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Abstract: This paper deals with a special class of three-degree-of-freedom parallel 

manipulators. First, the singular configurations of the two Jacobian matrices 

are studied. The isotropic configurations are then found based on the 

characteristic length of this manipulator. The isoconditioning loci for the 

Jacobian matrices are plotted to define a global performance index allowing 

the comparison of the different working modes. The resulting index is 

compared with the Cartesian workspace surface and the average of the 

condition number. 
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1. INTRODUCTION 

Various performance indices have been devised to assess the kinetostatic 

performances of serial and parallel manipulators. As the literature on 

performance indices is extremely rich to fit in the limits of this paper, the 

interested reader is invited to look at it in the rather recent references cited 

here. A dimensionless quality index was recently introduced by Lee, Duffy, 

and Hunt [1] based on the ratio of the Jacobian determinant to its maximum 

absolute value, as applicable to parallel manipulators. This index does not 

take into account the location of the operation point of the end-effector, 

because the Jacobian determinant is independent of this location. The proof 
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of the foregoing result is available in [2], as pertaining to serial 

manipulators, its extension to their parallel counterparts being 

straightforward. The condition number of a given matrix, on the other hand, 

is known to provide a measure of invertibility of the matrix [3]. It is thus 

natural that this concept found its way into this context. Indeed, the 

condition number of the Jacobian matrix was proposed by [4] as a figure of 

merit to minimize when designing manipulators for maximum accuracy. In 

fact, the condition number gives, for a square matrix, a measure of the 

relative roundoff-error amplification of the computed results [3] with respect 

to the data roundoff error. As is well known, however, the dimensional 

heterogeneity of the entries of the Jacobian matrix prevents the 

straightforward application of the condition number as a measure of 

Jacobian invertibility. The characteristic length was introduced in [5] to 

cope with the above-mentioned heterogeneity. 

In this paper, we use the characteristic length to normalize the Jacobian 

matrix of a three-degree-of-freedom (dof) planar manipulator and to 

calculate the isoconditioning loci for all working modes.  

 
Figure -1. A three –DOF parallel manipulator 

2. PRELIMINARIES 

 A planar three-dof manipulator comprising three parallel PRR chains is 

shown in Fig. 1. This manipulator has been frequently studied, in particular 

in [6,7]. The actuated joint variables are the displacements of the three 

prismatic joints, the Cartesian variables being position vector p of operation 

point P and orientation  of the platform. The trajectories of points Ai define 

an equilateral triangle whose geometric center is point O, while points B1, B2 
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and B3, whose geometric center is point P, lie at the corners of an equilateral 

triangle. We thus have 
i
= +( -1)( 2 3 )i   , for 1, 2, 3i  . Moreover, 

1 2 3
l l l l   , with li denoting the length of AiBi and 

1 2 3
r r r r   , with ri 

denoting the length of BiP, in units of length that need not be specified in the 

paper. The layout of the trajectories of points Ai is defined by radius R of the 

circle inscribed in the associated triangle. 

2.1 Kinematic Relations 

Velocity 
 .
,p of point P can be obtained in three different forms, 

depending on which leg is traversed, namely, 

 =  + ( )  + ( ) , [1,3]
i i i i i

i   p a E b a E p b    (1) 

with matrix E and velocity 
i

a  of points Ai defined as 

 
where ei is a unit vector in the direction of the ith prismatic joint. We would 

like to eliminate the three idle joint rates 
1

 , 
2

  and 
3

  from eq.(1), which 

we do upon dot-multiplying the former by ( )
T

i i
b a , thus obtaining 

( ) =( ) +( ) ( ) , [1,3]
T T T

i i i i i i i i
i    b a p b a a b a E p b   (2) 

Equation (2) can now be cast in vector form, namely, 

 1 2 3
 w ith  and

T T

      
 

At Bρ t p ρ       (3) 

withρ thus being the vector of actuated joint rates. Moreover, A and B are, 

respectively, the direct-kinematics and the inverse-kinematics matrices of the 

manipulator, defined as 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T T

T T

T T

    
 

    
 

    
 

b a b a E p b

A b a b a E p b

b a b a E p b

 (4a) 

1 1 1

2 2 2

2 2 2

( ) 0 0

0 ( ) 0

0 0 ( )

T

T

T

 
 

 
 

 
 

b a e

B b a e

b a e

 (4b) 

When A and B are nonsingular, we obtain the relations 
1 1

 with and ,
 

   t Jρ J A B ρ Kt K B A   

with K denoting the inverse of J. 
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2.2 Parallel Singularities 

Parallel singularities occur when the determinant of matrix A vanishes 

[8,9]. At these configurations, it is possible to move locally operation point P 

with the actuators locked, the structure thus resulting cannot resist arbitrary 

forces, and control is lost. To avoid any performance loss, it is necessary to 

have a Cartesian workspace free of parallel singularities. For the planar 

manipulator studied, such configurations are reached whenever the axes 

A1B1, A2B2 and A3B3 intersect (possibly at infinity), as depicted in Fig.2. 

 
Figure -2. Parallel singularity    Figure -3. Serial singularity 

In the presence of such configurations, moreover, the manipulator cannot 

resist a force applied at the intersection point. These configurations are 

located inside the Cartesian workspace and form the boundaries of the joint 

workspace [8]. 

2.3 Serial Singularities 

 Serial singularities occur when det( ) 0Β . In the presence of theses 

singularities, there is a direction along which no Cartesian velocity can be 

produced. Serial singularities define the boundary of the Cartesian 

workspace. For the topology under study, the serial singularities occur 

whenever ( ) 0
T

i i i
 b a e  for at least one value of i, as depicted in Fig.3 for 

2i  . 

3. ISOCONDITIONING LOCI 

3.1 The Matrix Condition Number 
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We derive below the loci of equal condition number of the matrices A, B 

and K. To do this, we first recall the definition of condition number of an 

mn matrix M, with m<n, (M). Using Frobenius norm, (M) is the ratio of 

the smallest, s, to the largest, l, singular values of M, namely, 

( )
s l

  M  (5) 

The singular values of matrix M are defined, in turn, as the square roots 

of the nonnegative eigenvalues of the positive-definite mm matrix MM
T
. 

3.2 Non-Homogeneous Direct-Kinematics Matrix 

To make matrix A homogeneous, as needed to define its condition 

number, each term in the third column of A is divided by the characteristic 

length L [10], thereby deriving its normalized counterpart A : 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) ( ) ( ) /

( ) ( ) ( ) /

( ) ( ) ( ) /

T T

T T

T T

L

L

L

    
 

     

    
 

b a b a E p b

A b a b a E p b

b a b a E p b

 (6) 

which is calculated so as to minimize ( A ), along the posture variables 1, 

2 and 3. However, notice that B is dimensionally homogeneous, and does 

not need to be normalized. 

3.3 Isotropic Configuration 

In this section, we derive the isotropy condition on J to define the 

geometric parameters of the manipulator. We shall obtain also the value L of 

the characteristic length. To simplify A  and B, we use the notation 

( )
i i i
 l b a  (7a) 

( ) ( )
T

i i i i
k   b a E p b  (7b) 

( )
T

i i i i
m  b a e  (7c) 

i i i
A B P    (7d) 

 We can thus write matrices A  and B as 

1 1 1

2 2 2

33 3

/ 0 0

/ 0 0

0 0/

T

T

T

k L m

k L m

mk L

   
 

 
   

 
 

     

l

A l B

l

 (8) 

Whenever matrix B is nonsingular, that is, when 0, for 1, 2,3
i

m i  , 

we obtain 
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1 1 1 1

2 2 2 2

3 3 3 3

/ /( )

/ /( )

/ /( )

T

T

T

m k L m

m k L m

m k L m

 
 

  

 
  

l

K l

l

 

 Matrix J , the normalized J, is isotropic if and only if 
2

3 3

T




K K 1  for 

0   and 
1

K J ,i.e., 
2 2 2 2

( / ) / , [1, 3]
T

i i i i
k L m i  l l  (9a) 

2
( / ) /( ) 0 , , , [1, 3]

T

i j i j i j
k k L m m i j i j   l l  (9b) 

From eqs.(9a-b), we can derive the conditions below: 

1 2 3
 l l l  (10a) 

1 2 3
    p b p b p b  (10b) 

1 2 2 3 3 1

T T T
 l l l l l l  (10c) 

1 2 2 3 3 1
m m m m m m   (10d) 

In summary, the constraints defined in the eqs.(10a-d) are: 

 Pivots Bi should be placed at the vertices of an equilateral triangle; 

 Segments AiBi form an equilateral triangle; 

 The trajectories of point Ai define an equilateral triangle. Hence, 

1 2 3
l l l l   . 

Notice that the foregoing conditions, except the second one, were 

assumed in chapter 2. 

3.4 The Characteristic Length 

The characteristic length is defined at the isotropic configuration. From 

eq.(9b), we determine the value of the characteristic length as, 

1 2 1 2
( )

T
L k k  l l  

By applying the constraints defined in eq.(9a), we can write characteristic 

length L in terms of angle , i.e. 

2 sin( )L r   

where 
1 2 3

= = =    , was defined in eq.(7d) and [0 , 2 ]  . 

 This means that the manipulator under study admits several isotropic 

configurations, two of which are shown in Fig.4a and Fig.4b, whereas the 

characteristic length L of a manipulator is unique [2]. When  is equal to /2, 

Fig.4a, i.e., when AiBi is perpendicular to BiP, the manipulator finds itself at 

a configuration furthest away from parallel singularities. To have an 

isotropic configuration furthest away from serial singularities, we obtain two 

conditions: ( ) 0 and / 2
T

i i i
r R  e E b a . 
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Figure -4. Two isotropic configurations with two values of  

3.5 Working Modes 

The manipulator under study has a diagonal inverse-kinematics matrix B, 

as shown in eq.(4b), the disappearance of one of its diagonal entries thus 

indicating the occurrence of a serial singularity. The set of manipulator 

postures free of this kind of singularity is termed a working mode. The 

different working modes are thus separated by a serial singularity. The 

formal definition of the working mode is detailed in [8]. For the manipulator 

at hand, there are eight working modes, as depicted in Fig.5. 

 
Figure -5. The eight working modes of the 3PRR manipulator 

 However, because of symmetries, we can restrict our study to only two 

working modes, if there are no joint limits. Indeed, working mode 1 is 

similar to working mode 5. For the first one, the signs of the diagonal entries 

of B are all negative. For the second one, they are all positive. A similarly 

reasoning is applicable to working modes 2-6, 3-7 and 4-8. Likewise, 

working modes 3-4 and 7-8 can be derived from working modes 2 and 6 by a 

rotation of 120° and 240°, respectively. Therefore, only working modes 1 
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and 2 are studied. We label the corresponding matrices as 
i

A , B, 
i

K  for ith 

working mode. 

3.6 Isoconditioning Loci 

For each Jacobian matrix and for all the poses of the end-effector, we 

calculate the optimum conditioning according to the orientation of the end-

effector. We can notice that there is a singular configuration for any 

orientation of the end-effector. 

Fig.6 depicts the isoconditioning loci of matrix A . We depict in Fig.7 the 

isoconditioning loci of matrix B. We notice that the loci of both working 

modes are identical. This is due to both the absence of joint limits on the 

actuated joints and the symmetry of the manipulator. For one configuration, 

only the signs of mi change from a working mode to another, but the 

condition number  is computed from the absolute values of mi. The shapes 

of the isoconditioning loci of 
_

,K are similar to those of the isoconditioning 

loci of A ; only the numerical values vary. 

 
Figure -6. Isoconditioning loci of the matrix (a)

1
A and (b)

2
A with 2R r   and 2l r   

For the first working mode, the condition number of matrix A  decreases 

regularly around the isotropic configuration. The isoconditioning loci 

resemble concentric circles. However, for the second working mode, the 

isoconditioning loci of matrix A  resemble ellipses. Characteristic length L 

depends on r. Two indices can be studied according to parameter R:  

(i) the area of the Cartesian workspace, called S; 

(ii) the average of the conditioning, called . 

The first index is identical for the two working modes. Fig. 8 depicts the 

variation of S as a function of R/r, for 2l r  . Its maximum value is reached 

when 0.5R r  . 
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Figure -7. Isoconditioning loci of the matrix (a) B1 and (b) B2 with 2R r   and 2l r   

  

Figure -8. S = f(R/r) Figure -9.  (
1

A ),  (
2

A ) = f(R/r) 

 
 

Figure -10.  (B1),  (B2) = f(R/r) Figure -11. (
1

K ),  (
2

K ) = f(R/r) 

 For the three matrices studied,  can be regarded as a global performance 

index. This index allows us to compare the working modes. Figures.9, 10 

and 11 depict ( A ), (B) and  ( K ), respectively, as a function of R/r, 

with 2l r  . 

 The value of  (
1

A ) increases with R. At the opposite, the maximum 

value of  (
2

A ) is reached when 2R r  . For both the working modes 

studied,  (B1) and  (B2) are identical for R/r fixed. For the first working 

mode, the minimum value of  (
1

K ) and the maximum area of Cartesian 

workspace S occur at different values of R/r. This means that we must reach 
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a compromise under these two indices. For the second working mode, there 

is an optimum of  (
2

K ) close to the optimum of S, for 2R r  . 

4. CONCLUSIONS 

We produced the isoconditioning loci of the Jacobian matrices of a three-

PRR parallel manipulator. This concept being general, it can be applied to 

any three-dof planar parallel manipulator. To solve the problem of 

heterogeneity of the Jacobian matrix, we used the notion of characteristic 

length. This length was defined for the isotropic configuration of the 

manipulator. The isoconditioning curves thus obtained characterize, for 

every posture of the manipulator, the optimum conditioning for all possible 

orientations of the end-effector. This index is compared with the area of the 

Cartesian workspace and the conditioning average. The two optima being 

different, it is necessary to find another index to determine the optimum 

values. The results of this paper can be used to choose the working mode 

which is best suited to the task at hand or as a global performance index 

when we study the optimum design of these kinds of manipulators. 
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