   i∈I s j K 1 2 ij cot ωK -1 2 ij ℓ ij   r j (δρ j ) -ω i∈I s j K 1 2 ij (sin ωK -1 2 ij ℓ ij ) -1 r i (δρ i ), i = 1, . . . , n.
Example 4.1. We assume a planar graph G and G s a cycle connecting the vertices v 1 , . . . , v n . Assume further that the local stiffness matrices are all the same, e.g. K ij = κ 2 I, and the graph G s is symmetric and 2-regular with ℓ ij = δτ . Then (4.49) reads (4.50)

K j r ′ j (δρ j ) = ωκ sin(ωκ -1 δτ )    2 cos(ωκ -1 δτ )r j (δρ j ) - i∈I j r i (δρ i )    , j = 1, . . . , n.

Asymptotic analysis

We derive an auxiliary system from the problem on star graph with a hole:

(5.51)

                       K i r ′′ i + ω 2 r i = 0 in (δρ i , ℓ i ) r i (ℓ i ) = u i K i r ′ i (δρ i ) = ω   j∈I s i K 1 2 ij cot ωK -1 2 ij ℓ ij   r i (δρ i ) -ω j∈I s i K 1 2 ij (sin ωK -1 2 ij ℓ ij ) -1 r j (δρ j ),
.

First of all we derive an asymptotic expansion for the Steklov-Poincaré map in the right hand side of (5.51) 1 . To this end we notice (5.52) (sin ωK

-1 2 ij ℓ ij ) -1 = (ωK -1 2 ij δτ ij ) -1 + 1 6 (ωK -1 2 ij δτ ij ) + O(δ 3 ) and (5.53) cos ωK -1 2 ij ℓ ij = I - 1 2 ω 2 K -1 2 ij δ 2 τ 2 ij + O(δ 4 ).
Then (4.48) has the expansion (5.54)

j∈I s i d ji K ij r ′ ji (v i ) = 1 δ      j∈I s i 1 τ ij K ij - 1 3 ω 2 δ 2 τ ij   Φ i - j∈I s i 1 τ ij K ij + 1 6 ω 2 δ 2 τ ij Φ j + O(δ 3 )    = 1 δ      j∈I s i 1 τ ij K ij   Φ i - j∈I s i 1 τ ij K ij Φ j    -δ ω 2 6      j∈I s i 2τ ij   Φ i + ω 2 τ ij Φ j    + O(δ 2 ).
In matrix notation this reads as (5.55) 

  j∈I s i d ji K ij r ′ ji (v j )   n i=1 = 1 δ             j∈I s 1 1 τ 1j K 1j -1 τ 12 K 12 . . . . . . -1 τ 1n K 1n -1 τ 12 K 12 j∈I s 2 1 τ 2j K 2j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 τ 1n K 1n -1 τ 2n K 2n . . . . . . j∈I s n 1 τ jn K jn                         Φ 1 Φ 2 • • • • • Φ n             - ω 2 δ 6            
τ jn                         Φ 1 Φ 2 • • • • • Φ n             + O(δ 2 )I =: 1 δ A 0 Φ -δA 1 Φ + O(δ 2 )I.
We introduce the asymptotic expansions (5.56)

r δ i (x) = r 0 i (x) + δr i (x) + δ 2 ri (x) + O(δ 2 )
and

r 0 i (δρ i ) = r 0 i (0) + δρ i (r 0 i ) ′ (0) + O(δ 2 ) (5.57) r 0 i (δρ i ) = r 0 i (0) + δρ i (r 0 i ) ′ (0) + O(δ 2 ).
Comparing coefficients, after differentiating (5.56) twice with respect to x and pre-multiplying by K i , implies that r 0 i , ri , ri solve the Helmholtz equation K i r ′′ i + ω 2 r i = 0. Therefore (5.57) implies

K i (r 0 i ) ′ (δρ i ) = K i (r 0 i ) ′ (0) -ω 2 δρ i r 0 i (0) + O(δ 2 ) (5.58) K i (r 0 i ) ′ (δρ i ) = K i (r 0 i ) ′ (0) -ω 2 δρ i r0 i (0) + O(δ 2
). We obtain (5.59)

K i (r δ i ) ′ (δρ i ) = K i (r 0 i ) ′ (0) + δ K i r′ i (0) -ρ i ω 2 r 0 i (0) +δ 2 K i r′′ i (0) -ρ i ω 2 r(0) + O(δ 2 ) = 1 δ      j K ij τ ij   Φ i - j K ij τ ij Φ j    -δω 2    1 3   j τ ij   Φ i + 1 6 j τ ij Φ j   + O(δ 2 ). Now, Φ i = r δ i (δρ i ) and hence Φ i = r 0 i (0) + δ(ρ i (r 0 i ) ′ (0) + ri (0)) + δ 2 (ρ 2 i (r 0 i ) ′′ (0) + ρ i r′ (0)) + O(δ 3 ).
Therefore, (5.59) leads, after some calculus and by comparing powers of δ, to the following identities ∀i ∈ I:

(5.60)

j K ij τ ij (r 0 i )(0) = j K ij τ ij r 0 j (0),
(5.61)

K i (r 0 i ) ′ (0) =   j K ij τ ij   ρ i (r 0 i ) ′ (0) - j K ij τ ij ρ j (r 0 j ) ′ (0) +      j K ij τ ij   r(0) - j K ij τ ij rj (0)    ,
(5.62)

K i (r i ) ′ (0) -ω 2 ρ i r 0 i =   j K ij τ ij   ρ i r′ i (0) + ri (0) -ρ 2 i ω 2 K -1 i r 0 i - j K ij τ ij ρ i r′ j (0) + rj (0) -ρ 2 j ω 2 K -1 j r 0 j -ω 2   1 3   j K ij τ ij   r 0 i (0) + 1 6 j K ij τ ij r 0 j (0)   .
Now, (5.60) implies

(5.63) r 0 i (0) = r 0 j (0) =: r 0 (0), while (5.60),(5.61) imply (5.64)

i K i (r 0 i ) ′ (0) = 0.
Indeed, conditions (5.63) and (5.64) are precisely the nodal conditions for a star graph with n edges coonected at x = 0. Thus, (r 0 i ) i=1,...,n solves the unperturbed problem, as it should. Adding up (5.62) we obtain (5.65)

j K i (r i ) ′ (0) = ω 2   i ρ j - 1 2 ij τ ij   r 0 (0) =: G 1 (r 0 (0))
Still, rewriting (5.64) we obtain (5.66)

  j K ij τ ij   ri (0) - j K ij τ ij rj (0) = K i (r 0 i ) ′ (0) -   j K ij τ ij   ρ i (r 0 i ) ′ (0) + j K ij τ ij ρ j (r 0 j ) ′ (0) := G 0 ((r 0 ) ′ (0)) i .
We have the following boundary condition

u i = r δ i (ℓ i ) = r 0 i (ℓ i ) + δr i (ℓ i ) + O(δ 2 ) which implies (5.67) ri (ℓ i ) = 0.
Collecting (5.65),(5.66) and ( 5.67) together with the fact, that ri solves the Helmoltz equation locally on the edge i, we obtain the following system for r:

(5.68)

                       K i r′′ + ω 2 ri = 0 ri (ℓ i ) = 0   j K ij τ ij   ri (0) - j K ij τ ij rj (0) = G 0 ((r 0 ) ′ (0)) i j K i (r i ) ′ (0) = G 1 (r 0 (0))
.

We proceed to show that this system (5.68) is actually self-adjoint. Indeed, if we define and G 0 = (G 0 ((r 0 ) ′ (0)) 1 , . . . G 0 ((r 0 ) ′ (0)) n ) T as well as G 1 = (0, 0, . . . , G 1 (r 0 (0))) T , r(0) = (r 1 (0), . . . , rn (0)) T , r′ (0) = (r ′ 1 (0), . . . , r′ n (0)) T , we obtain (5.70)

A 0 r(0) = G 0 , BK r′ (0) = G 1 .
It can be shown that the LU-decomposition A 0 = LU is such that L -1 B = B and, hence, [U, B] is equivalent to [A 0 , B] in the sense that the nodal condition A 0 r(0) = G 0 , BK r′ (0) = G 1 1 can be rewritten as U r(0)+BK r′ (0) = G, where G = L -1 K(r 0 ) ′ (0) -Uρ(r 0 ) ′ (0) + BG 1 . The matrix U B * is indeed self-adjoint and [U, B] has full rank, such that that (5.68) is a self-adjoint problem. Similarly, on can derive the following self-adjoint system for the second order term r in (5.56).

(5.71)

       K i r′′ + ω 2 ri = 0 ri (ℓ i ) = 0 K i r′ (0) = ρ i ω 2 ri (0) . Remark 5.1. If we introduce (5.72) ri (x) := ri (x) + ρ i (r 0 i ) ′ (x), i = 1, . . . , n, then r satisfies (5.73)                          K i r′′ + ω 2 ri = 0 ri (ℓ i ) = ρ i (r 0 i ) ′ (ℓ i )   j K ij τ ij   ri (0) - j K ij τ ij rj (0) = K i (r 0 i ) ′ (0) j K i (r i ) ′ (0) = -ω 2 1 2 ij τ ij r 0 i (0) 
. Theorem 5.1. Consider the solution r δ of the perturbed problem (5.51).

Let the asymptotic expansion (5.56) be given. Then, the zeroth order term r 0 satisfies the self-adjoint equations of the unperturbed n-star-graph, while the first order term r and the second order term r satisfies the self-adjoint problems (5.68), (5.71), respectively.

Remark 5.2. Theorem 5.1 is in clear analogy to similar problems in 2-D or 3-D. However, it is also clear that the perturbation in 'digging a hole' into a graph is regular, while similar perturbations for 2-D or 3-D problems are singular. This reflects the fact that the Green function for the locally 1-D problem is proportional to the absolute value function, where in 2-D or 3-D it is proportional to ln or 1/(•), respectively.

Topological sensitivity for the total energy

In this section we consider the sensitivity of the energy with respect to changes in the topology. We mainly focus on graph inclusions as in the last section. For the sake of simplicity we consider a star-graph with n edges as before. We recall the energy of this system:

(6.74) E 0 (r 0 ) = 1 2 n i=1 ℓ i 0 K i r ′ i • r ′ i -ω 2 r 2 i dx.
Using the boundary and nodal conditions (2.7) we have after integrating by parts (6.75)

E 0 (r 0 ) = 1 2 n i=1 ℓ i 0 K i r ′ i • r ′ i -ω 2 r 2 i dx = 1 2 S(r 0 ), r 0 , where (6.76) S(r 0 ) := (K i (r 0 i ) ′ (0)) n i=1
is the Steklov-Poincaré operator at the central node. Notice that the center is located at x = 0 for all participating edges, and hence d iJ = -1, ∀i ∈ I J .

We now consider the energy in the n principal edges of the perturbed system, i.e. the edges of the star that has been perturbed by inserting the subgraph (hole).

(6.77)

E 0 (r δ ) = 1 2 n i=1 ℓ δ i 0 K i (r δ i ) ′ • (r δ i ) ′ -ω 2 (r δ i ) 2 dx.
Again, integrating by parts we obtain (6.78)

E 0 (r δ ) = 1 2 n i=1 ℓ δ i 0 K i (r δ i ) ′ • (r δ i ) ′ -ω 2 (r δ i ) 2 dx = 1 2 n i=1 K i (r δ i ) ′ (ℓ i ) • (r δ i ) ′ (ℓ i ) - 1 2 n i=1 K i (r δ i ) ′ (δρ i ) • (r δ i ) ′ (δρ i ) = 1 2 n i=1 K i ((r 0 i ) ′ (ℓ i ) + δr ′ i (ℓ i ) + δ 2 r′ (ℓ i ) + O(δ 3 )) • (r 0 i (ℓ i ) + δr(ℓ i ) + O(δ 2 )) - 1 2 n i=1 K i (r δ i ) ′ (δρ i )r δ i (δρ i ),
where we have used (5.56). We recall (3.42),(3.43), (3.44) and (4.48), leading to (5.51) and (5.55). If we insert the asymptotic expansion, we obtain (6.79)

n i=1 K i (r δ i ) ′ (δρ i ) • r δ i (δρ i ) = δ A 0 (r(0) + ρ(r 0 ) ′ (0)), r(0) + ρ(r 0 ) ′ (0)) -A 1 r 0 (0), r 0 (0) = n i=1 K i (r 0 i ) ′ (0)r 0 i (0) +δ    n i=1 K i (r 0 i ) ′ (0) • (r(0) + ρ i r 0 i (0)) - ω 2 2 ( ij τ ij )r 0 (0) • r 0 (0)    + O(δ 2 ).
Therefore, the total energy of the perturbed system has the asymptotic expansion (6.85)

E(r δ ) = E 0 (r δ ) + E δ (r δ ) = E 0 (r 0 ) + δ n i=1 K i r′ (ℓ i ) • r 0 i (ℓ i ) - n i=1 K i (r 0 i ) ′ (0) • (r(0) + ρ i (r 0 i ) ′ (0)) + ω 2 2 ( ij τ ij )r 0 (0) • r 0 (0) - 1 2 ij ω 2 τ ij r 0 ij (0) 2 -τ ij K ij (r 0 ij ) ′ (0)(r 0 ij ) ′ (0)    .
We may use r to simplify (6.84). We notice that

(r i j 0 ) ′ (0) = 1 τ ij (r j (0) -r(0) j )
and therefore (6.86)

E δ (r δ ) = E 0 (r 0 ) +δ 1 2 i ρ i K i (r 0 i ) ′ (ℓ i )(r 0 i ) ′ (ℓ i ) -2K i r(0)(r 0 i ) ′ (0) + ω 2 ρ i r 0 i (ℓ i ) 2 -ω 2 1 2 j↔i τ ij r 0 i (0) 2 + 1 2 j↔i K ij τ ij (r j (0) -ri (0)) 2    .
We define the topological derivative of the energy. Definition 6.1. Let E δ (r δ ) and E 0 (r 0 ) be the energies corresponding to the perturbed and the unperturbed graph, respectively. Then the limits, if it exists, (6.87) 1 δ E δ (r δ ) -E 0 (r 0 ) =: T (r 0 (0), (r 0 ) ′ (0))

is called the topological derivative of E at the center node of the star-graph.

The asymptotic expansion of the energy given by (6.86) is still not explicit, as it involves the solution r of the auxiliary system (5.73). This solution, however is completely determined by the solution and its derivative at zero, r 0 (0), (r 0 ) ′ (0), of the original unperturbed problem. Also, r 0 (ℓ i ), (r 0 i ) ′ (ℓ i ) can be expressed by r 0 (0), (r 0 ) ′ (0) by solving on the individual edges once the corresponding data (Dirichlet or Neumann) are given. Thus, solving the auxiliary problem in terms of these values gives a quadratic form (6.88)

P (r 0 (0), (r 0 ) ′ (0)), (r 0 (0), (r 0 ) ′ (0)) = 1 2 i ρ i K i (r 0 i ) ′ (ℓ i )(r 0 i ) ′ (ℓ i ) -2K i r(0)(r 0 i ) ′ (0) + ω 2 ρ i r 0 i (ℓ i ) 2 -ω 2 1 2 j↔i τ ij r 0 i (0) 2 + 1 2 j↔i K ij τ ij (r j (0) -ri (0)) 2    .
The matrix P in (6.88) can be viewed as an analogue of the polarization matrix in 2-D and 3-D elasticity problems. See [START_REF] Nazarov | Spectral problems in elasticity: singular boundary perturbartions[END_REF].

Theorem 6.1. Under the assumption above, the sensitivity of the energy associated with the star-graph containing a cyclic subgraph (hole) with respect to letting δ → 0 is given by (6.89) T (r 0 (0), (r 0 ) ′ (0)) = P (r 0 (0), (r 0 ) ′ (0)), (r 0 (0), (r 0 ) ′ (0)) ,

where P according to (6.88) is given by the solution of (5.73).

Example 6.1. We consider as a simple case the situation where the material is completely homogenous and the geometry of the hole is symmetric i.e. K i = κI, ρ i = ρ, ℓ i = ℓ i = 1, . . . , n, K ij = κI, τ i j = τ ∀i, j. The latter assumption implies that we have a subgraph that is complete (fully connected).

In this situation we can explicitly compute r, the solution of the auxiliary problem (5.68). Indeed, after some elementary calculus we arrive at

(6.90) ri (0) = - ω κ 1 2 tan(ωκ -1 2 ℓ)(ρ - nτ n )r 0 (0) + ( τ n -ρ) ωκ -1 2 sin ωκ -1 2 ℓ u i + (ρr 0 i ) ′ (0).
The solution of the unperturbed system r 0 can also be given explicitly. In order to actually compute the sensitivity of the total energy with respect to inserting a symmetric fully connected subgraph, we use the Dirichlet boundary condition r i (ℓ) = u i , i = 1 . . . , n.. In particular, (6.91)

r 0 i (ℓ) = u i = sin ωκ -1 2 ℓ κ 1 2 ω (r 0 i ) ′ (0) + cos ωκ -1 2 ℓr 0 (0), (6.92) 
r 0 i (0) = 1 n 1 cos ωκ -1 2 ℓ j u j =: r 0 (0) (r 0 i ) ′ (0) = ωκ -1 2 sin ωκ -1 2 ℓ (u i - 1 n j u j ).
This gives the topological gradient in terms of the inputs u as follows (6.93) T (r 0 (0), (r 0 ) ′ (0))

= ω 2 2 ρ(tan 2 (ωκ -1 2 ℓ) -cot 2 (ωκ -1 2 ℓ)) - τ n 2 cos 2 (ωκ -1 2 ℓ) 1 n | i u i | 2 + ρ sin 2 (ωκ -1 2 ℓ) i |u i | 2 - κ 1 2 ω sin(ωκ -1 2 ℓ) i r(0)(u i - 1 n j u j ) + κn 2τ i∈I i↔j |r i (0) -rj (0)| 2 .
Example 6.2. In this example we are even more specific, in that we assume that r 0 (ℓ) = u i = µe i , i = 1, . . . , n, where i e i = 0 which corresponds to a symmetric displacement at all simple nodes of the star-graph. In this situation we conclude with (6.94)

T (0, u) = ω 2 1 sin 2 ωκ -1 2 ℓ (ρn -τ )µ 2 .
It follows in particular that for a three-star, where ρ

= √ 3 3 ,τ = 1 (6.95) T (0, u) = ω 2 1 sin 2 ωκ -1 2 ℓ ( √ 3 -1)µ 2 > 0.
Thus, the three-star under 120 • degree angles is energetically optimal with respect to the edge-degree. The analogous result has been shown in [START_REF] Leugering | Topological sensitivity analysis for elliptic problems on graphs[END_REF] for a string with Wrinkler support.

Example 6.3. The situation is similar for 4 strings in R 3 where ρ = 1 4 √ 6 and (6.96)

T (0, u) = ω 2 1 sin 2 ωκ -1 2 ℓ ( √ 6 -1)µ 2 > 0,
which shows that also that configuration is energetically optimal under symmetric boundary conditions. Indeed, for six edges ρ = 1 and this is exactly the bounding case where cutting out a hole (i.e. including a cyclic subgraph) compensates the total loss of the edges that had been shortened. In this case

(6.97) T (0, u) = -ω 2 3 sin 2 ωκ -1 2 ℓ µ 2 < 0,
which implies that releasing the edge-degree 6 of the central node to a series of 6 nodes with degree 3 is favored. This result strongly suggests that hexagonal structures are energetically optimal. This is common place in material sciences where one deals with foam-structures.

Compliance optimization

Energy, as a functional to optimize is strongly related to the widely used compliance-functional. This amounts to minimizing (7.98) J (r, f, g) :=

i∈I ℓ i 0 f i • r i dx + J∈J i∈I J g J • r j (v J ),
where r solves (2.7). In order to stay in the context of this presentation, we allow for nodal forces only, keeping the more general case including spatial varying coefficients for a future publication. In this case the energy is given by (7.99)

E(r) := 1 2 iI ℓ i 0 K i r ′ i • r ′ i -ω 2 r i • r i dx - J∈J i∈I J g J • r i (v J )
and as r solves the variational problem (7.100)

i∈I ℓ i 0 K i r ′ i • w ′ i -ω 2 r i • w i dx = J∈J i∈I J g J • w i (v J ),
the compliance functional can be expressed for a solution of (7.100) as (7.101)

J∈J i∈I J g j • r j (v J ) = -2E(r).
Therefore, one may use (6.86), where, however, the solution r 0 has to be evaluated for the problem with nodal forces at the simple nodes. Then the quantities of interest are

r 0 i (0) = - 1 ω   j K 1 2 j tan ωK -1 2 j ℓ j   -1 i cos ωK -1 2 i ℓ i -1 g i , (r 0 i ) ′ (0) = K -1 2 i 1 ω K -1 2 i ω cos ωK -1 2 i ℓ i -1 g i - 1 ω tan ωK -1 2 i ℓ i    j K -1 2 j ℓ i -1 2 i cos ωK -1 2 i ℓ i -1 g i      , (7.102) r i (ℓ i ) = sin ωK -1 2 i ℓ i K 1 2 i ω (r 0 i ) ′ (0) + sin ωK -1 2 i ℓ i r 0 i (0).
We may now introduce (7.102) into (6.86) in order to evaluate the topological gradient for the energy functional in this case. We refrain from doing this here in the full complexity, as no new mathematical insight is to be expected from this. Now, minimizing the compliance is typically accompanied with penalizing the total volume. In the context of our elastic network we come to penalize the total length. Indeed, the stiffness operators K i involve, in the context of linear elasticity, the cross section and the Young modulus. Therefore, we would have to separate the cross-sectional part and multiply with the length. As in our example we will be dealing with homogenous material, we just take the total length as a measure.

(7.103)

P(ℓ δ ) := α   i (ℓ i -δρ i ) + 1 2 i j∈I s j (δτ ij )   ,
where obviously P(ℓ 0 ) = α i ℓ i is the total length of the unperturbed stargraph. We then obtain (7.104)

1 δ P(ℓ δ ) -P(ℓ 0 ) = α   1 2 i j∈I s i τ ij - i ρ i   .
As to be expected, the penalized compliance minimization turns out to be a balance between energy-and 'perimeter'-sensitivity. We give a canonical example.

Example 7.1. We assume that the material is homogenous, as in the other examples. We pull at each end of the elastic star-network with a force g i . Moreover, we assume that the sum of forces is zero i g i = 0. We also consider a planar situation with a 2-regular cycle as subgraph. In this case some calculus shows that (7.102) reduces to In case of a symmetric three-star n = 3, τ i j = 1, ρ = √ 3

r 0 i (0) = - 1 ω cot(ωκ -1 2 ℓ) 1 n i g i = 0 (7.105) (r 0 i ) ′ (0) = 1 κ 1 cos ωκ -1 2 ℓ   g i - 1 n j g j   = 1 κ 1 cos ωκ -1 2 ℓ g i , (7.106) r 0 i (ℓ) = sin ωκ -1 2 ℓ κ
3 where one pulls at each end such that the system is in equilibrium This shows that if one takes α sufficiently large, thereby insisting on the volume constraint, then no hole is favored depending on how close ω is to

πkκ 1 2
ℓ , whereas otherwise a hole may be favorable.

Other functionals and graph operations

Besides the energy and the compliance we can also consider other cost functionals,such as tracking-type functions. In this case the topological derivative can be calculated as follows. We may introduce the adjoint p = (p i ) i corresponding to r 0 as follows.

(8.114)

                 K i p ′′ i + ω 2 p i = r 0 i -r d i in (0, ℓ i ) p i (ℓ i ) = 0 p i (0) = p j (0), i = j = 1, . . . , n n i=1 K i p ′ i (0) = 0 .
Then integrating by parts and using the boundary and nodal conditions for r,

i ℓ i 0 ri (K i p ′′ i + ω 2 p i )dx = - i K i p ′ i (0)r i (0) + ω 2   i ρ i - 1 2 ij τ ij   r 0 (0)p(0).
Indeed, the expression i K i p ′ i (0)r i (0) can be expressed in terms of a quadratic form using the pseudoinverse R A,B (2.32). Thereby, one can define an analogue of the polarization matrix. Notice that r 0 i (0), p i (0) are independent of i. Indeed, it can be shown, that the following explicit representation holds. (8.115) i (ℓ i -s)){r 0 i -r d i }(s)ds.

p(0) = -ω i K 1 2 i cot ωK -1 2 i ℓ i -1 • i ℓ i 0 sin ωK -1 2 i ℓ i -1 sin(ωK
We put this together with (8.113) and obtain. Obviously, depending on the load at 0, the frequency ω, the topology given by the unite vectors e i and the adjoint p, (8.1) provides a positive or a negative sensitivity.

Remark 8.1. We remark that more complicated functionals can be investigated with respect to topological sensitivities along the same line. It is clear that as the load and topological scenario becomes asymmetric, it is more likely that the topological gradient is negative for a range of frequencies. Robustness issues with respect to frequencies, however, are beyond this paper and will be investigated in a forthcoming publication.

Remark 8.2. As has been demonstrated in Leugering and Sokolowski [START_REF] Leugering | Topological sensitivity analysis for elliptic problems on graphs[END_REF], on can also compute the sensitivities of the energy, the compliance and other functionals with respect to introducing a single edge or with respect to releasing a node of degree, say n, into one of degree n -1 and one with degree 3. We do not want to overload this paper with these additional possibilities. It is, however, clear that everything can be done in the framework developed here.
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 2 g i .Moreover, the first order variation r of (5.73) givesri (ℓ) = ρ(r 0 i ) ′ (ℓ) = ρ + αn (1 -ρ) .

|r i -r d i | 2

 2 dx, where r d i ∈ C 0 (0, ℓ i ) is a profile to be tracked by the solutions r i of (2.7). Now, let r δ be the solution of the perturbed problem and set (8.112) J δ (r δ )

τ

  r δ ) -J (r 0 ) = T (r) ij | ri (0) + ρ i (r 0 i ) ′ (0)| 2 .

-1 2 i

 2 (ℓ i -s)){r 0 i -

τ 2 . 8 . 1 .

 281 ij | ri (0) + ρ i (r 0 i ) ′ (0)|Example If we assume homogenous material and Dirichlet conditions r 0 i (ℓ) = u i where we may consider the standard symmetric scenario e i = 0 and u i = µe i then(8.117) T (r) =i p ′ i (0) • e i µ -ω 2 (ρn -1)
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We go back to (6.78). We have (6.80)

But, according to (5.68) r(ℓ i ) = 0, and r 0 i (ℓ i ) = u i , i = 1, . . . , n. We thus obtain (6.81)

We need to add the energy stored in the subgraph. To this end we introduce expansions of r δ ij . However, as the lengths ℓ ij = δτ ij are already first order, we only need first order expansions here. (6.82)

We use (6.82) in order to derive the following expansion (6.83

Actually, the second part in the expansion (6.87) is equal to the Steklov-Poncaré operator times displacements of the subgraph. Indeed, by (3.44), (4.48) and (6.79), the energy stored in the subgraph has the expansion (6.84)