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Abstract

We prove Bernstein-type inequalities in weighted Bergman spaces
of the unit disc D, for rational functions in D having at most n poles
all outside of 1

rD, 0 < r < 1. The asymptotic sharpness of each of
these inequalities is shown as n → ∞ and r → 1. Our results extend
a result of K. Dyakonov who studied Bernstein-type inequalities (for
the same class of rational functions) in the standard Hardy spaces.

1. Introduction

Estimates of the norms of derivatives for polynomials and rational functions
(in different functional spaces) is a classical topic of complex analysis (see
surveys given by A. A. Gonchar [Go], V. N. Rusak [Ru] and Chapter 7
of [BoEr]). Here, we present such inequalities for rational functions f of
degree n with poles in {z : |z| > 1}, involving Hardy norms and weighted-
Bergman norms. Some of these inequalities are applied in many domains
of analysis: for example 1) in matrix analysis and in operator theory (see
“Kreiss Matrix Theorem” [LeTr, Sp] or [Z1, Z5] for resolvent estimates of
power bounded matrices), 2) to “inverse theorems of rational approximation”
using the classical Bernstein decomposition (see [Da, Pel, Pek]), but also 3)
to effective Nevanlinna-Pick interpolation problems (see [Z3, Z4]). Let Pn

be the complex space of polynomials of degree less or equal than n ≥ 1.
Let D = {z ∈ C : |z| < 1} be the unit disc of the complex plane and D =
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{z ∈ C : |z| ≤ 1} its closure. Given r ∈ [0, 1), we define

Rn, r =

{

p

q
: p, q ∈ Pn, d

◦p < d◦q, q(ζ) = 0 =⇒ ζ /∈
1

r
D

}

,

(where d◦p means the degree of any p ∈ Pn), the set of all rational functions
in D of degree less or equal than n ≥ 1, having at most n poles all outside of
1
r
D. Notice that for r = 0, we get Rn, 0 = Pn−1.

1.1. Definitions of Hardy spaces and radial weighted

Bergman spaces

a. The standard Hardy spaces Hp = Hp(D), 1 ≤ p ≤ ∞ :

Hp =

{

f =
∑

k≥0

f̂(k)zk : ‖f‖pHp = sup
0≤r<1

ˆ

T

|f(rz)|p dm(z) <∞

}

.

b. The standard radial weighted Bergman spaces are denoted by Lp
a (w),

1 ≤ p <∞ (where ”a” means analytic),

Lp
a (w) =

{

f ∈ Hol (D) : ‖f‖p
Lp
a(w)

=

ˆ 1

0

w (ρ)

ˆ

T

|f (ρζ)|p dm(ζ)dρ <∞

}

,

where Hol (D) is the space of holomorphic functions on D, w ≥ 0,
´ 1

0
w (ρ) dρ <

∞, andm stands for the normalized Lebesgue measure on T. Classical power-
like weights correspond to w(ρ) = wβ(ρ) = (1− ρ2)

β
ρ for β > −1, where

Lp
a (wβ) = Lp

a

(

(

1− |z|2
)β

dxdy
)

. For general properties of these spaces we

refer to [HedKorZhu, Zhu].

1.2. Statement of the problem and the result

Generally speaking, given a Banach space X of holomorphic functions in D,
we are searching for the “best possible” constant Cn, r(X) such that

‖f ′‖X ≤ Cn, r(X) ‖f‖X ,

∀f ∈ Rn, r.
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Throughout this paper the letter c denotes a positive constant that may
change from one step to another. For two positive functions a and b, we say
that a is dominated by b, denoted by a = O(b), if there is a constant c > 0
such that a ≤ cb; and we say that a and b are comparable, denoted by a ≍ b,
if both a = O(b) and b = O(a) hold.

If X is a Hardy space (see [Dy1, Dy2] and Subsection 1.3 below) then

Cn, r (X) ≍
n

1− r
, (⋆)

for all n ≥ 1 and r ∈ [0, 1). Our result is that the above estimate (⋆) is
still valid if X is the radial weighted Bergman space Lp

a (w) , 1 ≤ p < ∞
with w = wβ, β > −1, or -more generally- whith “reasonably” decreasing
weights w, where “reasonably” means “not too fast”, (see 1.1.b above for the
definition of this space). More precisely, we prove (in Section 2 below) the
following theorem.

Theorem. (1) Radial weighted Bergman spaces. Let 1 ≤ p <∞ and w be
an integrable nonegative fonction on (0, 1). We have

Cn, r (L
p
a (w)) ≤ K

n

1− r
, (1)

where K is a postive constant depending only on p.
(2) Some specific weights. Let 1 ≤ p < ∞ and w be an integrable noneg-

ative fonction on (0, 1) such that ρ 7→ (1− ρ)−γw(ρ) is increasing on [r0, 1)
for some γ > 0, 0 ≤ r0 < 1. There exists a positive constant K ′ depending
only on w and p such that

K ′ n

1− r
≤ Cn, r (L

p
a (w)) ≤ K

n

1− r
, (2)

where K is defined in (1) and where the left-hand side inequality of (2) holds

for n >
[

γ+2
p

]

+ 1, r ∈ [r0, 1), [x] meaning the integer part of any x ≥

0. In particular, (2) holds for classical power-like weights w(ρ) = wβ(ρ) =

(1− ρ2)
β
ρ for β > −1,

1.3. Known result: an estimate for Cn, r (H
p) , 1 ≤ p ≤ ∞

From now on, if σ ⊂ D is a finite subset of the unit disc (card σ = n), then

Bσ =
∏

λ∈σ

bλ
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is the corresponding finite Blaschke product (say of order n), where bλ = λ−z
1−λz

,
λ ∈ D.

The first known result is a special case of a K. Dyakonov’ s theorem [Dy2,
Theorem 1] (the case where ϕ is an inner function belonging to the Sobolev
space W s

∞ or the Besov space Bs
∞ for some s > 0, that is to say a finite

Blaschke product (say with n zeros inside rD, r < 1)): let p ∈ [1, +∞], we
have

Cn, r (H
p) ≤ cp

n

1− r
, (4)

where cp is a constant depending only on p. More precisely as regards in-
equality (4), the case p ∈ (1, +∞) is treated in [Dy2, Theorem 1], the case
p = 1, in [Dy2, Corollary 1] and the case p = +∞ is given in [BoEr, Theorem
7.1.7].

The second result is also due to K. Dyakonov [Dy1, Theorem 1’ - page
373] and was originally proved for the Hardy spaces of the upper half plane
C+, H

p (C+) . Let us recall it.

Theorem. 1’. Let 1 < p <∞, θ be an inner function and
Kp

θ = Hp (C+) ∩ θHp (C+) be the corresponding “model” or “star-invariant”
subspace. The operator d

dx
: f 7→ f ′ acts boundedly from Kp

θ to Lp = Lp (R)
if and only if θ′ ∈ L∞. Moreover,

Ap ‖θ
′‖

∞
≤

∥

∥

∥

∥

d

dx

∥

∥

∥

∥

Kp
θ
→Lp

≤ Bp ‖θ
′‖

∞
, (5)

for some constants Ap > 0 and Bp > 0.

The techniques of K. Dyakonov applied in order to prove (5) in [Dy1], give
an analog of Theorem 1’ for the Hardy spaces Hp = Hp(D) of the unit disc
D. This analog would be (θ must be a finite Blaschke product (say as before
with n zeros inside rD, r < 1) since we want the differentiation operator to
be bounded)):

A
′

p

n

1− r
≤ Cn, r (H

p) ≤ B
′

p

n

1− r
, (6)

for some constants A
′

p > 0 and B
′

p > 0, for every p ∈ (1, ∞). In fact it is
easily verified that (6) is also valid for p = 1, ∞ (using (4) for the right-hand
side inequality and the test function B = bnr so as to prove the left-hand side
one).
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For the special case p = 2, it has been proved later in [Z2] that there
exists a limit

lim
n→∞

Cn, r (H
2)

n
=

1 + r

1− r
, (7)

for every r, 0 ≤ r < 1.

Our Theorem above in Subsection 1.1 is an extension of the K. Dyakonov’s
result (6) to radial weighted Bergman spaces Lp

a (w) , 1 ≤ p < ∞, for w =
wβ, β > −1, or -more generally- when w is “reasonably” decreasing to 0, that
is too say not fast. We prove it in Section 2 below. In Section 3, we discuss
the validity of this Theorem for more general radial weights w = w(ρ).

2. Proof of the theorem

We first prove the statement (1) of our theorem.

Proof of statement (1) of the theorem (the upper bound). First, we notice
that

‖f‖Lp
a(w) ≍

1

π

ˆ

Cα

|f(w)|pw (ρ) dxdy (8)

for all f ∈ Lp
a(w), where Cα = {z : α < |z| < 1} , for any 0 ≤ α < 1. Let

f ∈ Rn, r with r ∈ [0, 1) and n ≥ 1. Let also ρ ∈ (0, 1) and
fρ : w 7→ f(ρw). Using (8) with α = 1

2
we get

‖f ′‖
p
Lp
a(w) ≍

1

π

ˆ

C

|f ′(w)|
p
w (ρ) dxdy =

= 2

ˆ 1

1

2

w (ρ)

(
ˆ

T

∣

∣

∣
f

′

ρ(ζ)
∣

∣

∣

p

dm(ζ)

)

dρ =

= 2

ˆ 1

1

2

w (ρ)
(

∥

∥f ′
ρ

∥

∥

p

Hp

)

dρ = 2

ˆ 1

1

2

w (ρ)
1

ρp

(
∥

∥

∥
(fρ)

′

∥

∥

∥

p

Hp

)

dρ.

Now using the fact fρ ∈ Rn, ρr ⊂ Rn, r for every ρ ∈ (0, 1), we get

ˆ 1

1

2

w (ρ)
1

ρp

(
∥

∥

∥
(fρ)

′

∥

∥

∥

p

Hp

)

dρ ≤
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≤ 2p
ˆ 1

1

2

w (ρ)
(

Cn, r (H
p) ‖fρ‖Hp

)p
dρ =

= (2Cn, r (H
p))p
ˆ 1

1

2

w (ρ)

ˆ

T

|fρ(ζ)|
p dm(ζ)dρ =

= (2Cn, r (H
p))p
ˆ

C

|f(w)|pw (ρ) dxdy ≍ (Cn, r (H
p))p ‖f‖p

Lp
a(w)

.

In particular, using the right-hand inequality of (4), we get

Cn, r (L
p
a (w)) ≤ Kp

n

1− r
,

for all p ∈ [1, ∞), and β ∈ (−1, ∞), where Kp is a constant depending on p
only.

�

It remains to prove the statement (2) of our theorem. To this aim, we
first give two lemmas.

Lemma 1. Let r ∈ [0, 1) and t ≥ 0. We set

I(t, r) =

ˆ

T

|1− rζ |−t dm(ζ) and ϕr(t) =

ˆ

T

|1 + rz|t dz

Then,

I(t, r) =
1

(1− r2)t−1ϕr(t− 2),

for every t ≥ 2, where t 7→ ϕr(t) is an increasing function on [0, +∞) for
every r ∈ [0, 1). Moreover, both

r 7→ ϕr(t− 2) and r 7→ I(t, r),

are increasing on [0, 1), for all t ≥ 0.

Proof. Indeed supposing that t ≥ 2, we can write

I(t, r) =
1

1− r2

ˆ

T

|b′r|
1

|1− rz|t−2dz,
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(where br = r−z
1−rz

), that is to say - using the changing of variable ◦br in the
above integral -

I(t, r) =
1

1− r2

ˆ

T

|b′r|
1

|1− rbr ◦ br(z)|
t−2dz =

=
1

1− r2

ˆ

T

1

|1− rbr(z)|
t−2dz.

Now, 1− rbr =
1−rz−r(r−z)

1−rz
= 1−r2

1−rz
, which gives

I(t, r) =
1

(1− r2)t−1

ˆ

T

|1− rz|t−2 dz,

or

I(t, r) =
1

(1− r2)t−1ϕr(t− 2). (9)

We can write

ϕr(t) =

ˆ 2π

0

(

1 + r2 − 2r cos s
)

t
2 ds =

=

ˆ 2π

0

exp

(

t

2
ln
(

1 + r2 − 2r cos s
)

)

ds.

Then

ϕ′
r(t) =

1

4

ˆ 2π

0

ln
(

1 + r2 + 2r cos s
)

exp

(

t

2
ln
(

1 + r2 + 2r cos s
)

)

ds,

and
ϕ′′
r(t) =

=
1

4

ˆ 2π

0

[

ln
(

1 + r2 − 2r cos s
)]2

exp

(

t

2
ln
(

1 + r2 − 2r cos s
)

)

ds ≥ 0,

for every t ≥ 0, r ∈ [0, 1). Thus, ϕr is a convex fonction on [0, ∞) and ϕ′
r is

increasing on [0, ∞) for all r ∈ [0, 1). Moreover,

ϕ′
r(0) =

1

4

ˆ 2π

0

ln
(

1 + r2 − 2r cos s
)

ds,
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but ψ(r) =
´ π

0
ln (1 + r2 − 2r cos s) ds satisfies 2ψ(r) = ψ (r2) for every r ∈

[0, 1), which gives by induction ψ(r) = 1
2k
ψ
(

r2
k
)

, for every k = 0, 1, 2, ...

As a consequence, taking the limit as k tends to +∞ and using the continuity
of ψ at point 0, we get ψ(r) = 0, for every r ∈ [0, 1). Moreover,

ˆ 2π

π

ln
(

1 + r2 − 2r cos s
)

ds = −

ˆ −π

0

ln
(

1 + r2 − 2r cos(π − u)
)

du =

=

ˆ 0

−π

ln
(

1 + r2 + 2r cos(u)
)

du =

ˆ π

0

ln
(

1 + r2 + 2r cos(v + π)
)

dv =

=

ˆ π

0

ln
(

1 + r2 − 2r cos(v)
)

dv = ψ(r) = 0.

We get,
ϕ′
r(t) ≥ ϕ′

r(0) = 0, ∀t ∈ [0, ∞), r ∈ [0, 1),

and ϕr is increasing on [0, ∞). The fact that

r 7→ I(t, r),

is increasing on [0, 1), for all t ≥ 0 is obvious since

I(t, r) =

∥

∥

∥

∥

1

(1− rz)t/2

∥

∥

∥

∥

2

H2

=
∑

k≥0

ak(t)
2r2k,

where ak(t) is the k
th Taylor coefficient of (1 − z)−t/2. The same reasoning

gives that r 7→ ϕr(t) is increasing on [0, 1).

Lemma 2. If for some r0 ∈ [0, 1) and γ < t, the function w(ρ)
(1−ρ2)γ

is increas-

ing on [r0, 1), then

ˆ 1

r

ρw(ρ)I(t, rρ)dρ ≍

ˆ 1

r0

ρw(ρ)I(t, rρ)dρ,

for all t such that t − γ > 2, and for all r ≥ r0, with constants independant
on t.

Proof. Clearly,

ˆ 1

r0

ρw(ρ)I(t, rρ)dρ ≥

ˆ 1

r

ρw(ρ)I(t, rρ)dρ.
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Moreover,

ˆ 1

r0

ρw(ρ)I(t, rρ)dρ =

ˆ 1

r

ρw(ρ)I(t, rρ)dρ+

ˆ r

r0

ρw(ρ)I(t, rρ)dρ,

and
ˆ r

r0

ρw(ρ)I(t, rρ)dρ =

=

ˆ r

r0

ρw(ρ)

(1− ρ2)γ
(1− ρ2)

γ

(1− (rρ)2)t−1
J(t, rρ)dρ ≤

≤
w(r)

(1− r2)γ

ˆ r

r0

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
J(t, rρ)dρ ≤

(u 7→ J(t, u) is increasing for all t > 0)

≤
w(r)

(1− r2)γ
J(t, r2)

ˆ r

r0

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ.

On the other hand,

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)t−1J(t, rρ)dρ =

=

ˆ 1

r

w(ρ)

(1− ρ2)γ
ρ (1− ρ2)

γ

(1− (rρ)2)t−1
J(t, rρ)dρ ≥

(u 7→ J(t, u) is increasing for all t > 0)

≥
w(r)

(1− r2)γ
J(t, r2)

ˆ 1

r

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ,

but
ˆ 1

r

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ ≍

ˆ 1

r0

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ,

with constants independant on t sincet − γ > 2. Thus, we obtain

ˆ r

r0

ρw(ρ)
1

(1− (rρ)2)t−1J(t, rρ)dρ ≤
w(r)

(1− r2)γ
J(t, r2)

ˆ r

r0

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ ≤

≤
w(r)

(1− r2)γ
J(t, r2)

ˆ 1

r0

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ ≤

9



≤ Const.
w(r)

(1− r2)γ
J(t, r2)

ˆ 1

r

ρ (1− ρ2)
γ

(1− (rρ)2)t−1
dρ ≤

≤ Const.

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)t−1J(t, rρ)dρ,

(where Const is a constant which does not depend on t), which completes
the proof.

Proof of statement (2) of the theorem (the lower bound only). For the
minoration (with the same function f(z) = 1

(1−rz)n
), using (8) with α = r0,

we need to prove

ˆ 1

r0

ρw(ρ)I(pn+ p, rρ)dρ ≥
C

(1− r)p

ˆ 1

r0

ρw(ρ)I(pn+ p, rρ)dρ,

which means (supposing that r ≥ r0) with our second lemma that,

ˆ 1

r

ρw(ρ)I(pn+ p, rρ)dρ ≥
C

(1− r)p

ˆ 1

r

ρw(ρ)I(pn, rρ)dρ,

which means with our first lemma that,

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)pn+p−1J(pn+ p, rρ)dρ ≥

≥
C

(1− r)p

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)pn−1J(pn, rρ)dρ.

The last statement is obvious since

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)pn+p−1J(pn+ p, rρ)dρ ≥

≥
1

(1− r2)p

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)pn−1J(pn + p, rρ)dρ ≥

(t 7→ J(t, u) is increasing for all 0 ≤ u < 1)

≥
1

(1− r2)p

ˆ 1

r

ρw(ρ)
1

(1− (rρ)2)pn−1J(pn, rρ)dρ =

10



=
1

(1− r2)p

ˆ 1

r

ρw(ρ)I(pn, rρ)dρ. �
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Joliot-Curie, 13453 Marseille cedex 13, France

E-mail address : rzarouf@cmi.univ-mrs.fr

13


