Bernstein-type inequalities for rational functions in weighted Bergman spaces and applications
 Rachid Zarouf

To cite this version:

Rachid Zarouf. Bernstein-type inequalities for rational functions in weighted Bergman spaces and applications. 2010. hal-00463664v1

HAL Id: hal-00463664
 https://hal.science/hal-00463664v1

Preprint submitted on 14 Mar 2010 (v1), last revised 27 Jun 2012 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bernstein-type inequalities for rational functions in weighted Bergman spaces and applications

Rachid Zarouf

Abstract

Two Bernstein-type inequalities in the standard Bergman space L_{a}^{2} of the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<$ $1\}$, for rational functions in \mathbb{D} having at most n poles all outside of $\frac{1}{r} \mathbb{D}, 0<r<1$, are considered. The asymptotic sharpness is shown as $n \rightarrow \infty$ and $r \rightarrow 1$. We apply the first Bernstein-type inequality to an effective estimate of a Nevanlinna-Pick type interpolation constant in the Dirichlet space, constrained by the H^{2} norm, H^{2} being the classical Hardy space. We also extend our second Bernstein-type inequality to radial-weighted Bergman spaces.

I. Introduction

Surveys of inequalities for the derivatives of rational functions are given by Gonchar [Go] and Rusak [Ru]. Chapter 7 of $[\mathrm{BoEr}]$ is also devoted to this topic. Here, we present such inequalities for rational functions f of degree n with poles in $\mathbb{D}_{-}=\{z:|z|>1\}$, involving weighted-Bergman norms.

Let $L_{a}^{2}=l_{a}^{2}\left(\frac{1}{\sqrt{k+1}}\right)$ be the Bergman space of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\|f\|_{L_{a}^{2}}=:\left(\sum_{k \geq 0}|\hat{f}(k)|^{2} \frac{1}{k+1}\right)^{\frac{1}{2}}<\infty
$$

An equivalent description of this space is the space of holomorphic functions f in \mathbb{D} such that

$$
\|f\|_{L_{a}^{2}}=\left(\int_{\mathbb{D}}|f(z)|^{2} d A\right)^{\frac{1}{2}}<\infty
$$

where $d A$ stands for the area measure. Our first result (see Section 1) is that if f is a rational function in \mathbb{D} having at most n poles all outside of $\frac{1}{r} \mathbb{D}$, then

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq \widetilde{A}(n, r) \sqrt{\frac{n}{1-r}}\|f\|_{H^{2}} \tag{1}
\end{equation*}
$$

where $\widetilde{A}(n, r) \leq\left(1+r+\frac{1}{\sqrt{n}}\right)^{\frac{1}{2}}$ and H^{2} stands for the standard Hardy space of the unit disc \mathbb{D},

$$
H^{2}=\left\{f=\sum_{k \geq 0} \hat{f}(k) z^{k}: \sup _{0 \leq r<1} \int_{\mathbb{T}}|f(r z)|^{2} d m(z)<\infty\right\}
$$

m being the Lebesgue normalized measure on \mathbb{T}.
Now let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D}, the finite Blaschke product $B_{\sigma}=$ $\Pi_{i=1}^{n} b_{\lambda_{i}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$. Let also $K_{B_{\sigma}}$ be the n dimensional space defined by

$$
K_{B_{\sigma}}=\mathcal{L} i n\left(k_{\lambda_{i}}: i=1 \ldots n\right),
$$

where σ is a family of distincts elements of \mathbb{D}, and where $k_{\lambda}=\frac{1}{1-\bar{\lambda} z}$ is the Szegö kernel associated to λ. An obvious modification allows to generalize the definition of $K_{B_{\sigma}}$ in the case where the sequence σ admits multiplicities.

Notice that using the scalar product $(., .)_{H^{2}}$ on H^{2}, an equivalent description of this space is:

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

Notice also that every rational functions with poles in \mathbb{D}_{-}lies in a space $K_{B_{\sigma}}$. More precisely, if f is a rational function in \mathbb{D} having n poles $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ all outside of $\frac{1}{r} \mathbb{D}$, then $f \in K_{B_{\sigma}}$ where $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $\lambda_{i}=\frac{1}{\mu_{i}}$ for all $i \in[1, n]$. It has already been proved in [Z1] that setting $r=\max _{j}\left|\lambda_{j}\right|$, and $f \in K_{B_{\sigma}}$, then

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{H^{2}} \leq C_{n, r}\|f\|_{H^{2}} \tag{2}
\end{equation*}
$$

and

$$
a(n, r) \frac{n}{1-r} \leq C_{n, r} \leq A(n, r) \frac{n}{1-r}
$$

for all $n \geq 2$, where

$$
a(n, r) \geq \frac{1}{1+r}\left(1+5 r^{4}-\frac{4 r^{4}}{n}-\min \left(\frac{3}{4}, \frac{2}{n}\right)\right)^{\frac{1}{2}}
$$

and

$$
A(n, r) \leq 1+r+\frac{1}{\sqrt{n}}
$$

Moreover, it is shown in [Z1] that the sequence

$$
\left(\frac{1}{n} C_{n, r}\right)_{n \geq 1}
$$

is convergent for each $r \in[0,1)$, and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} C_{n, r}=\frac{1+r}{1-r}
$$

for all $r \in[0,1)$. In the same spirit, we prove in Section 1 , the asymptotic sharpness - in inequality (1) - of the ratio $\sqrt{\frac{n}{1-r}}$ as $n \rightarrow \infty$, for all $r \in[0,1)$, in the following sense : we find an inequality for

$$
\sup \|D\|_{\left(K_{B},\|\cdot\|_{L_{a}^{2}}\right) \rightarrow H^{2}}=\widetilde{C}_{n, r},
$$

(sup is over all B with given $n=\operatorname{deg} B$ and $r=\max _{\lambda \in \sigma}|\lambda|$), which is asymptotically sharp as $n \rightarrow \infty$, for all for all $r \in[0,1)$. Moreover, there exists a limit

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{C}_{n, r}}{\sqrt{n}}=\sqrt{\frac{1+r}{1-r}}
$$

for every $r, 0 \leq r<1$.
Now it is important to link and motivate such an inequality with one of Dolzhenko's inequality [Do] : let f be a rational function of degree n with poles in \mathbb{D}_{-}and let $B_{2,2}^{\frac{1}{2}}$ be the analytic Besov space of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\|f\|_{B_{2,2}^{\frac{1}{2}}}=:\left(\sum_{k \geq 0}(k+1)|\hat{f}(k)|^{2}\right)^{\frac{1}{2}}<\infty
$$

then

$$
\begin{equation*}
\|f\|_{B_{2,2}^{\frac{1}{2}}} \leq c \sqrt{n}\|f\|_{H^{\infty}} \tag{3}
\end{equation*}
$$

where $\|f\|_{H^{\infty}}=\sup _{\zeta \in \mathbb{T}}|f(\zeta)|$ and c is a numerical constant. Notice that on one hand, inequality (3) was generalized by Danchenko [Da] for Hardy-Besov spaces. On the other hand, another generalization of (3) follows from a result of Peller [Pel] on best rational approximations for some class of Besov spaces, in BMOA : the space of all analytic functions of the bounded mean oscillation on \mathbb{D}. Later, Pekarskii [Pek] generalized and strengthened the results of Peller and Danchenko. An interesting motivation for such inequalities is to apply it to " inverse theorems of rational approximation ".

Here, the link between inequalities (1) and (3) is that $\left\|f^{\prime}\right\|_{L_{a}^{2}}$ is comparable with $\|f\|_{B_{2,2}^{\frac{1}{2}}}$. Indeed,

$$
\|f\|_{B_{2,2}}^{2}=\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2}+\|f\|_{H^{2}}^{2} .
$$

In particular, a corollary of our result is that if f is a rational functions in \mathbb{D} having at most n poles all outside of $\frac{1}{r} \mathbb{D}$, then

$$
\begin{equation*}
\|f\|_{B_{2,2}^{\frac{1}{2}}} \leq \widetilde{B}(n, r) \sqrt{\frac{n}{1-r}}\|f\|_{H^{2}} \tag{4}
\end{equation*}
$$

where $\sup _{n} \widetilde{B}(n, r) \leq \sqrt{1+r}$ for all $r \in[0,1)$, which is a Dolzhenko-type inequality and could be comparated with (3) : the H^{∞} - norm is replaced by the $H^{2}-$ norm wich is smaller, but another parameter " r " appears with a factor $\frac{1}{\sqrt{1-r}}$. In the same spirit, we find an inequality for

$$
\sup \|I d\|_{\left(K_{B},\|\cdot\|_{L_{a}^{2}}\right) \rightarrow H^{2}}=\widetilde{B}_{n, r}
$$

($I d$ is the identity operator and sup is over all B with given $n=\operatorname{deg} B$ and $r=\max _{\lambda \in \sigma}|\lambda|$), which is asymptotically sharp as $n \rightarrow \infty$ for all $r \in[0,1)$. Indeed,

$$
\widetilde{B}_{n, r}=\widetilde{C}_{n, r}+1
$$

In particular, there exists a limit

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{B}_{n, r}}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\widetilde{C}_{n, r}}{\sqrt{n}}=\sqrt{\frac{1+r}{1-r}}
$$

for every $r, 0 \leq r<1$.
In Section 2, we apply inequality (1) to an effective estimate of a Nevanlinna-Pick type interpolation constant in the Dirichlet space, constrained by the H^{2}-norm.

In Section 3, we give a Bernstein-type inequality for the same class of rational functions f in \mathbb{D} having at most n poles all outside of $\frac{1}{r} \mathbb{D}$,

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq B(n, r) \frac{n}{1-r}\|f\|_{L_{a}^{2}} \tag{5}
\end{equation*}
$$

where $B(n, r)=20^{\frac{1}{4}}\left(1+r+\frac{1}{\sqrt{n}}\right)$. We prove that inequality (5) is asymptotically sharp as $n \rightarrow \infty$ and $r \rightarrow 1$ in the following sense : if $n \geq 2$, there exists $f_{n} \in H_{\alpha}$ such that

$$
\frac{\left\|f_{n}^{\prime}\right\|_{L_{a}^{2}}}{\left\|f_{n}\right\|_{L_{a}^{2}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1. Finally, in Section 4, we generalize inequality (5) replacing the Bergman norm $\|\cdot\|_{L_{a}^{2}}$ by weighted-Bergman norms $\|\cdot\|_{H_{\alpha}}$ for positive α. We recall that the space $H_{\alpha}=l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha}}\right)$, $\alpha \geq 0$ is defined to be the Hardy weighted space of all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\|f\|_{H_{\alpha}}=:\left(\sum_{k \geq 0} \frac{1}{(k+1)^{2 \alpha}}|\hat{f}(k)|^{2}\right)^{\frac{1}{2}}<\infty
$$

It is also important to recall that

$$
H_{\alpha}=L_{a}^{2}\left(\left(1-|z|^{2}\right)^{2 \alpha-1} d A\right), \alpha>0
$$

where $L_{a}^{2}\left(\left(1-|z|^{2}\right)^{\beta} d A\right), \beta>-1$, stand for the Bergman weighted spaces of all holomorphic functions f such that

$$
\|f\|_{H_{\alpha}}=\left(\int_{\mathbb{D}}|f(z)|^{2}\left(1-|z|^{2}\right)^{\beta} d A\right)^{\frac{1}{2}}<\infty
$$

Notice also that $H^{2}=H_{0}$ and $L_{a}^{2}=H_{-\frac{1}{2}}$. We get

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{H_{\alpha}} \leq K_{\alpha} \frac{n}{1-r}\|f\|_{H_{\alpha}}, \tag{6}
\end{equation*}
$$

where K_{α} is a constant depending on α only. We prove that inequality (6) is asymptotically sharp as $n \rightarrow \infty$ and $r \rightarrow 1$ in the following sense : if $n>\alpha+1$, there exists $f_{n} \in H_{\alpha}$ such that

$$
\frac{\left\|f_{n}^{\prime}\right\|_{H_{\alpha}}}{\left\|f_{n}\right\|_{H_{\alpha}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1 .

II. A first Bernstein-type inequality in L_{a}^{2}

Theorem 2.1

Let $n \geq 1, \sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D}, and B_{σ} the finite Blaschke product $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$. Let also $K_{B_{\sigma}}$ be the n-dimensional subspace of H^{2} defined by

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

Let D be the operator of differentiation on $\left(K_{B_{\sigma}},\| \|_{L_{a}^{2}}\right)$:

$$
\begin{gathered}
D:\left(K_{B_{\sigma}},\|\cdot\|_{L_{a}^{2}}\right) \rightarrow\left(H^{2},\|\cdot\|_{H^{2}}\right) \\
f \mapsto f^{\prime} .
\end{gathered}
$$

For $r \in[0,1)$ and $n \geq 1$, we set

$$
\widetilde{C}_{n, r}=\sup \left\{\|D\|_{K_{B_{\sigma}} \rightarrow H^{2}}: 1 \leq \# \sigma \leq n,|\lambda| \leq r \forall \lambda \in \sigma\right\}
$$

Then, if $n=1$ and $\sigma=\{\lambda\}$, we have

$$
\|D\|_{K_{B_{\sigma}} \rightarrow H^{2}}=|\lambda|
$$

If $n \geq 2$, we have

$$
\widetilde{C}_{n, r} \leq \sqrt{C_{n, r}}
$$

and

$$
\widetilde{a}(n, r) \sqrt{\frac{n}{1-r}} \leq \widetilde{C}_{n, r} \leq \widetilde{A}(n, r) \sqrt{\frac{n}{1-r}},
$$

where

$$
\widetilde{a}(n, r) \geq\left(1-\frac{1-r}{n}\right)^{\frac{1}{2}}
$$

and

$$
\widetilde{A}(n, r) \leq\left(1+r+\frac{1}{\sqrt{n}}\right)^{\frac{1}{2}}
$$

(ii) Moreover, the sequence

$$
\left(\frac{1}{\sqrt{n}} \widetilde{C}_{n, r}\right)_{n \geq 1}
$$

is convergent and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \widetilde{C}_{n, r}=\sqrt{\frac{1+r}{1-r}}
$$

for all $r \in[0,1)$.

Proof.

Proof of (i). The case $n=1$. In this case, $K_{B}=\mathbb{C} e_{1}$, where

$$
e_{1}=\frac{\left(1-|\lambda|^{2}\right)^{\frac{1}{2}}}{1-\bar{\lambda} z},|\lambda| \leq r
$$

(e_{1} being of norm 1 in H^{2}). Calculating,

$$
e_{1}^{\prime}=\frac{\bar{\lambda}\left(1-|\lambda|^{2}\right)^{\frac{1}{2}}}{(1-\bar{\lambda} z)^{2}}
$$

and

$$
\begin{gathered}
\left\|e_{1}^{\prime}\right\|_{L_{a}^{2}}=|\lambda|\left(1-|\lambda|^{2}\right)^{\frac{1}{2}}\left\|\frac{1}{(1-\bar{\lambda} z)^{2}}\right\|_{L_{a}^{2}}= \\
=|\lambda|\left(1-|\lambda|^{2}\right)^{\frac{1}{2}}\left(\sum_{k \geq 0} \frac{k+1}{k+1}|\lambda|^{2 k}\right)^{\frac{1}{2}}=|\lambda|\left(1-|\lambda|^{2}\right)^{\frac{1}{2}} \frac{1}{\left(1-|\lambda|^{2}\right)}=|\lambda|,
\end{gathered}
$$

we get

$$
\left\|D_{\mid K_{B_{\sigma}}}\right\|=|\lambda| .
$$

The case $n \geq 2$. First, we show the right hand side inequality. Using both Cauchy-Schwarz inequality and the fact that $\widehat{f}^{\prime}(k)=(k+1) \widehat{f}(k+1)$ for all $k \geq 0$, we get

$$
\begin{gathered}
\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2}=\sum_{k \geq 0} \frac{\left|\widehat{f^{\prime}}(k)\right|^{2}}{k+1}=\sum_{k \geq 0} \frac{(k+1)^{2}|\widehat{f}(k+1)|^{2}}{k+1}= \\
=\sum_{k \geq 1} k|\widehat{f}(k)|^{2} \leq\left(\sum_{k \geq 1} k^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{2}}\left(\sum_{k \geq 1}|\widehat{f}(k)|^{2}\right)^{\frac{1}{2}}= \\
=\left\|f^{\prime}\right\|_{H^{2}}\|f\|_{H^{2}} \leq C_{n, r}\|f\|_{H^{2}}^{2}
\end{gathered}
$$

and hence,

$$
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq \sqrt{C_{n, r}}\|f\|_{H^{2}}
$$

which means

$$
\widetilde{C}_{n, r} \leq \sqrt{C_{n, r}}
$$

Now, we show the left-hand-side one. Let

$$
e_{n}=\frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r z} b_{r}^{n-1} .
$$

Then $e_{n} \in K_{b_{r}^{n}}$ and $\left\|e_{n}\right\|_{2}=1$, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

$$
\begin{aligned}
e_{n}^{\prime} & =\frac{r\left(1-r^{2}\right)^{\frac{1}{2}}}{(1-r z)^{2}} b_{r}^{n-1}+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r z} b_{r}^{\prime} b_{r}^{n-2}= \\
& =-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} b_{r}^{\prime} b_{r}^{n-1}+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r z} b_{r}^{\prime} b_{r}^{n-2}
\end{aligned}
$$

since $b_{r}^{\prime}=\frac{r^{2}-1}{(1-r z)^{2}}$. Then,

$$
e_{n}^{\prime}=b_{r}^{\prime}\left[-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} b_{r}^{n-1}+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r z} b_{r}^{n-2}\right],
$$

and

$$
\begin{aligned}
\left\|e_{n}^{\prime}\right\|_{L_{a}^{2}}^{2} & =\frac{1}{2 \pi} \int_{\mathbb{D}}\left|b_{r}^{\prime}(w)\right|^{2}\left|-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}}\left(b_{r}(w)\right)^{n-1}+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r w}\left(b_{r}(w)\right)^{n-2}\right|^{2} d m(w)= \\
& =\frac{1}{2 \pi} \int_{\mathbb{D}}\left|b_{r}^{\prime}(w)\right|^{2}\left|\left(b_{r}(w)\right)^{n-2}\right|^{2}\left|-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} b_{r}(w)+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r w}\right| d m(w)
\end{aligned}
$$

which gives, using the variables $u=b_{r}(w)$,

$$
\left\|e_{n}^{\prime}\right\|_{L_{a}^{2}}^{2}=\frac{1}{2 \pi} \int_{\mathbb{D}}\left|u^{n-2}\right|^{2}\left|-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} u+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r b_{r}(u)}\right|^{2} d m(u)
$$

But $1-r b_{r}=\frac{1-r z-r(r-z)}{1-r z}=\frac{1-r^{2}}{1-r z}$ and $b_{r}^{\prime} \circ b_{r}=\frac{r^{2}-1}{\left(1-r b_{r}\right)^{2}}=-\frac{(1-r z)^{2}}{1-r^{2}}$. This implies

$$
\begin{aligned}
\left\|e_{n}^{\prime}\right\|_{L_{a}^{2}}^{2} & =\frac{1}{2 \pi} \int_{\mathbb{D}}\left|u^{n-2}\right|^{2}\left|-\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} u+(n-1) \frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{1-r^{2}}(1-r u)\right|^{2} d m(u)= \\
& =\frac{1}{\left(1-r^{2}\right)} \frac{1}{2 \pi} \int_{\mathbb{D}}\left|u^{n-2}\right|^{2}|(-r u+(n-1)(1-r u))|^{2} d m(u)
\end{aligned}
$$

which gives

$$
\left\|e_{n}^{\prime}\right\|_{L_{a}^{2}}=\frac{1}{\left(1-r^{2}\right)^{\frac{1}{2}}}\left\|\varphi_{n}\right\|_{2},
$$

where $\varphi_{n}=z^{n-2}(-r z+(n-1)(1-r z))$. Expanding, we get

$$
\begin{gathered}
\varphi_{n}=z^{n-2}(-r z+n-1+r z-n r z)= \\
=z^{n-2}(-n r z+n-1)=(n-1) z^{n-2}-n r z^{n-1},
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|e_{n}^{\prime}\right\|_{L_{a}^{2}}^{2}=\frac{1}{\left(1-r^{2}\right)}\left(\frac{(n-1)^{2}}{n-1}+\frac{n^{2}}{n} r^{2}\right)= \\
=\frac{1}{\left(1-r^{2}\right)}(n(1+r)-1)=\frac{n}{(1-r)(1+r)}\left((1+r)-\frac{1}{n}\right)= \\
=\frac{n}{1-r}\left(1-\frac{1-r}{n}\right)
\end{gathered}
$$

which gives

$$
\widetilde{C_{n, r}} \geq \sqrt{\frac{n}{1-r}}\left(1-\frac{1-r}{n}\right)^{\frac{1}{2}}
$$

Proof of (ii). Step 1. We first prove the right-hand-side inequality:

$$
\overline{\lim }_{n \rightarrow \infty} \frac{1}{\sqrt{n}} \widetilde{C_{n, r}} \leq \sqrt{\frac{1+r}{1-r}}
$$

which becomes obvious since

$$
\frac{1}{\sqrt{n}} \widetilde{C_{n, r}} \leq \frac{1}{\sqrt{n}} \sqrt{C_{n, r}}
$$

and

$$
\frac{1}{\sqrt{n}} \sqrt{C_{n, r}} \rightarrow \sqrt{\frac{1+r}{1-r}}
$$

as n tends to infinity.
Step 2. We now prove the left-hand-side inequality :

$$
\underline{\lim }_{n \rightarrow \infty} \frac{1}{\sqrt{n}} \widetilde{C_{n, r}} \geq \sqrt{\frac{1+r}{1-r}}
$$

More precisely, we show that

$$
\underline{\lim }_{n \rightarrow \infty} \frac{1}{\sqrt{n}}\|D\|_{\left(K_{b_{r}^{n}},\|\cdot\|_{L_{a}^{2}}\right) \rightarrow H^{2}} \geq \sqrt{\frac{1+r}{1-r}}
$$

Let $f \in K_{b_{r}^{n}}$. Then,

$$
\begin{aligned}
f^{\prime}= & \left(f, e_{1}\right)_{H^{2}} \frac{r}{(1-r z)} e_{1}+\sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} \frac{b_{r}^{\prime}}{b_{r}} e_{k}+r \sum_{k=2}^{n}\left(f, e_{k}\right)_{H^{2}} \frac{1}{(1-r z)} e_{k}= \\
& =r \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} \frac{1}{(1-r z)} e_{k}+\frac{1-r^{2}}{(1-r z)(z-r)} \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} e_{k}= \\
= & \frac{r\left(1-r^{2}\right)^{\frac{1}{2}}}{(1-r z)^{2}} \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}+\frac{\left(1-r^{2}\right)^{\frac{3}{2}}}{(1-r z)^{2}(z-r)} \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}= \\
& =-b_{r}^{\prime}\left[\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}+\frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{z-r} \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}\right] .
\end{aligned}
$$

Now using the change of variables $v=b_{r}(u)$, we get

$$
\begin{aligned}
\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2} & =\int_{\mathbb{D}}\left|b_{r}^{\prime}(u)\right|^{2}\left|\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}+\frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{u-r} \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} b_{r}^{k-1}\right|^{2} d u= \\
& =\int_{\mathbb{D}}\left|\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} v^{k-1}+\frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{b_{r}(v)-r} \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} v^{k-1}\right|^{2} d v .
\end{aligned}
$$

But

$$
b_{r}-r=\frac{r-z-r(1-r z)}{1-r z}=\frac{z\left(r^{2}-1\right)}{1-r z}
$$

which gives

$$
\begin{aligned}
\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2}= & \int_{\mathbb{D}}\left|\frac{r}{\left(1-r^{2}\right)^{\frac{1}{2}}} \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} v^{k-1}+\frac{\left(1-r^{2}\right)^{\frac{1}{2}}}{v\left(r^{2}-1\right)}(1-r v) \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} v^{k-1}\right|^{2} d v= \\
& =\frac{1}{1-r^{2}} \int_{\mathbb{D}}\left|r \sum_{k=1}^{n}\left(f, e_{k}\right)_{H^{2}} v^{k-1}-(1-r v) \sum_{k=2}^{n}(k-1)\left(f, e_{k}\right)_{H^{2}} v^{k-2}\right|^{2} d v= \\
& =\frac{1}{1-r^{2}} \int_{\mathbb{D}}\left|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}-(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right|^{2} d v
\end{aligned}
$$

But

$$
\begin{aligned}
\left\|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}} & \leq r\left(\sum_{k=0}^{n-1} \frac{1}{k+1}\left|\left(f, e_{k+1}\right)_{H^{2}}\right|^{2}\right)^{1 / 2} \leq \\
& \leq r\|f\|_{H^{2}}
\end{aligned}
$$

and in particular

$$
\lim _{n \rightarrow \infty} \frac{1}{n\|f\|_{H^{2}}}\left\|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}=0
$$

Now,

$$
\begin{gathered}
(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}= \\
=\sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}-r \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k+1}= \\
=\sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}-r \sum_{k=1}^{n-1} k\left(f, e_{k+1}\right)_{H^{2}} v^{k}= \\
=\left(f, e_{2}\right)_{H^{2}}+2\left(f, e_{3}\right)_{H^{2}} v+\sum_{k=2}^{n-2}\left[(k+1)\left(f, e_{k+2}\right)_{H^{2}}-r k\left(f, e_{k+1}\right)_{H^{2}}\right] v^{k}+ \\
-r\left[\left(f, e_{2}\right)_{H^{2}} v+(n-1)\left(f, e_{n}\right)_{H^{2}} v^{n-1}\right]= \\
=\left(f, e_{2}\right)_{H^{2}}+\left[\left(f, e_{3}\right)_{H^{2}}-r\left(f, e_{2}\right)_{H^{2}}\right] v+\sum_{k=2}^{n-2}\left[(k+1)\left(f, e_{k+2}\right)_{H^{2}}-r k\left(f, e_{k+1}\right)_{H^{2}}\right] v^{k}+ \\
-r(n-1)\left(f, e_{n}\right)_{H^{2}} v^{n-1} .
\end{gathered}
$$

Since

$$
\begin{gathered}
\frac{1}{\|f\|_{H^{2}} \sqrt{n\left(1-r^{2}\right)}}\left[\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}+\left\|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}\right] \geq \\
\geq \frac{1}{\sqrt{n}} \frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}}{\|f\|_{H^{2}}} \geq
\end{gathered}
$$

$$
\geq \frac{1}{\|f\|_{H^{2}} \sqrt{n\left(1-r^{2}\right)}}\left[\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}-\left\|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}\right]
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{\|f\|_{H^{2}} \sqrt{n}}\left\|r \sum_{k=0}^{n-1}\left(f, e_{k+1}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}=0
$$

we get that

$$
\begin{gathered}
\frac{1}{\sqrt{1+r}} \underline{\lim }_{n \rightarrow \infty} \frac{1}{\|f\|_{H^{2}} \sqrt{n}}\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}} \geq \\
\geq \underline{l i m}_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}}{\|f\|_{H^{2}}} \geq \\
\geq \frac{1}{\sqrt{1+r}} \underline{l i m}_{n \rightarrow \infty} \frac{1}{\|f\|_{H^{2}} \sqrt{n}}\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}
\end{gathered}
$$

This gives

$$
\underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}^{\|f\|_{H^{2}}}=\frac{1}{\sqrt{1+r}} \underline{\lim }_{n \rightarrow \infty} \frac{1}{\|f\|_{H^{2}} \sqrt{n}}\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}}{}
$$

But

$$
\begin{gathered}
=\left(f, e_{2}\right)_{H^{2}}+\left[\left(f, e_{3}\right)_{H^{2}}-r\left(f, e_{2}\right)_{H^{2}}\right] v+\sum_{k=2}^{n-2}\left[(k+1)\left(f, e_{k+2}\right)_{H^{2}}-r k\left(f, e_{k+1}\right)_{H^{2}}\right] v^{k}+ \\
-r(n-1)\left(f, e_{n}\right)_{H^{2}} v^{n-1} \\
\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2}=\left|\left(f, e_{2}\right)_{H^{2}}\right|^{2}+ \\
+\frac{1}{2}\left|\left(f, e_{3}\right)_{H^{2}}-r\left(f, e_{2}\right)_{H^{2}}\right|^{2}+\frac{1}{n} r^{4}(n-1)^{2}\left|\left(f, e_{n}\right)_{H^{2}}\right|^{2}+ \\
+\sum_{k=2}^{n-2}\left|\left(f, e_{k+2}\right)_{H^{2}}-\frac{r k}{k+1}\left(f, e_{k+1}\right)_{H^{2}}\right|^{2}
\end{gathered}
$$

Now, let $s=s_{n}$ be a sequence of even integers such that

$$
\bullet \lim _{n \rightarrow \infty} s_{n}=\infty \text { and }
$$

$$
\text { - } s_{n}=o(n) \text { as } n \rightarrow \infty .
$$

Then we consider the following function f in $K_{b_{r}^{n}}$:

$$
\begin{aligned}
f=e_{n}-e_{n-1}+e_{n-2}-e_{n-3}+ & \ldots+(-1)^{k} e_{n-k}+\ldots+e_{n-s}-e_{n-s-1}+e_{n-s-2}= \\
& =\sum_{k=0}^{s+2}(-1)^{k} e_{n-k} .
\end{aligned}
$$

With such an f, we get

$$
\begin{gathered}
\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2}=\left|\left(f, e_{2}\right)_{H^{2}}\right|^{2}+ \\
+\frac{1}{2}\left|\left(f, e_{3}\right)_{H^{2}}-r\left(f, e_{2}\right)_{H^{2}}\right|^{2}+\frac{1}{n} r^{4}(n-1)^{2}\left|\left(f, e_{n}\right)_{H^{2}}\right|^{2}+ \\
+\sum_{k=2}^{n-2}(k+1)\left|\left(f, e_{k+2}\right)_{H^{2}}-\frac{r k}{k+1}\left(f, e_{k+1}\right)_{H^{2}}\right|^{2} \\
\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2}= \\
=r^{4} \frac{(n-1)^{2}}{n}+ \\
+\sum_{l=2}^{n-2}(n-l+1)\left|\left(f, e_{n-l+2}\right)_{H^{2}}-\frac{r(n-l)}{n-l+1}\left(f, e_{n-l+1}\right)_{H^{2}}\right|^{2}
\end{gathered}
$$

setting the change of index $l=n-k$ in the last sum. This finally gives

$$
\begin{gathered}
\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2}= \\
=r^{4} \frac{(n-1)^{2}}{n}+\sum_{l=2}^{s+1}(n-l+1)\left|1+\frac{r(n-l)}{n-l+1}\right|^{2}= \\
=r^{4} \frac{(n-1)^{2}}{n}+\sum_{l=2}^{s+1}(n-l+1)\left[1+r\left(1-\frac{1}{n-l+1}\right)\right]^{2}
\end{gathered}
$$

And

$$
\begin{gathered}
\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2} \geq \\
\geq r^{4} \frac{(n-1)^{2}}{n}+(s+1-2+1)(n-(s+1)+1)\left[1+r\left(1-\frac{1}{n-(s+1)+1}\right)\right]^{2}= \\
=r^{4} \frac{(n-1)^{2}}{n}+s(n-s)\left[1+r\left(1-\frac{1}{n-s}\right)\right]^{2}
\end{gathered}
$$

In particular,

$$
\left\|(1-r v)^{2} \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}}^{2} \geq s(n-s)\left[1+r\left(1-\frac{1}{n-s}\right)\right]^{2}
$$

Now, since

$$
\|f\|_{H^{2}}^{2}=s+3=s_{n}+3
$$

we get

$$
\begin{gathered}
\underline{\lim }_{n \rightarrow \infty} \frac{1}{n\|f\|_{H^{2}}^{2}}\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{2}^{2} \geq \\
\geq \underline{\lim }_{n \rightarrow \infty} \frac{1}{n\|f\|_{H^{2}}^{2}}\|f\|_{H^{2}}^{2}\left(n-\|f\|_{H^{2}}^{2}\right)\left[1+r\left(1-\frac{1}{n-s}\right)\right]^{2}= \\
=\lim _{n \rightarrow \infty}\left(1-\frac{s_{n}}{n}\right)\left[1+r\left(1-\frac{1}{n-s}\right)\right]^{2}=(1+r)^{2}
\end{gathered}
$$

We can now conclude that

$$
\begin{gathered}
\underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}}{\|f\|_{H^{2}}}=\frac{1}{\sqrt{1+r}} \underline{\lim }_{n \rightarrow \infty} \frac{1}{\|f\|_{H^{2}} \sqrt{n}}\left\|(1-r v) \sum_{k=0}^{n-2}(k+1)\left(f, e_{k+2}\right)_{H^{2}} v^{k}\right\|_{L_{a}^{2}} \geq \\
\geq \frac{1+r}{\sqrt{1+r}}=\sqrt{1+r}
\end{gathered}
$$

and

$$
\underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}}\|D\|_{K_{b_{r}^{n} \rightarrow H^{2}}} \geq \underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}}{\|f\|_{H^{2}}} \geq \sqrt{1+r}
$$

Step 3. Conclusion. Using both Step 1 and Step 2, we get

$$
\overline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \widetilde{C_{n, r}}=\underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \widetilde{C_{n, r}}=1+r
$$

which means that the sequence $\left(\frac{1}{n} C_{n, r}\right)_{n \geq 1}$ is convergent and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \widetilde{C_{n, r}}=\sqrt{\frac{1+r}{1-r}}
$$

Now, in order to "compare" our result to Dolzhenko's inequality [Do], mentioned in the introduction, we give the following corollary.

Corollary 2.2

Let $n \geq 1, \sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D}, and B_{σ} the finite Blaschke product $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$. Let also $K_{B_{\sigma}}$ be the n-dimensional subspace of H^{2} defined by

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

Let Id be the identity operator on $\left(K_{B_{\sigma}},\|\cdot\|_{B_{2,2}^{\frac{1}{2}}}\right)$:

$$
\begin{gathered}
I d:\left(K_{B_{\sigma}},\|\cdot\|_{B_{2,2}^{\frac{1}{2}}}\right) \rightarrow\left(H^{2},\|\cdot\|_{H^{2}}\right) \\
f \mapsto f .
\end{gathered}
$$

For $r \in[0,1)$ and $n \geq 1$, we set

$$
\widetilde{B}_{n, r}=\sup \left\{\|D\|_{K_{B_{\sigma}} \rightarrow H^{2}}: 1 \leq \# \sigma \leq n,|\lambda| \leq r \forall \lambda \in \sigma\right\} .
$$

Then

$$
\widetilde{B}_{n, r}=\widetilde{C}_{n, r}+1,
$$

for all $n \geq 1$ and $r \in[0,1)$. In particular, the sequence

$$
\left(\frac{1}{\sqrt{n}} \widetilde{B}_{n, r}\right)_{n \geq 1}
$$

is convergent and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \widetilde{B}_{n, r}=\sqrt{\frac{1+r}{1-r}}
$$

for all $r \in[0,1)$.
Proof. Indeed,

$$
\begin{gathered}
\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2}=\sum_{k \geq 1} k|\widehat{f}(k)|^{2}=\sum_{k \geq 1}(k+1)|\widehat{f}(k)|^{2}-\sum_{k \geq 1}|\widehat{f}(k)|^{2}= \\
=\left(\|f\|_{B_{2,2}^{1}}^{2}-|\widehat{f}(0)|^{2}\right)-\left(\|f\|_{H^{2}}^{2}-|\widehat{f}(0)|^{2}\right)=\|f\|_{B_{2,2}^{\frac{1}{2}}}^{2}-\|f\|_{H^{2}}^{2},
\end{gathered}
$$

for every $f \in K_{B}$. Then,

$$
\frac{\|f\|_{B_{2,2}^{1}}^{2}}{\|f\|_{H^{2}}^{2}}=1+\frac{\left\|f^{\prime}\right\|_{L_{a}^{2}}^{2}}{\|f\|_{H^{2}}^{2}}
$$

Taking the supremum over all $f \in K_{B}$ of norm 1 in H^{2}, this gives

$$
\widetilde{B}_{n, r}=\widetilde{C}_{n, r}+1
$$

which completes the proof, applying Theorem 2.1.

III. Interpolation in the Dirichlet space

Let X and Y two Banach spaces of holomorphic functions on the unit disc \mathbb{D} such that $X \supset Y$, and a finite set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{D}$. Following [Z2] and [Z3], we consider the following interpolation constant

$$
c(\sigma, X, Y)=\sup _{f \in X,\|f\|_{X} \leq 1} \inf \left\{\|g\|_{Y}: g_{\mid \sigma}=f_{\mid \sigma}\right\},
$$

and

$$
C_{n, r}(X, Y)=\sup \left\{c(\sigma, X, Y): \# \sigma \leq n, \forall j=1 . . n,\left|\lambda_{j}\right| \leq r\right\} .
$$

It has already been proved in $[\mathrm{Z} 2]$ that for $X=H^{2}$ and $Y=H^{\infty}$,

$$
\frac{1}{4 \sqrt{2}} \frac{\sqrt{n}}{\sqrt{1-r}} \leq c\left(\sigma_{n, r}, H^{2}, H^{\infty}\right) \leq \mathcal{C}_{n, r}\left(H^{2}, H^{\infty}\right) \leq \sqrt{2} \frac{\sqrt{n}}{\sqrt{1-r}},
$$

a question especially stimulated by L. Baratchart (a part of a more complicated question arising in an applied situation in [BL1] and [BL2]) : given a set $\sigma \subset \mathbb{D}$, how to estimate $c\left(\sigma, H^{2}, H^{\infty}\right)$ in terms of $n=\operatorname{card}(\sigma)$ and $\max _{\lambda \in \sigma}|\lambda|=r$ only?

Here, we replace the algebra H^{∞} by the Dirichlet space \mathcal{D} all $f(z)=\sum_{k \geq 0} \hat{f}(k) z^{k}$ satisfying

$$
\|f\|_{\mathcal{D}}^{2}:=|\hat{f}(0)|^{2}+\sum_{k \geq 1} k|\hat{f}(k)|^{2}<\infty
$$

Notice that \mathcal{D} coincides with the Besov space $B_{2,2}^{\frac{1}{2}}$: the spaces are the same and the norms are equivalent. We show that the "gap" between $X=H^{2}$ and $Y=H^{\infty}$ is asymptotically the same as the one which exists between $X=H^{2}$ and $Y=\mathcal{D}$.

Corollary 3.1. Let σ be a sequence in \mathbb{D}. Then,

$$
c\left(\sigma, H^{2}, \mathcal{D}\right) \leq\left(\widetilde{C}_{n, r}^{2}+1\right)^{\frac{1}{2}}
$$

Indeed, let $H=\mathcal{D}$ and $B=B_{\sigma}$ the finite Blaschke product corresponding to σ. We recall that P_{B} is the orthogonal projection of H onto $K_{B}=K_{B}\left(H^{2}\right)$. If $f \in H^{2}$, let $g=P_{B} f \in K_{B}$. Then $g-f \in B H^{2}$ and

$$
\begin{aligned}
\|g\|_{\mathcal{D}}^{2} & =|\hat{g}(0)|^{2}+\sum_{k \geq 1} k|\hat{g}(k)|^{2}= \\
& =\left\|g^{\prime}\right\|_{L_{a}^{2}}^{2}+|\hat{g}(0)|^{2}
\end{aligned}
$$

Now, using Theorem 2.1,

$$
\left\|g^{\prime}\right\|_{L_{a}^{2}}^{2} \leq C_{n, r}\|g\|_{H^{2}}^{2}
$$

which gives

$$
\|g\|_{\mathcal{D}}^{2} \leq\left(C_{n, r}+1\right)\|g\|_{H^{2}}^{2}
$$

Using the fact that $\|g\|_{H^{2}}=\left\|P_{B} f\right\|_{H^{2}} \leq\|f\|_{H^{2}}$, we finally get

$$
\|g\|_{\mathcal{D}} \leq\left(C_{n, r}+1\right)^{\frac{1}{2}}\|f\|_{H^{2}}
$$

and as a result,

$$
c\left(\sigma, H^{2}, \mathcal{D}\right) \leq\left(C_{n, r}+1\right)^{\frac{1}{2}}
$$

Theorem 3.2. Let $n \geq 1, \lambda \in \mathbb{D}$ and $r \in[0,1)$. We consider $\sigma_{n, \lambda}=\{\lambda, \ldots, \lambda\}$, a one-point set of multiplicity n. Then,

$$
c\left(\sigma_{n, \lambda}, H^{2}, \mathcal{D}\right) \geq \sqrt{\frac{n}{1-|\lambda|}}\left[\frac{(1+|\lambda|)^{2}-\frac{2}{n}-\frac{2|\lambda|}{n}}{2(1+|\lambda|)}\right]^{\frac{1}{2}}
$$

In particular,

$$
\begin{gathered}
\sqrt{\frac{n}{1-r}}\left[\frac{(1+r)^{2}-\frac{2}{n}-\frac{2 r}{n}}{2(1+r)}\right]^{\frac{1}{2}} \leq \mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right) \leq\left(C_{n, r}+1\right)^{\frac{1}{2}} \\
\sqrt{\frac{\frac{1+r}{2}}{1-r}} \leq \underline{\lim }_{n \rightarrow \infty} \frac{\mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right)}{\sqrt{n}} \leq \overline{\lim }_{n \rightarrow \infty} \frac{\mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right)}{\sqrt{n}} \leq \sqrt{\frac{1+r}{1-r}}
\end{gathered}
$$

and

$$
\frac{\sqrt{2}}{2} \leq \underline{\lim }_{r \rightarrow 1} \underline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right) \leq \overline{\lim }_{r \rightarrow 1} \overline{\lim }_{n \rightarrow \infty} \sqrt{\frac{1-r}{n}} \mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right) \leq \sqrt{2}
$$

Proof. 1) We set

$$
f=\sum_{k=0}^{n-1}\left(1-|\lambda|^{2}\right)^{\frac{1}{2}} b_{\lambda}^{k}(1-\bar{\lambda} z)^{-1}
$$

Then $\|f\|_{2}^{2}=n$,
2) Since the spaces H^{2} and \mathcal{D} are rotation invariant, we have $c\left(\sigma_{n, \lambda}, H^{2}, \mathcal{D}\right)=c\left(\sigma_{n, \mu}, H^{2}, \mathcal{D}\right)$ for every λ, μ with $|\lambda|=|\mu|=r$. Let $\lambda=-r$. To get a lower estimate for $\|f\|_{H_{\varphi} / b_{\lambda}^{n} H_{\varphi}}$ consider g such that $f-g \in b_{\lambda}^{n} \operatorname{Hol}(\mathbb{D})$, i.e. such that $f \circ b_{\lambda}-g \circ b_{\lambda} \in z^{n} \operatorname{Hol}(\mathbb{D})$.
3) First, we notice that

$$
\begin{gathered}
\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}=\left\|\left(g \circ b_{\lambda}\right)^{\prime}\right\|_{L_{a}^{2}}^{2}+\left|g\left(b_{\lambda}(0)\right)\right|^{2}=\left\|b_{\lambda} \cdot\left(g^{\prime} \circ b_{\lambda}\right)\right\|_{L_{a}^{2}}^{2}+|g(-r)|^{2}= \\
=\int_{\mathbb{D}}\left|b_{\lambda}(u)\right|^{2}\left|g^{\prime}\left(b_{\lambda}(u)\right)\right|^{2} d u+|g(-r)|^{2}=\int_{\mathbb{D}}\left|g^{\prime}(w)\right|^{2} d w+|g(-r)|^{2}
\end{gathered}
$$

using the changing of variables $w=b_{\lambda}(u)$. We get

$$
\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}=\left\|g^{\prime}\right\|_{L_{a}^{2}}^{2}+|g(-r)|^{2}=\|g\|_{\mathcal{D}}^{2}+|g(-r)|^{2}-|g(0)|^{2}
$$

and

$$
\begin{gathered}
\|g\|_{\mathcal{D}}^{2}=\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}+|g(0)|^{2}-|g(-r)|^{2}= \\
=\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}+|g(0)|^{2}-|f(-r)|^{2} \geq \\
\geq\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}-|f(-r)|^{2}
\end{gathered}
$$

but

$$
|f(-r)|^{2}=\left|\left\langle f, k_{-r}\right\rangle\right|^{2} \leq\|f\|_{H^{2}}^{2}\left\|k_{-r}^{2}\right\|_{H^{2}}=\|f\|_{H^{2}}^{2} \frac{1}{1-r^{2}}
$$

which gives

$$
\|g\|_{\mathcal{D}}^{2} \geq\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}-\|f\|_{H^{2}}^{2} \frac{1}{1-r^{2}}
$$

Now, we notice that

$$
\begin{gathered}
f \circ b_{\lambda}=\sum_{k=0}^{n-1} z^{k} \frac{\left(1-|\lambda|^{2}\right)^{\frac{1}{2}}}{1-\bar{\lambda} b_{\lambda}(z)}=\left(1-|\lambda|^{2}\right)^{-\frac{1}{2}}\left(1+(1-\bar{\lambda}) \sum_{k=1}^{n-1} z^{k}-\bar{\lambda} z^{n}\right)= \\
=\left(1-r^{2}\right)^{-\frac{1}{2}}\left(1+(1+r) \sum_{k=1}^{n-1} z^{k}+r z^{n}\right)
\end{gathered}
$$

4) Next,

$$
\begin{gathered}
\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2}=\sum_{k \geq 0}(k+1)\left|\widehat{g \circ b_{\lambda}}(k)\right|^{2} \geq \\
\geq \sum_{k=0}^{n-1}(k+1)\left|\widehat{g \circ b_{\lambda}}(k)\right|^{2}=\sum_{k=0}^{n-1}(k+1)\left|\widehat{f \circ b_{\lambda}}(k)\right|^{2}
\end{gathered}
$$

since $\widehat{g \circ b_{\lambda}}(k)=\widehat{f \circ b_{\lambda}}(k), \forall k \in[0, n-1]$. This gives

$$
\begin{gathered}
\left\|g \circ b_{\lambda}\right\|_{\mathcal{D}}^{2} \geq \frac{1}{1-r^{2}}\left(1+(1+r)^{2} \sum_{k=1}^{n-1}(k+1)+(n+1) r^{2}\right)= \\
=\frac{1}{1-r^{2}}\left(1+(1+r)^{2}\left(n-1+\frac{n(n-1)}{2}\right)+(n+1) r^{2}\right)= \\
=\frac{1}{1-r^{2}}\left(1+(1+r)^{2}\left(\frac{n^{2}+n-2}{2}\right)+(n+1) r^{2}\right) \geq \frac{(1+r)^{2}}{1-r^{2}}\left(\frac{n^{2}+n-2}{2}\right) \geq \\
\geq \frac{n^{2}}{1-r^{2}} \frac{(1+r)^{2}}{2}=\frac{n}{1-r} \frac{1+r}{2}\|f\|_{H^{2}}^{2}
\end{gathered}
$$

for all $n \geq 2$, since $\|f\|_{H^{2}}=n$.

$$
\begin{gathered}
\|g\|_{\mathcal{D}}^{2} \geq \frac{n}{1-r} \frac{1+r}{2}\|f\|_{H^{2}}^{2}-\frac{1}{1-r^{2}}\|f\|_{H^{2}}^{2}= \\
=\frac{1}{1-r}\left[\frac{1+r}{2} n-\frac{1}{1+r}\right]\|f\|_{H^{2}}^{2}= \\
=\frac{n}{1-r}\left[\frac{1+r}{2}-\frac{\frac{1}{n}}{1+r}\right]\|f\|_{H^{2}}^{2}=\frac{n}{1-r}\left[\frac{(1+r)^{2}-\frac{2}{n}-\frac{2 r}{n}}{2(1+r)}\right]\|f\|_{H^{2}}^{2} .
\end{gathered}
$$

In particular,

$$
\mathcal{C}_{n, r}\left(H^{2}, \mathcal{D}\right) \geq \sqrt{\frac{n}{1-r}}\left[\frac{(1+r)^{2}-\frac{2}{n}-\frac{2 r}{n}}{2(1+r)}\right]^{\frac{1}{2}}
$$

IV. A second Bernstein-type inequality in L_{a}^{2}

Theorem 4.1.

Let $n \geq 1, \sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D}, and B_{σ} the finite Blaschke product $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$. Let also $K_{B_{\sigma}}$ be the n-dimensional subspace of H^{2} defined by

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

Let D be the operator of differentiation on $\left(K_{B_{\sigma}},\| \|_{L_{a}^{2}}\right)$:

$$
\begin{gathered}
D:\left(K_{B_{\sigma}},\|\cdot\|_{L_{a}^{2}}\right) \rightarrow\left(L_{a}^{2},\|\cdot\|_{L_{a}^{2}}\right) \\
f \mapsto f^{\prime} .
\end{gathered}
$$

For $r \in[0,1)$ and $n \geq 1$, we set

$$
B_{n, r}=\sup \left\{\|D\|_{K_{B_{\sigma}} \rightarrow L_{a}^{2}}: 1 \leq \# \sigma \leq n,|\lambda| \leq r \forall \lambda \in \sigma\right\}
$$

Then

$$
B_{n, r} \leq 20^{\frac{1}{4}} C_{n, r}
$$

The inequality is asymptotically sharp as $n \rightarrow \infty$ and $r \rightarrow 1$ in the following sense : if $n \geq 2$, there exists $f_{n} \in L_{a}^{2}$ such that

$$
\frac{\left\|f_{n}^{\prime}\right\|_{L_{a}^{2}}}{\left\|f_{n}\right\|_{L_{a}^{2}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1 .
Proof. We already know (Theorem 2.1) that

$$
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq \sqrt{C_{n, r}}\|f\|_{H^{2}}
$$

Using Hölder's inequality setting $p=3, p^{\prime}=\frac{3}{2}, x=\frac{2}{3}$ so as $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and,

$$
\left\{\begin{array}{c}
p x=2 \\
p^{\prime} x=1 \\
p^{\prime}(2-x)=2
\end{array}\right.
$$

we get

$$
\begin{aligned}
& \|f\|_{H^{2}}^{2}=\sum_{k \geq 0}|\widehat{f}(k)|^{2}=\sum_{k \geq 0}(k+1)^{x}|\widehat{f}(k)|^{x} \frac{|\widehat{f}(k)|^{2-x}}{(k+1)^{x}} \leq \\
& \leq\left(\sum_{k \geq 0}(k+1)^{p x}|\widehat{f}(k)|^{p x}\right)^{\frac{1}{p}}\left(\sum_{k \geq 0} \frac{|\widehat{f}(k)|^{p^{\prime}(2-x)}}{(k+1)^{p^{\prime} x}}\right)^{\frac{1}{p^{\prime}}}= \\
& =\left(\sum_{k \geq 0}(k+1)^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{3}}\left(\sum_{k \geq 0} \frac{|\widehat{f}(k)|^{2}}{k+1}\right)^{\frac{2}{3}}=
\end{aligned}
$$

$$
\begin{gathered}
=\left(|\widehat{f}(0)|^{2}+\sum_{k \geq 1}(k+1)^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}} \leq \\
\leq\left(|\widehat{f}(0)|^{2}+\sup _{k \geq 1}\left\{\left(\frac{k+1}{k}\right)^{2}\right\} \sum_{k \geq 1} k^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}}= \\
=\left(|\widehat{f}(0)|^{2}+2^{2}\left\|f^{\prime}\right\|_{H^{2}}^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}} \leq\left(\|f\|_{H^{2}}^{2}+4\left\|f^{\prime}\right\|_{H^{2}}^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}} \leq \\
\leq\left(\|f\|_{H^{2}}^{2}+4 C_{n, r}^{2}\|f\|_{H^{2}}^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}}=\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{3}}\|f\|_{H^{2}}^{\frac{2}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}},
\end{gathered}
$$

using the definition of $C_{n, r}$. This gives

$$
\|f\|_{H^{2}}^{2} \leq\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{3}}\|f\|_{H^{2}}^{\frac{2}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}}
$$

which means

$$
\|f\|_{H^{2}}^{\frac{4}{3}} \leq\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{3}}\|f\|_{L_{a}^{2}}^{\frac{4}{3}}
$$

or equivalently

$$
\|f\|_{H^{2}} \leq\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{4}}\|f\|_{L_{a}^{2}}
$$

Finally,

$$
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq \sqrt{C_{n, r}}\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{4}}\|f\|_{L_{a}^{2}}=C_{n, r}\left(4+\frac{1}{C_{n, r}^{2}}\right)^{\frac{1}{4}}\|f\|_{L_{a}^{2}}
$$

But

$$
\begin{gathered}
\frac{1}{C_{n, r}} \leq \frac{1}{a(n, r)} \frac{1-r}{n} \leq \\
\leq \frac{1+r}{\left(1+5 r^{4}-\frac{4 r^{4}}{n}-\min \left(\frac{3}{4}, \frac{2}{n}\right)\right)^{\frac{1}{2}}} \frac{1-r}{n} \leq \frac{2}{\left(1-\frac{3}{4}\right)^{\frac{1}{2}}} \frac{1-r}{n}= \\
=4 \frac{1-r}{n} \leq 4
\end{gathered}
$$

As a result,

$$
\left\|f^{\prime}\right\|_{L_{a}^{2}} \leq 20^{\frac{1}{4}} C_{n, r}\|f\|_{L_{a}^{2}}
$$

In order to prove that this inequality is asymptotically sharp as $n \rightarrow \infty$ and $r \rightarrow 1$, it is sufficient to consider $f_{n}=\frac{1}{(1-r z)^{n}}$. Then

$$
\frac{\left\|f_{n}^{\prime}\right\|_{L_{a}^{2}}}{\left\|f_{n}\right\|_{L_{a}^{2}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as $r \rightarrow 1$. Indeed, recalling that

$$
\|g\|_{H_{\alpha}}^{2}=\int_{\mathbb{D}}|g(z)|^{2} d A
$$

for all $g \in L_{a}^{2}$, and setting

$$
I_{c, t}(\lambda)=\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{t}}{|1-\bar{\lambda} z|^{2+t+c}} d A
$$

we get

$$
\frac{\left\|f_{n}^{\prime}\right\|_{L_{a}^{2}}^{2}}{\left\|f_{n}\right\|_{L_{a}^{2}}^{2}}=r^{2} n^{2} \frac{I_{2 n, 0}(r)}{I_{2 n-2,0}(r)} \sim n^{2} \frac{\frac{1}{\left(1-r^{2}\right)^{2 n}}}{\frac{1}{\left(1-r^{2}\right)^{2 n-2}}} \sim\left(\frac{n}{1-r^{2}}\right)^{2}
$$

as r tends to 1 , (see [Zhu] Chapter 4, or equivalently [HeKoZh]). This gives

$$
\frac{\left\|f_{n}^{\prime}\right\|_{L_{a}^{2}}}{\left\|f_{n}\right\|_{L_{a}^{2}}} \sim \frac{1}{1+r} \frac{n}{1-r} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1 .

V. Bernstein-type inequalities in weighted Bergman spaces

In this Section, we generalize Theorem 4.1 to the case of spaces $H_{\alpha}=l_{a}^{2}\left(\frac{1}{(k+1)^{\alpha}}\right), \alpha \geq 0$.

Theorem 5.1.

Let $n \geq 1, \sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a sequence in the unit disc \mathbb{D}, and B_{σ} the finite Blaschke product $B_{\sigma}=\Pi_{i=1}^{n} b_{\lambda_{i}}$, where $b_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$ is an elementary Blaschke factor for $\lambda \in \mathbb{D}$. Let also $K_{B_{\sigma}}$ be the n-dimensional subspace of H^{2} defined by

$$
K_{B_{\sigma}}=\left(B_{\sigma} H^{2}\right)^{\perp}=H^{2} \Theta B_{\sigma} H^{2}
$$

Let D be the operator of differentiation on $\left(K_{B_{\sigma}},\|\cdot\|_{H_{\alpha}}\right)$:

$$
\begin{gathered}
D:\left(K_{B_{\sigma}},\|\cdot\|_{H_{\alpha}}\right) \rightarrow\left(H_{\alpha},\|\cdot\|_{H_{\alpha}}\right) \\
f \mapsto f^{\prime} .
\end{gathered}
$$

For $r \in[0,1)$ and $n \geq 1$, we set

$$
B_{n, r}^{\alpha}=\sup \left\{\|D\|_{K_{B_{\sigma} \rightarrow H_{\alpha}}}: 1 \leq \# \sigma \leq n,|\lambda| \leq r \forall \lambda \in \sigma\right\} .
$$

Then

$$
B_{n, r}^{\alpha} \leq K_{\alpha} C_{n, r}
$$

where $K_{\alpha}=2^{\frac{\alpha^{2}}{2(\alpha+1)}} 20^{\frac{\alpha}{2(\alpha+1)}}$, for all $\alpha \in \mathbb{R}^{+}$. The inequality is asymptotically sharp as $n \rightarrow \infty$ and $r \rightarrow 1$ in the following sense : if $n>\alpha+1$, there exists $f_{n} \in H_{\alpha}$ such that

$$
\frac{\left\|f_{n}^{\prime}\right\|_{H_{\alpha}}}{\left\|f_{n}\right\|_{H_{\alpha}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1 .

Proof . Let $f \in H_{\alpha}$ and $p=\alpha+1, p^{\prime}=\frac{1+\alpha}{\alpha} \geq 1, t=\frac{2}{\alpha+1}$, so as $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and

$$
\left\{\begin{array}{c}
p t=2 \\
p^{\prime}(2(1-\alpha)-t)=-2 \alpha \\
p^{\prime}(2-t)=2
\end{array}\right.
$$

Then

$$
\begin{aligned}
\left\|f^{\prime}\right\|_{H_{\alpha}}^{2} & =\sum_{k \geq 0} \frac{(k+1)^{2}|\hat{f}(k+1)|^{2}}{(k+1)^{2 \alpha}}=\sum_{k \geq 0}(k+1)^{2(1-\alpha)}|\hat{f}(k+1)|^{2}= \\
& =\sum_{k \geq 0}(k+1)^{t}|\hat{f}(k+1)|^{t}(k+1)^{2(1-\alpha)-t}|\hat{f}(k+1)|^{2-t}
\end{aligned}
$$

Using Hölder's inequality, we get

$$
\begin{gathered}
\left\|f^{\prime}\right\|_{H_{\alpha}}^{2} \leq\left(\sum_{k \geq 0}(k+1)^{2}|\hat{f}(k+1)|^{2}\right)^{\frac{1}{p}}\left(\sum_{k \geq 0} \frac{|\hat{f}(k+1)|^{2}}{(k+1)^{2 \alpha}}\right)^{\frac{1}{p^{\prime}}}= \\
=\left\|f^{\prime}\right\|_{H^{2}}^{\frac{2}{p}}\left(\sum_{k \geq 0}\left(\frac{k+2}{k+1}\right)^{\alpha} \frac{|\hat{f}(k+1)|^{2}}{(k+2)^{2 \alpha}}\right)^{\frac{1}{p^{\prime}}} \leq \\
\leq C_{n, r}^{\frac{2}{p}}\|f\|_{H^{2}}^{\frac{2}{p}} \sup _{k \geq 0}\left\{\left(\frac{k+2}{k+1}\right)^{\frac{\alpha}{p^{\prime}}}\right\}\left(\sum_{k \geq 0} \frac{|\hat{f}(k+1)|^{2}}{(k+2)^{2 \alpha}}\right)^{\frac{1}{p^{\prime}}} \leq \\
\leq 2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}}\|f\|_{H^{2}}^{\frac{2}{p}}\left(\|f\|_{H_{\alpha}}^{2}-|\hat{f}(0)|^{2}\right)^{\frac{1}{p^{\prime}}} \leq \\
\leq 2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}}\|f\|_{H^{2}}^{\frac{2}{p}}\|f\|_{H_{\alpha}}^{\frac{2}{p^{\prime}}}
\end{gathered}
$$

Now let $x=\frac{2 \alpha}{\alpha+1}$, so as

$$
\left\{\begin{array}{c}
p^{\prime} x=2 \\
p x=2 \alpha \\
p(2-x)=2
\end{array} .\right.
$$

Using again Hölder's inequality, we get

$$
\begin{aligned}
& \|f\|_{H^{2}}^{2}=\sum_{k \geq 0}|\widehat{f}(k)|^{2}=\sum_{k \geq 0}(k+1)^{x}|\widehat{f}(k)|^{x} \frac{|\widehat{f}(k)|^{2-x}}{(k+1)^{x}} \leq \\
& \leq\left(\sum_{k \geq 0}(k+1)^{p^{\prime} x}|\widehat{f}(k)|^{p^{\prime} x}\right)^{\frac{1}{p^{\prime}}}\left(\sum_{k \geq 0} \frac{|\widehat{f}(k)|^{p(2-x)}}{(k+1)^{p x}}\right)^{\frac{1}{p}}=
\end{aligned}
$$

$$
\begin{gathered}
=\left(\sum_{k \geq 0}(k+1)^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{p^{\prime}}}\left(\sum_{k \geq 0} \frac{|\widehat{f}(k)|^{2}}{(k+1)^{2 \alpha}}\right)^{\frac{2}{p}}= \\
=\left(|\widehat{f}(0)|^{2}+\sum_{k \geq 1}(k+1)^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}} \leq \\
\leq\left(|\widehat{f}(0)|^{2}+\sup _{k \geq 1}\left\{\left(\frac{k+1}{k}\right)^{2}\right\} \sum_{k \geq 1} k^{2}|\widehat{f}(k)|^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}}= \\
=\left(|\widehat{f}(0)|^{2}+2^{2}\left\|f^{\prime}\right\|_{H^{2}}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}} \leq\left(\|f\|_{H^{2}}^{2}+4\left\|f^{\prime}\right\|_{H^{2}}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}} \leq \\
\leq\left(\|f\|_{H^{2}}^{2}+4 C_{n, r}^{2}\|f\|_{H^{2}}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}}=\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H^{2}}^{\frac{2}{p}}\|f\|_{H_{\alpha}}^{\frac{2}{p}},
\end{gathered}
$$

using the definition of $C_{n, r}$. This gives

$$
\|f\|_{H^{2}}^{2-\frac{2}{p^{\prime}}} \leq\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}},
$$

which means

$$
\|f\|_{H^{2}}^{\frac{2}{p}} \leq\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}}
$$

Finally,

$$
\begin{gathered}
\left\|f^{\prime}\right\|_{H_{\alpha}}^{2} \leq 2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}}\|f\|_{H^{2}}^{\frac{2}{p}}\|f\|_{H_{\alpha}}^{\frac{2}{p^{p}}} \leq \\
\leq 2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}}\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{\frac{2}{p}}\|f\|_{H_{\alpha}}^{\frac{2}{p}}= \\
=2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}}\left(1+4 C_{n, r}^{2}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{2}= \\
=2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{\frac{2}{p}} C_{n, r}^{\frac{2}{p^{\prime}}}\left(4+\frac{1}{C_{n, r}^{2}}\right)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{2} .
\end{gathered}
$$

But we already know (see the proof of Theorem 4.1), that

$$
\frac{1}{C_{n, r}} \leq 4
$$

As a result,

$$
\left\|f^{\prime}\right\|_{H_{\alpha}}^{2} \leq 2^{\frac{\alpha}{p^{\prime}}} C_{n, r}^{2}(4+16)^{\frac{1}{p^{\prime}}}\|f\|_{H_{\alpha}}^{2}
$$

or equivalently

$$
\left\|f^{\prime}\right\|_{H_{\alpha}} \leq 2^{\frac{\alpha^{2}}{2(\alpha+1)}} 20^{\frac{\alpha}{2(\alpha+1)}} C_{n, r}\|f\|_{H_{\alpha}} .
$$

In order to prove that this inequality is asymptotically sharp as $r \rightarrow 1$, it is sufficient to consider again $f_{n}=\frac{1}{(1-r z)^{n}}$, with $n>\alpha+\frac{1}{2}$. Then

$$
\frac{\left\|f_{n}^{\prime}\right\|_{H_{\alpha}}}{\left\|f_{n}\right\|_{H_{\alpha}}} \sim \frac{1}{2} \frac{n}{1-r}
$$

as $r \rightarrow 1$. Indeed, recalling that

$$
\|g\|_{H_{\alpha}}^{2}=\int_{\mathbb{D}}|g(z)|^{2}\left(1-|z|^{2}\right)^{2 \alpha-1} d A
$$

for all $g \in H_{\alpha}$, and setting

$$
I_{c, t}(\lambda)=\int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{t}}{|1-\bar{\lambda} z|^{2+t+c}} d A
$$

we get

$$
\frac{\left\|f_{n}^{\prime}\right\|_{H_{\alpha}}^{2}}{\left\|f_{n}\right\|_{H_{\alpha}}^{2}}=r^{2} n^{2} \frac{I_{2(n-\alpha)+1,2 \alpha-1}(r)}{I_{2(n-\alpha)-1,2 \alpha-1}(r)} \sim n^{2} \frac{\frac{1}{\left(1-r^{2}\right)^{2(n-\alpha)+1}}}{\frac{1}{\left(1-r^{2}\right)^{2(n-\alpha)-1}}} \sim\left(\frac{n}{1-r^{2}}\right)^{2},
$$

as r tends to 1 , (see [Zhu] Chapter 4, or equivalently [HeKoZh]). This gives

$$
\frac{\left\|f_{n}^{\prime}\right\|_{H_{\alpha}}}{\left\|f_{n}\right\|_{H_{\alpha}}} \sim \frac{1}{1+r} \frac{n}{1-r} \sim \frac{1}{2} \frac{n}{1-r}
$$

as r tends to 1 .

References

[BL1] L. Baratchart, Rational and meromorphic approximation in Lp of the circle : systemtheoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, pages 45-78. World Scientific Publish. Co, 1999.
[BL2] L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H_{2} and Stieltjes integrals : a uniqueness theorem, Constr. Approx. 9 (1993), 1-21.
[BoEr] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[Go] A. A. Gonchar, Degree of approximation by rational fractions and properties of functions, Proc. Internat. Congr. Math. (Moscow, 1966 ("Mir", Moscow), 1968, 329-356 ; English transl. Amer. Math. Soc. Transl. (2), 91 (1970)
[Da] V. I. Danchenko, An integral estimate for the derivative of a rational function, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 277-293; English transl. Math. USSR Izv., 14 (1980)
[Do] E. P. Dolzhenko, Bounds for derivatives of rational functions, Izv. Akad. Nauk SSSR Ser. Mat., 27 (1963), 9-28, (Russian)
[HeKoZh] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 199, Springer, New York, 2000.
[Pel] V. V. Peller, Hankel operators of class \mathcal{S}_{p} and their applications (rational approximations, Gaussian processes, the problem of majorizing operators), Mat. Sb., 113(155) (1980), 538-581; English transl. Math. USSR Sb., 41 (1982)
[Pek] A. A. Pekarskii, Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation, Math. USSR-Sb. 52 (1985), 557-574.
[Ru] V. N. Rusak, Rational functions as approximation apparatus, (Izdat. Beloruss. Gos. Univ., Minsk.), 1979, (Russian)
[Z1] R. Zarouf, Asymptotic sharpness of a Bernstein-type inequality for rational functions in H^{2}, accepted at St. Petersburg. Math. Journal (2009).
[Z2] R. Zarouf, Effective H^{∞} interpolation constrained by Hardy and Bergman norms, submitted.
[Z3] R. Zarouf, Effective H^{∞} interpolation constrained by Hardy and Bergman weighted norms, submitted.
[Zhu] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker Inc., New York, 1990.

CMI-LATP, UMR 6632, Université de Provence, 39, rue F.-Joliot-Curie, 13453
Marseille cedex 13, France
E-mail address : rzarouf@cmi.univ-mrs.fr

