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Bernstein-type inequalities for rational functions

in weighted Bergman spaces and applications

Rachid Zarouf

Abstract

Generally speaking, given two Banach spaces X and Y of holomorphic functions on the unit disc D,

we are searching for the “best possible” constants Cn, r(X, Y ) and Bn, r(X, Y ) such that
∥∥∥f ′

∥∥∥
X

≤ Cn, r(X, Y ) ‖f‖Y and ‖f‖X ≤ Bn, r(X, Y ) ‖f‖Y ,

for all rational functions f in D having at most n poles all outside of 1
rD, r ∈ [0, 1). For the special case

X = Y, we set Cn, r(X) := Cn, r(X, X).

Throughout this paper the letter c denotes a positive constant that may change from one step to the
next. For two positive functions a and b, we say that a is dominated by b, denoted by a = O(b), if there
is a constant c > 0 such that a ≤ cb; and we say that a and b are equivalent, denoted by a ≍ b, if both
a = O(b) and b = O(a) hold.

We show that Cn, r
(
L2
a, H

2
)
≍ Bn, r

(
B

1

2

2, 2, H
2

)
≍
√

n
1−r , for all n ≥ 1 and r ∈ [0, 1), where H2 is

the classical Hardy space, L2
a is the classical Bergman space and B

1

2

2, 2 is a Besov space also known as the

Dirichlet space. Moreover, there exists a limit : limn→∞
Bn, r

(

B
1
2
2, 2,H

2

)

√
n

= limn→∞
Cn, r(L2

a,H
2)√

n
=
√

1+r
1−r .

Then, we apply our estimate of Bn, r

(
B

1

2

2, 2, H
2

)
to an effective Nevanlinna-Pick interpolation problem

in the Dirichlet space.
Finally, if X = Y and if X is a radial-weighted Bergman space then we show that Cn, r (X) ≍ n

1−r for
all n ≥ 1 and r ∈ [0, 1).

Introduction

Surveys of inequalities for the derivatives of rational functions are given by Gonchar [Go] and
Rusak [Ru]. Chapter 7 of [BoEr] is also devoted to this topic. Here, we present such inequalities
for rational functions f of degree n with poles in D− = {z : |z| > 1}, involving Hardy norms, the
Dirichlet-Besov norm and weighted-Bergman norms.

1. Statement of the problem. Let Pn =
{
p =

∑n
k=0 akz

k : ak ∈ C
}
, be the complex

space of polynomials of degree less or equal than n ≥ 1. Let D = {z ∈ C : |z| < 1} and D its
closure. Given r ∈ [0, 1), we define

Rn, r =

{
p

q
, : p ∈ Pn−1, q ∈ Pn, q(ζ) = 0 =⇒ ζ /∈ 1

r
D

}
,

the set of all rational functions in D of degree less or equal than n ≥ 1, having at most n poles all
outside of 1

r
D . Notice that for r = 0, we get Rn, 0 = Pn−1.
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Proper definitions of constants Cn, r (X, Y ) and Bn, r (X, Y ) .
Let σ = {λ1, ..., λn} be a sequence in the unit disc D, the finite Blaschke product Bσ = Πn

i=1bλi
,

where bλ = λ−z
1−λz

is an elementary Blaschke factor for λ ∈ D. Let also KBσ
be the n-dimensional

space defined by
KBσ

= Lin (kλi
: i = 1...n) ,

where σ is a family of distincts elements of D, and where kλ = 1
1−λz

is the Szegö kernel associated
to λ . An obvious modification allows to generalize the definition of KBσ

in the case where the
sequence σ admits multiplicities.

Notice that using the scalar product (., .)H2 on H2, an equivalent description of this space is:

KBσ
=
(
BσH

2
)⊥

= H2ΘBσH
2,

where H2 stand for the standard Hardy space of the unit disc D,

H2 =

{
f =

∑

k≥0

f̂(k)zk : ‖f‖2H2 =: sup0≤r<1

ˆ

T

|f(rz)|2 dm(z) < ∞
}
,

m being the Lebesgue normalized measure on T. Let D be the operator of differentiation on
(KBσ

, ‖.‖Y ) :
D : (KBσ

, ‖.‖Y ) → (X, ‖.‖X)
f 7→ f

′

.

For r ∈ [0, 1) and n ≥ 1 , we get

Cn, r(X, Y ) = sup
{
‖D‖KBσ→X : 1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ

}
.

In the same spirit, if Id is the identity operator

Id : (KBσ
, ‖.‖Y ) → (X, ‖.‖X)

f 7→ f ,

then for every r ∈ [0, 1) and n ≥ 1 , we get

Bn, r(X, Y ) = sup
{
‖Id‖KBσ→X : 1 ≤ #σ ≤ n, |λ| ≤ r ∀λ ∈ σ

}
.

2. The spaces X and Y considered here. Now let us define some Banach spaces X
and Y of holomorphic functions in D which we will consider throughout this paper.

a. The standard Hardy spaces Hp = Hp(D), 1 ≤ p ≤ ∞,

Hp =

{
f =

∑

k≥0

f̂(k)zk : ‖f‖pHp =: sup0≤r<1

ˆ

T

|f(rz)|p dm(z) < ∞
}

.
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An equivalent description of the space H2, which has already be mentionned in 1, is the following

H2 =



f =

∑

k≥0

f̂(k)zk : ‖f‖H2 =:

(
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2
) 1

2

< ∞



 .

b. The standard weighted Bergman spaces Lp
a (β) := Lp

a

((
1− |z|2

)β
dxdy

)
, 1 ≤ p ≤ ∞,

β > −1,

Lp
a (β) =

{
f =

∑

k≥0

f̂(k)zk : ‖f‖p
Lp
a(β)

=:
1

π

ˆ

D

|f(z)|p
(
1− |z|2

)β
dxdy < ∞

}
.

For β = 0, we shorten the notation and write Lp
a(0) = Lp

a . For p = 2 and β = 0 we get the
standard Bergman space for which an equivalent description is,

L2
a =



f =

∑

k≥0

f̂(k)zk : ‖f‖L2
a
=:

(
∑

k≥0

∣∣∣f̂(k)
∣∣∣
2 1

k + 1

) 1

2

< ∞



 .

c. The analytic Besov space B
1

2

2, 2 be (also known as the standard Dirichlet space) defined by

B
1

2

2, 2 =



f =

∑

k≥0

f̂(k)zk : ‖f‖
B

1
2
2, 2

=:

(
∑

k≥0

(k + 1)
∣∣∣f̂(k)

∣∣∣
2
) 1

2

< ∞



 .

Then if f ∈ B
1

2

2, 2, we have the following equality

‖f‖2
B

1
2
2, 2

=
∥∥∥f ′

∥∥∥
2

L2
a

+ ‖f‖2H2 , (1)

which establish a link between the spaces B
1

2

2, 2 and L2
a.

3. Known Results and motivations.

a. An estimate for Cn, r (Hp) , 1 ≤ p ≤ ∞. The first known result belongs to K. Dyakonov
[Dy2] and tells that

Cn, r (Hp) ≍ n

1− r
, (2)

for every p ∈ [1, ∞] .
For the special case p = 2, it has been proved later in [Z1] that there exists a limit

limn→∞
Cn, r (H2)

n
=

1 + r

1− r
, (3)

for every r, 0 ≤ r < 1.

b. An estimate for Bn, r

(
B

1

2

2, 2, H
2
)
. The second result is also due to K. Dyakonov [Dy2] :
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Bn, r

(
B

1

2

2, 2, H
2
)
≤ c

(
n

1− r

) 1

2

. (4)

Using (1) we get

(
Cn, r

(
L2
a, H

2
))2

=
(
Bn, r

(
B

1

2

2, 2, H
2
))2

− 1, (5)

which establish a link between constants Cn, r and Bn, r .
c. Motivations.
c.1. Now it is important to link and motivate such an inequality with one of Dolzhenko’s

inequality [Do] (see also [Pek], p.560 - inequality (12)) : let f be a rational function of degree n
with poles in D− then

‖f‖
B

1
2
2, 2

≤ c
√
n ‖f‖H∞ , (6)

where ‖f‖H∞ = supζ∈T |f(ζ)|. In other words, Dolzhenko was interested in estimating the constant

Bn, r

(
B

1

2

2, 2, H
∞
)

and proved that Bn, r

(
B

1

2

2, 2, H
∞
)

≤ c
√
n (this inequality is obviously sharp,

taking a finite Blaschke product of order n).
Notice that on one hand, inequality (6) was generalized by Danchenko [Da] for Hardy-Besov

spaces. On the other hand, another generalization of (6) follows from a result of Peller [Pel]
on best rational approximations for some class of Besov spaces, in BMOA : the space of all
analytic functions of the bounded mean oscillation on D. Later, Pekarskii [Pek] generalized and
strengthened the results of Peller and Danchenko. An interesting motivation for such inequalities
is to apply it to “ inverse theorems of rational approximation ” using the classical Bernstein
decomposition.

c.2. A second motivation is to apply such inequalities to effective Nevanlinna-Pick interpola-
tion problems. Indeed, one of the most important tool used in [Z2] (resp. in [Z3] ) is the asymptotic
sharp estimate of Bn, r

(
B1

2, 2, H
2
)
(resp. Bn, r

(
Bs

2, 2, H
2
)
, s > 0 ) , see paragraph 4 below for the

definition of spaces Bs
2, 2, s > 0. In the same spirit, in Section II below we apply our estimate of

Bn, r

(
B

1

2

2, 2, H
2
)
to an effective Nevanlinna-Pick interpolation problem in the Dirichlet space.

c.3. Bernstein-type inequalities for rational functions are motivated by some applications in
matrix analysis and in operator theory.

• Indeed, a result of Leveque and Trefethen [LeTr] improved by Spijker [Sp], shows that : if T
is an n × n matrix such that P (T ) = supk≥0

∥∥T k
∥∥
E2→E2

< ∞, where E2 stands for Cn endowed

with the Hilbert norm |.|2 and setting ρ(T ) = sup|z|>1 (|z| − 1) ‖R(z, T )‖E2→E2
, where R(z, T )

stands for the resolvent of T at point z, then

ρ(T ) ≤ P (T ) ≤ en.ρ(T ).

More precisely, the inequality ρ(T ) ≤ P (T ) is obvious whereas the inequality P (T ) ≤ en.ρ(T ) is
called Kreiss Matrix Theorem and is a straight consequence of the facts that Cn, r (H

1, H∞) ≤ en
and P (T ) ≤ Cn, r (H

1, H∞) ρ(T ).
• Morever, replacing the algebra H∞ by the Hardy space H2 in the constant Cn, r (H

1, H∞),
it is given in [Z4] an estimate for Cn, r (H

1, H2) and an application to a resolvent estimate for
operators with finite spectrum. The same Bernstein-type inequality between the Hardy spaces H1

and H2 is also applied in [Z5] to improve a resolvent estimate - from E.B. Davies and B. Simon
[DS] - for power bounded operators.
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In paragraph 4 below, we present our results : we first give an estimate for Cn, r (L2
a, H

2)

and Bn, r

(
B

1

2

2, 2, H
2
)
, and then we generalize to radial-weighted Bergman spaces, the result of K.

Dyakonov [Dy2] stated in 3.a for Hardy spaces : we prove that Cn, r (Lp
a(β)) ≍ n

1−r
for every β > −1

and p ∈ [1, ∞].

4. Main Results. Our first result is a partial case (p = q = 2, s = 1
2
, γ = +∞) of the

following K. Dyakonov’s result [Dy] : if p ∈ [1, ∞), s ∈ (0, +∞), q ∈ [1, +∞], then there exists a
constant cp, s > 0 such that

Bn, r

(
Bs

p, p, H
q
)
≤ cp, s

∥∥∥B′

∥∥∥
s

Hγ
, (7)

where B is a finite Blaschke product. Here Bs
p, p stands for the Hardy-Besov space which consist

of analytic functions f on D satisfying

‖f‖Bs
p, p

=:
n−1∑

k=0

∣∣f (k)(0)
∣∣+
ˆ

D

(1− |w|)(n−s)p−1
∣∣f (n)(w)

∣∣p dA(w) < ∞ .

For the partial case considered here (Theorem A below), our proof is different and the constant
c2, 1

2

is slightly better.

Theorem A. Let n ≥ 1 and r ∈ (0, 1) .

(i) If n = 1 and σ = {λ}, we have

‖D‖(
KBσ , ‖.‖L2

a

)

→(H2, ‖.‖
H2)

= |λ| ,

where D is the differentiation operator defined in 1. If n ≥ 2,

ã(n, r)

√
n

1− r
≤ Cn, r

(
L2
a, H

2
)
≤ Ã(n, r)

√
n

1− r
, (8)

where

ã(n, r) ≥
(
1− 1− r

n

) 1

2

and Ã(n, r) ≤
(
1 + r +

1√
n

) 1

2

.

In particular,

√
n

1− r
≤ Bn, r

(
B

1

2

2, 2, H
2
)
≤ B̃(n, r)

√
n

1− r
, (9)

where B̃(n, r) ≤
(
1 + r + 1√

n
+ 1−r

n

) 1

2

.

(ii) Moreover, sequences

(Cn, r (L2
a, H

2)√
n

)

n≥1

and



Bn, r

(
B

1

2

2, 2, H
2
)

√
n




n≥1
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are convergent and there exists a limit

limn→∞
Bn, r

(
B

1

2

2, 2, H
2
)

√
n

= limn→∞
Cn, r (L2

a, H
2)√

n
=

√
1 + r

1− r
. (10)

for all r ∈ [0, 1).
Finally, we generalize Dyakonov’s result (2) for Hardy spaces (see 3.a above) to radial-weighted

Bergman spaces through the following Theorem B.

Theorem B. Let p ∈ [1, ∞], β > −1. Then,

Cn, r (Lp
a (β)) ≍

n

1− r
, (11)

for all n > β + 2 and r ∈ (0, 1) . Moreover

Cn, r (Lp
a (β)) ≤ 2

1

pCn, r (Hp) , (12)

for all p ∈ [1, ∞], β > −1.

Section I is devoted to the proofs of (8), (9) and (10). In Section II, we apply the right-hand side
inequality from (8) to an effective Nevanlinna-Pick interpolation problem in the Dirichlet space,
constrained by the H2−norm. Finally in Section III, we prove (11) and (12).

II. An estimate for Cn, r
(
L2
a, H

2
)
and Bn, r

(
B

1
2
2, 2, H

2
)

The aim of this Section is to prove Theorem A.

Proof of Theorem A.

Proof of (i). The case n = 1. In this case, KB = Ce1 , where

e1 =

(
1− |λ|2

) 1

2

1− λz
, |λ| ≤ r,

(e1 being of norm 1 in H2). Calculating,

e
′

1 =
λ
(
1− |λ|2

) 1

2

(
1− λz

)2 ,

and ∥∥∥e′

1

∥∥∥
L2
a

= |λ|
(
1− |λ|2

) 1

2

∥∥∥∥∥
1

(
1− λz

)2

∥∥∥∥∥
L2
a

=

= |λ|
(
1− |λ|2

) 1

2

(
∑

k≥0

k + 1

k + 1
|λ|2k

) 1

2

= |λ|
(
1− |λ|2

) 1

2
1(

1− |λ|2
) = |λ| ,

we get

6



∥∥D|KBσ

∥∥ = |λ| .

The case n ≥ 2.

Step 1. First, we show the right hand side inequality of (8). Using both Cauchy-Schwarz

inequality and the fact that f̂ ′(k) = (k + 1)f̂(k + 1) for all k ≥ 0, we get

∥∥∥f ′

∥∥∥
2

L2
a

=
∑

k≥0

∣∣∣f̂ ′(k)
∣∣∣
2

k + 1
=
∑

k≥0

(k + 1)2
∣∣∣f̂(k + 1)

∣∣∣
2

k + 1
=

=
∑

k≥1

k
∣∣∣f̂(k)

∣∣∣
2

≤
(
∑

k≥1

k2
∣∣∣f̂(k)

∣∣∣
2
) 1

2
(
∑

k≥1

∣∣∣f̂(k)
∣∣∣
2
) 1

2

=

=
∥∥∥f ′

∥∥∥
H2

‖f‖H2 ≤ Cn, r
(
H2
)
‖f‖2H2 ,

and hence, ∥∥∥f ′

∥∥∥
L2
a

≤
√

Cn, r (H2) ‖f‖H2 ,

which means

Cn, r
(
L2
a, H

2
)
≤
√
Cn, r (H2) .

Then it remains to use [Z1] p.2 :

Cn, r
(
H2
)
≤
(
1 + r +

1√
n

)
n

1− r
,

for all n ≥ 1 and r ∈ [0, 1).

Step 2. Now, we show the left-hand-side inequality of (8). Let en =
(1−r2)

1
2

1−rz
bn−1
r . Then en ∈ Kbnr

and ‖en‖H2 = 1, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

e
′

n =
r (1− r2)

1

2

(1− rz)2
bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r =

= − r

(1− r2)
1

2

b
′

rb
n−1
r + (n− 1)

(1− r2)
1

2

1− rz
b
′

rb
n−2
r ,

since b
′

r =
r2−1

(1−rz)2
. Then,

e
′

n = b
′

r

[
− r

(1− r2)
1

2

bn−1
r + (n− 1)

(1− r2)
1

2

1− rz
bn−2
r

]
,
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and

∥∥∥e′

n

∥∥∥
2

L2
a

=
1

2π

ˆ

D

∣∣∣b′r(w)
∣∣∣
2

∣∣∣∣∣−
r

(1− r2)
1

2

(br(w))
n−1 + (n− 1)

(1− r2)
1

2

1− rw
(br(w))

n−2

∣∣∣∣∣

2

dm(w) =

=
1

2π

ˆ

D

∣∣∣b′r(w)
∣∣∣
2 ∣∣(br(w))n−2

∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

br(w) + (n− 1)
(1− r2)

1

2

1− rw

∣∣∣∣∣ dm(w),

which gives, using the variables u = br(w),

∥∥∥e′

n

∥∥∥
2

L2
a

=
1

2π

ˆ

D

∣∣un−2
∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− rbr(u)

∣∣∣∣∣

2

dm(u).

But 1− rbr =
1−rz−r(r−z)

1−rz
= 1−r2

1−rz
and b

′

r ◦ br = r2−1
(1−rbr)

2 = − (1−rz)2

1−r2
. This implies

∥∥∥e′

n

∥∥∥
2

L2
a

=
1

2π

ˆ

D

∣∣un−2
∣∣2
∣∣∣∣∣−

r

(1− r2)
1

2

u+ (n− 1)
(1− r2)

1

2

1− r2
(1− ru)

∣∣∣∣∣

2

dm(u) =

=
1

(1− r2)

1

2π

ˆ

D

∣∣un−2
∣∣2 |(−ru+ (n− 1)(1− ru))|2 dm(u),

which gives ∥∥∥e′

n

∥∥∥
L2
a

=
1

(1− r2)
1

2

‖ϕn‖2 ,

where ϕn = zn−2 (−rz + (n− 1)(1− rz)) . Expanding, we get

ϕn = zn−2 (−rz + n− 1 + rz − nrz) =

= zn−2 (−nrz + n− 1) = (n− 1)zn−2 − nrzn−1,

and ∥∥∥e′

n

∥∥∥
2

L2
a

=
1

(1− r2)

(
(n− 1)2

n− 1
+

n2

n
r2
)

==
1

(1− r2)
(n(1 + r)− 1)

=
n

(1− r) (1 + r)

(
(1 + r)− 1

n

)
==

n

1− r

(
1− 1− r

n

)
,

which gives

Cn, r
(
L2
a, H

2
)
≥
√

n

1− r

(
1− 1− r

n

) 1

2

.

P roof of (ii) .Step 1. We first prove the right-hand-side inequality :

limn→∞
1√
n
Cn, r

(
L2
a, H

2
)
≤
√

1 + r

1− r
,

which becomes obvious since

1√
n
Cn, r

(
L2
a, H

2
)
≤ 1√

n

√
Cn, r (H2) , .

and
1√
n

√
Cn, r (H2) →

√
1 + r

1− r
,

as n tends to infinity, see [Z1] p. 2.
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Step 2. We now prove the left-hand-side inequality :

limn→∞
1√
n
Cn, r

(
L2
a, H

2
)
≥
√

1 + r

1− r
.

More precisely, we show that

limn→∞
1√
n
‖D‖(

Kbnr
, ‖.‖

L2
a

)

→H2
≥
√

1 + r

1− r
.

Let f ∈ Kbnr . Then,

f
′

= (f, e1)H2

r

(1− rz)
e1 +

n∑

k=2

(k − 1) (f, ek)H2

b
′

r

br
ek + r

n∑

k=2

(f, ek)H2

1

(1− rz)
ek =

= r

n∑

k=1

(f, ek)H2

1

(1− rz)
ek +

1− r2

(1− rz)(z − r)

n∑

k=2

(k − 1) (f, ek)H2 ek =

=
r (1− r2)

1

2

(1− rz)2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
3

2

(1− rz)2(z − r)

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r =

= −b
′

r

[
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

z − r

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

]
.

Now using the change of variables v = br(u), we get

∥∥∥f ′

∥∥∥
2

L2
a

=

ˆ

D

∣∣∣b′r(u)
∣∣∣
2

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 b
k−1
r +

(1− r2)
1

2

u− r

n∑

k=2

(k − 1) (f, ek)H2 b
k−1
r

∣∣∣∣∣

2

du =

=

ˆ

D

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

br(v)− r

n∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣∣∣∣∣

2

dv.

But br − r = r−z−r(1−rz)
1−rz

= z(r2−1)
1−rz

, which gives

∥∥∥f ′

∥∥∥
2

L2
a

=

ˆ

D

∣∣∣∣∣
r

(1− r2)
1

2

n∑

k=1

(f, ek)H2 v
k−1 +

(1− r2)
1

2

v(r2 − 1)
(1− rv)

n∑

k=2

(k − 1) (f, ek)H2 v
k−1

∣∣∣∣∣

2

dv =

=
1

1− r2

ˆ

D

∣∣∣∣∣r
n∑

k=1

(f, ek)H2 v
k−1 − (1− rv)

n∑

k=2

(k − 1) (f, ek)H2 v
k−2

∣∣∣∣∣

2

dv =

=
1

1− r2

ˆ

D

∣∣∣∣∣r
n−1∑

k=0

(f, ek+1)H2 v
k − (1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∣∣∣∣∣

2

dv.

But ∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a

≤ r

(
n−1∑

k=0

1

k + 1
|(f, ek+1)H2 |2

)1/2

≤ r ‖f‖H2 ,

9



and in particular

limn→∞
1

n ‖f‖H2

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a

= 0.

Now,

(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k =

=
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k − r

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k+1 =

=

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k − r

n−1∑

k=1

k (f, ek+1)H2 v
k =

= (f, e2)H2 + 2 (f, e3)H2 v +
n−2∑

k=2

[(k + 1) (f, ek+2)H2 − rk (f, ek+1)H2 ] v
k+

−r
[
(f, e2)H2 v + (n− 1) (f, en)H2 v

n−1
]
=

= (f, e2)H2 + [(f, e3)H2 − r (f, e2)H2 ] v +

n−2∑

k=2

[(k + 1) (f, ek+2)H2 − rk (f, ek+1)H2 ] v
k+

−r(n− 1) (f, en)H2 v
n−1 .

Since

1

‖f‖
H2

√
n(1−r2)



∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

+

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a


 ≥

≥ 1
√
n

∥∥f ′
∥∥
L2
a

‖f‖H2

≥

≥ 1

‖f‖
H2

√
n(1−r2)



∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

−
∥∥∥∥∥r

n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a


 ,

and

limn→∞
1

‖f‖
H2

√
n

∥∥∥∥∥r
n−1∑

k=0

(f, ek+1)H2 v
k

∥∥∥∥∥
L2
a

= 0,

we get that

1√
1 + r

limn→∞
1

‖f‖
H2

√
n

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

≥

≥ limn→∞

√
1− r

n

∥∥f ′
∥∥
L2
a

‖f‖H2

≥

≥ 1√
1 + r

limn→∞
1

‖f‖
H2

√
n

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

.
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This gives

limn→∞

√
1− r

n

∥∥f ′
∥∥
L2
a

‖f‖H2

=
1√
1 + r

limn→∞
1

‖f‖
H2

√
n

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

.

But

= (f, e2)H2 + [(f, e3)H2 − r (f, e2)H2 ] v +

n−2∑

k=2

[(k + 1) (f, ek+2)H2 − rk (f, ek+1)H2 ] v
k+

−r(n− 1) (f, en)H2 v
n−1 .

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

= |(f, e2)H2 |2+

+
1

2
|(f, e3)H2 − r (f, e2)H2|2 +

1

n
r4(n− 1)2 |(f, en)H2 |2 +

+
n−2∑

k=2

∣∣∣∣(f, ek+2)H2 −
rk

k + 1
(f, ek+1)H2

∣∣∣∣
2

.

Now, let s = sn be a sequence of even integers such that

• limn→∞sn = ∞ and

• sn = o(n) as n → ∞.

Then we consider the following function f in Kbnr :

f =
s+2∑

k=0

(−1)ken−k .

With such an f , we get

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

= |(f, e2)H2 |2+

+
1

2
|(f, e3)H2 − r (f, e2)H2|2 +

1

n
r4(n− 1)2 |(f, en)H2 |2 +

+

n−2∑

k=2

(k + 1)

∣∣∣∣(f, ek+2)H2 −
rk

k + 1
(f, ek+1)H2

∣∣∣∣
2

.

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

=

= r4
(n− 1)2

n
+

11



+

n−2∑

l=2

(n− l + 1)

∣∣∣∣(f, en−l+2)H2 −
r(n− l)

n− l + 1
(f, en−l+1)H2

∣∣∣∣
2

,

setting the change of index l = n− k in the last sum. This finally gives

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

=

= r4
(n− 1)2

n
+

s+1∑

l=2

(n− l + 1)

∣∣∣∣1 +
r(n− l)

n− l + 1

∣∣∣∣
2

=

= r4
(n− 1)2

n
+

s+1∑

l=2

(n− l + 1)

[
1 + r

(
1− 1

n− l + 1

)]2

And ∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

≥

≥ r4
(n− 1)2

n
+ (s+ 1− 2 + 1)(n− (s+ 1) + 1)

[
1 + r

(
1− 1

n− (s+ 1) + 1

)]2
=

= r4
(n− 1)2

n
+ s(n− s)

[
1 + r

(
1− 1

n− s

)]2
.

In particular,

∥∥∥∥∥(1− rv)2
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

L2
a

≥ s(n− s)

[
1 + r

(
1− 1

n− s

)]2
.

Now, since ‖f‖2H2 = s+ 3 = sn + 3, we get

limn→∞
1

n ‖f‖2H2

∥∥∥∥∥(1− rv)
n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥

2

2

≥

≥ limn→∞
1

n ‖f‖2H2

‖f‖2H2

(
n− ‖f‖2H2

) [
1 + r

(
1− 1

n− s

)]2
=

= limn→∞

(
1− sn

n

) [
1 + r

(
1− 1

n− s

)]2
= (1 + r)2 .

We can now conclude that

limn→∞

√
1− r

n

∥∥f ′
∥∥
L2
a

‖f‖H2

=
1√
1 + r

limn→∞
1

‖f‖
H2

√
n

∥∥∥∥∥(1− rv)

n−2∑

k=0

(k + 1) (f, ek+2)H2 v
k

∥∥∥∥∥
L2
a

≥

≥ 1 + r√
1 + r

=
√
1 + r ,

12



and

limn→∞

√
1− r

n
‖D‖Kbnr

→H2 ≥ limn→∞

√
1− r

n

∥∥f ′
∥∥
L2
a

‖f‖H2

≥
√
1 + r .

Step 3. Conclusion. Using both Step 1 and Step 2, we get

limn→∞

√
1− r

n
Cn, r

(
L2
a, H

2
)
= limn→∞

√
1− r

n
Cn, r

(
L2
a, H

2
)
= 1 + r,

which means that the sequence
(

1√
n
Cn, r (L2

a, H
2)
)
n≥1

is convergent and

limn→∞
1√
n
Cn, r

(
L2
a, H

2
)
=

√
1 + r

1− r
.

Now using equality (5), we get inequalities (9) from Theorem A and prove in particular that

the sequence
(

1√
n
Bn, r

(
B

1

2

2, 2, H
2
))

n≥1
is also convergent with

limn→∞
1√
n
Bn, r

(
B

1

2

2, 2, H
2
)

=

√
1 + r

1− r
. �

II. Interpolation in the Dirichlet space

a. Statement of the problem. Let X and Y two Banach spaces of holomorphic functions on
the unit disc D such that X ⊃ Y , and a finite set σ = {λ1, ..., λn} ⊂ D . We consider the following
interpolation constant

I (σ, X, Y ) = supf∈X, ‖f‖X≤1inf
{
‖g‖Y : g|σ = f|σ

}
,

and
In, r(X, Y ) = sup {I(σ, X, Y ) : #σ ≤ n , ∀j = 1..n, |λj| ≤ r} ,

for all n ≥ 1 and r ∈ [0, 1) .

b. Motivations. We can give three main motivations for this problem.

1. It is explained in [Z3] why the classical interpolation problems, those of Nevanlinna-Pick
(1908) and Carathéodory-Schur (1916) (see [N2] p.231 for these two problems), on the one hand
and Carleson’s free interpolation problem (1958) (see [N1] p.158) on the other hand, are of the
nature of our interpolation problem.

2. It is also explained in [Z3] why this constrained interpolation is motivated by some applica-
tions in matrix analysis and in operator theory.

3. It has already been proved in [Z2] that for X = H2 and Y = H∞,

1

4
√
2

√
n√

1− r
≤ I

(
σn, r, H

2, H∞) ≤ In, r

(
H2, H∞) ≤

√
2

√
n√

1− r
,

a question especially stimulated by L. Baratchart (a part of a more complicated question arising
in an applied situation in [BL1] and [BL2]) : given a set σ ⊂ D, how to estimate I (σ, H2, H∞) in
terms of n = card(σ) and maxλ∈σ |λ| = r only?
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c. The result. Here, looking at motivation 3, we replace the algebra H∞ by the Dirichlet space

B
1

2

2, 2 . We show that the “gap” between X = H2 and Y = H∞ is asymptotically the same as the

one which exists between X = H2 and Y = B
1

2

2, 2 . In other words,

In, r

(
H2, B

1

2

2, 2

)
≍ In, r

(
H2, H∞) ≍

√
n

1− r
. (13)

Our aim in this Section is to prove the following Theorem in which the implicits constants of
(13) are precised.

Theorem 3.1. Let n ≥ 1, and r ∈ [0, 1) . Then,

In, r

(
H2, B

1

2

2, 2

)
≤ Bn, r

(
B

1

2

2, 2, H
2
)
. (14)

We consider λ ∈ D and σn, λ = {λ, ..., λ}, a one-point set of multiplicity n ≥ 2. Then,

I
(
σn, λ, H

2, B
1

2

2, 2

)
≥
√

n

1− |λ|

[
(1 + |λ|)2 − 2

n
− 2|λ|

n

2(1 + |λ|)

] 1

2

. (15)

In particular,

√
n

1− r

[
1 + r

2

(
1− 1

n

)] 1

2

≤ In, r

(
H2, B

1

2

2, 2

)
≤ Bn, r

(
B

1

2

2, 2, H
2
)
, (16)

√
1+r
2

1− r
≤ limn→∞

In, r

(
H2, B

1

2

2, 2

)

√
n

≤ limn→∞
In, r

(
H2, B

1

2

2, 2

)

√
n

≤
√

1 + r

1− r
, (17)

and

√
2

2
≤ limr→1−limn→∞

√
1− r

n
In, r

(
H2, B

1

2

2, 2

)
≤ limr→1−limn→∞

√
1− r

n
In, r

(
H2, B

1

2

2, 2

)
≤

√
2 .

(18)

Proof of Theorem 3.1.
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Proof of inequality (14). Let σ be a sequence in D, H = B
1

2

2, 2 and B = Bσ the finite Blaschke
product corresponding to σ. Let PB be the orthogonal projection of (H, (., .)H2) onto KB (see
[Z2], p.8 - (1.1.4) and Lemma 1.1.5 for details). If f ∈ H2, let g = PBf ∈ KB . Then g− f ∈ BH2

and

‖g‖2
B

1
2
2, 2

= ‖g‖2H2 +
∑

k≥1

k |ĝ(k)|2 =
∥∥∥g′

∥∥∥
2

L2
a

+ ‖g‖2H2 .

Now, using Theorem 2.1, ∥∥∥g′

∥∥∥
2

L2
a

≤
(
Cn, r

(
L2
a, H

2
))2 ‖g‖2H2 ,

which gives

‖g‖2
B

1
2
2, 2

≤
(
Cn, r

(
L2
a, H

2
)
+ 1
)2 ‖g‖2H2 .

Using the fact that ‖g‖H2 = ‖PBf‖H2 ≤ ‖f‖H2 , we finally get

‖g‖
B

1
2
2, 2

≤
(
Cn, r

(
L2
a, H

2
)
+ 1
)
‖f‖H2 ,

and as a result,

I
(
σ, H2, B

1

2

2, 2

)
≤ Cn, r

(
L2
a, H

2
)
+ 1 = Bn, r

(
B

1

2

2, 2, H
2
)
.

Proof of inequality (15). 1) We set

f =
n−1∑

k=0

(1− |λ|2) 1

2 bkλ
(
1− λz

)−1
.

Then ‖f‖22 = n,

2) Since the spacesH2 andD are rotation invariant, we have I
(
σn, λ, H

2, B
1

2

2, 2

)
= I

(
σn, µ, H

2, B
1

2

2, 2

)

for every λ, µ with |λ| = |µ| = r. Let λ = −r. To get a lower estimate for ‖f‖Hϕ/bnλHϕ
consider g

such that f − g ∈ bnλHol(D), i.e. such that f ◦ bλ − g ◦ bλ ∈ znHol(D).

3) First, we notice that

‖g ◦ bλ‖2
B

1
2
2, 2

=
∥∥∥(g ◦ bλ)

′

∥∥∥
2

L2
a

+ ‖g ◦ bλ‖2H2 = ‖bλ.(g′ ◦ bλ)‖2L2
a
+ ‖g ◦ bλ‖2H2 =

=

ˆ

D

|bλ(u)|2 |g′(bλ(u))|2 du+ ‖g ◦ bλ‖2H2 =

ˆ

D

|g′(w)|2 dw + ‖g ◦ bλ‖2H2 ,

using the changing of variables w = bλ(u). We get

‖g ◦ bλ‖2
B

1
2
2, 2

= ‖g′‖2L2
a
+ ‖g ◦ bλ‖2H2 = ‖g‖2

B
1
2
2, 2

+ ‖g ◦ bλ‖2H2 − ‖g‖2H2 ,

and
‖g‖2

B
1
2
2, 2

= ‖g‖2H2 + ‖g ◦ bλ‖2
B

1
2
2, 2

− ‖g ◦ bλ‖2H2 =

≥ ‖g ◦ bλ‖2
B

1
2
2, 2

− ‖g ◦ bλ‖2H2 .

Now, we notice that
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f ◦ bλ =
n−1∑

k=0

zk
(1− |λ|2) 1

2

1− λbλ(z)
=
(
1− |λ|2

)− 1

2

(
1 + (1− λ)

n−1∑

k=1

zk − λzn

)
=

= (1− r2)−
1

2

(
1 + (1 + r)

n−1∑

k=1

zk + rzn

)
.

4) Next,

‖g ◦ bλ‖2
B

1
2
2, 2

− ‖g ◦ bλ‖2H2 =
∑

k≥1

k
∣∣∣ĝ ◦ bλ(k)

∣∣∣
2

≥

≥
n−1∑

k=1

k
∣∣∣ĝ ◦ bλ(k)

∣∣∣
2

=

n−1∑

k=1

k
∣∣∣f̂ ◦ bλ(k)

∣∣∣
2

,

since ĝ ◦ bλ(k) = f̂ ◦ bλ(k) , ∀ k ∈ [0, n− 1] . This gives

‖g ◦ bλ‖2
B

1
2
2, 2

− ‖g ◦ bλ‖2H2 ≥
1

1− r2

(
(1 + r)2

n−1∑

k=1

k

)
=

=
(1 + r)2

1− r2
n(n− 1)

2
=

1 + r

1− r

n(n− 1)

2
=

1 + r

1− r

(n− 1)

2
‖f‖2H2 ,

for all n ≥ 2 since ‖f‖2H2 = n (f is indeed the sum of n elements of H2 which are an orthonormal
family known as Malmquist’s basis, see see [N1] p. 117). Finally,

‖g‖2
B

1
2
2, 2

≥ n

1− r

1 + r

2

(
1− 1

n

)
‖f‖2H2 .

In particular,

I
(
H2, B

1

2

2, 2

)
≥
√

n

1− r

[
1 + r

2

(
1− 1

n

)] 1

2

. �

III. Bernstein-type inequalities in weighted Bergman
spaces

The aim of this Section is to prove Theorem B.

Proof of Theorem B.

Step 1. We first prove inequality (12) from Theorem B. Let f ∈ Rn, r with r ∈ (0, 1) and
n ≥ 1. Let also ρ ∈ (0, 1) and fρ : w 7→ f(ρw). Then,

∥∥∥f ′

∥∥∥
p

Lp
a(β)

=
1

π

ˆ

D

∣∣∣f ′

(w)
∣∣∣
p (

1− |w|2
)β

dxdy =
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= 2

ˆ 1

0

ˆ

T

∣∣∣f ′

ρ(ζ)
∣∣∣
p (

1− ρ2
)β

ρdm(ζ)dρ =

= 2

ˆ 1

0

(
1− ρ2

)β
ρ

(
ˆ

T

∣∣∣f ′

ρ(ζ)
∣∣∣
p

dm(ζ)

)
dρ =

= 2

ˆ 1

0

(
1− ρ2

)β
ρ
(∥∥∥f ′

ρ

∥∥∥
p

Hp

)
dρ .

Now using the fact fρ ∈ Rn, ρr ⊂ Rn, r for every ρ ∈ (0, 1), we get

∥∥∥f ′

∥∥∥
p

Lp
a(β)

≤ 2

ˆ 1

0

(
1− ρ2

)β
ρ
(
Cn, r (Hp) ‖fρ‖Hp

)p
dρ =

= 2 (Cn, r (Hp))p
ˆ 1

0

(
1− ρ2

)β
ρ ‖fρ‖pHp dρ =

= 2 (Cn, r (Hp))p
ˆ 1

0

(
1− ρ2

)β
ρ

ˆ

T

|fρ(ζ)|p dm(ζ)dρ =

= 2 (Cn, r (Hp))p
ˆ 1

0

ˆ

T

|fρ(ζ)|p
(
1− ρ2

)β
ρdm(ζ)dρ = 2 (Cn, r (Hp))p ‖f‖p

Lp
a(β)

,

which proves (12). In particular, using the right-hand inequality from K. Dyakonov’s result [Dy2],
we get

Cn, r (Lp
a(β)) ≤ cp

n

1− r
,

for all p ∈ [1, ∞], and β ∈ (−1, ∞), where cp is a constant depending on p only.
Step 2. We now prove statement (11) of Theorem B and more precisely the left-hand side

inequality from (11), since the right-hand side one has already been proved in Step 1. Let β ∈
(−1, ∞), r ∈ [0, 1) , n ∈ N such that n > β + 2 and fn = 1

(1−rz)n
. Then

‖fn‖pLp
a(β)

=
1

π

ˆ

D

(
1− |z|2

)β

|1− rz|pn dxdy ,

and since f
′

n = rn
(1−rz)n+1 , we get

∥∥∥f ′

n

∥∥∥
p

Lp
a(β)

=
1

π
rpnp

ˆ

D

(
1− |z|2

)β

|1− rz|p(n+1)
dxdy .

Now according to Z. Wu [Wu] we set

It, β(r) =

ˆ

D

(
1− |z|2

)β

|1− rz|t
dxdy,

and recall that (see [Wu] Section 3, p.155)

It, β(r) ≍
1

(1− r2)t−β−2
,

17



for every t such that t > β + 2 . Now,
∥∥f ′

n

∥∥p
Lp
a(β)

‖fn‖pLp
a(β)

= rpnp Ip(n+1), β(r)

Ipn, β(r)
≍ rpnp

1
(1−r2)pn+p−β−2

1
(1−r2)pn−β−2

= rp
(

n

1− r2

)p

.

In particular there exists a positive constant cp, β such that,

Cn, r (Lp
a(β)) ≥ cp, β

r

1 + r

n

1− r
.

Therefore, if r ∈ [1
2
, 1),

Cn, r (Lp
a(β)) ≥

1

3
cp, β

n

1− r
.

Now if r ∈ [0, 1
2
), then we first notice that n ≤ n

1−r
≤ 2n , we simply take gn = zn−1 ∈ Kzn =

Pn−1 = Rn, 0 and recalling that for every real numbers t, l
ˆ 1

0

ρt
(
1− ρ2

)l
dρ =

1

2

Γ(l + 1)Γ
(
1
2
t+ 1

2

)

Γ
(
1
2
t+ 3

2
+ l
) ,

where Γ stands for the usual Gamma function Γ(z) =
´ +∞
0

e−ssz−1ds, we get

‖gn‖pLp
a(β)

= 2

ˆ 1

0

ˆ

T

|ρζ |p(n−1) (1− ρ2
)β

ρdm(ζ)dρ =

= 2

ˆ 1

0

ρp(n−1)+1
(
1− ρ2

)β
dρ =

Γ(β + 1)Γ
(

p(n−1)+1
2

+ 1
2

)

Γ
(

p(n−1)+1
2

+ 3
2
+ β

) ,

on one hand.
And on the other hand,

∥∥∥g′

n

∥∥∥
p

Lp
a(β)

= 2(n− 1)

ˆ 1

0

ˆ

T

|ρζ |p(n−2) (1− ρ2
)β

ρdm(ζ)dρ =

= 2(n− 1)

ˆ 1

0

ρp(n−2)+1
(
1− ρ2

)β
dρ =

Γ(β + 1)Γ
(

p(n−2)+1
2

+ 1
2

)

Γ
(

p(n−2)+1
2

+ 3
2
+ β

) .

Now, ∥∥g′

n

∥∥p
Lp
a(β)

‖gn‖pLp
a(β)

= (n− 1)
Γ
(

p(n−1)+1
2

+ 3
2
+ β

)

Γ
(

p(n−1)+1
2

+ 1
2

)
Γ
(

p(n−2)+1
2

+ 1
2

)

Γ
(

p(n−2)+1
2

+ 3
2
+ β

) ≥ c
′

p, βn,

for every n ≥ 2, where c
′

p, β is a positive constante depending on p and β only. (The case n = 1 is

obvious). Then if r ∈ [0, 1
2
),

Cn, r (Lp
a(β)) ≥ c

′

p, βn ≥
c
′

p, β

2
2n ≥

c
′

p, β

2

n

1− r
,

since n
1−r

≤ 2n. Finally,

Cn, r (Lp
a(β)) ≥

{ cp, β
3

n
1−r

if r ∈ [1
2
, 1)

c
′

p, β

2
n

1−r
if r ∈ [0, 1

2
)

≥ min

(
cp, β
3

,
c
′

p, β

2

)
n

1− r
,

for all r ∈ [0, 1) , which completes the proof of Step 2.
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