Gilles Benattar
email: gilles.benattar@irccyn.ec-nantes.fr

Béatrice Bérard

Didier Lime

John Mullins

Olivier Henri Roux

Mathieu Sassolas
email: mathieu.sassolas@lip6.fr

Olivier H ⋆⋆

Roux

Covert Channel Synthesis for Transducers

Keywords: Security, Covert Channels, Non-interference, Transducers

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

General context and related work

The context of this work is the security of information flows. While systems have to communicate to exchange information and share resources, they aim at maintaining some confidentiality and try to establish security levels to forbid or filter information flows, preventing leaks of classified data. A covert channel is a way to bypass system securities in order to recover some confidential information. Well-known examples are described in [START_REF] Trabelsi | A novel covert channel based on the IP header record route option[END_REF] for TCP/IP, in which reserved fields of IP packets were used to transmit information. Characteristics such as running time [START_REF] Kocher | Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[END_REF], power consumption [START_REF] Kocher | Differential power analysis[END_REF] and even electromagnetic radiation [START_REF] Quisquater | ElectroMagnetic Analysis (EMA): Measures and Couter-Measures for Smard Cards[END_REF] have also been exploited to recover confidential information from different security systems.

Since their introduction by Lampson [START_REF] Lampson | A note on the confinement problem[END_REF], covert channels have been largely studied in terms of security policies à la Bell and La Padula [START_REF] Bell | Secure computer systems: mathematical foundations[END_REF]. But access control does not provide complete solutions for protecting information and as a complementary approach, non-interference was introduced in [START_REF] Goguen | Security policy and security models[END_REF] to detect covert channels through the information flow of a multi-level security system in order to prevent high-level data from being deduced by low-level parties. This work has been extended in [START_REF] Focardi | Classification of security properties (part I: information flow)[END_REF] for CCS processes. Many behavioral equivalences have been considered in order to establish a wide variety of non-interference properties classified according to their discrimination power.

However, as explained in [START_REF] Lowe | Quantifying information flow[END_REF], non interference is too strong a requirement since a system fails to satisfy non-interference as soon as it leaks only one bit of information. Thus, quantifying information leak is necessary. Moreover, in [START_REF] Moskowitz | Covert Channels -Here to Stay?[END_REF], a zero capacity channel is given, on which any message can be sent. This observation has led to set out an additional condition, called the small message criterion, to the existence of a covert channel. It roughly states that messages of arbitrary size can be sent in finite time. Many models of covert channels have been proposed, based on information-theoretic metrics to measure information revealed to an attacker [START_REF] Lowe | Quantifying information flow[END_REF][START_REF] Millen | Finite-state noiseless covert channels[END_REF][START_REF] Malacaria | Assessing security threats of looping constructs[END_REF][START_REF] Köpf | An information-theoretic model for adaptive side-channel attacks[END_REF].

Another research thread focuses on a different approach by re-formulating qualitative information flow policies [START_REF] Sutherland | A model of information[END_REF][START_REF] Mullins | Nondeterministic admissible interference[END_REF][START_REF] Ryan | Non-interference, who needs it?[END_REF] in order to cope with the above discussed limitations of the original condition. For instance, opacity [START_REF] Mazaré | Using Unification for Opacity Properties[END_REF] is a more general notion where different observation functions are compared with respect to their power of discovering secret (or opaque) information. While opacity is undecidable, some positive results were obtained in [START_REF] Bryans | Modelling Opacity using Petri Nets[END_REF][START_REF] Bryans | Opacity generalised to transition systems[END_REF] for unbounded Petri nets and finite transition systems, and in [START_REF] Badouel | Concurrent secrets[END_REF] for computing optimal control of a system enforcing concurrent secrets. In [START_REF] Hélouet | Scenarios and Covert channels: another game[END_REF], the authors describe covert channels as iterated interference based on observations from [START_REF] Lowe | Quantifying information flow[END_REF][START_REF] Moskowitz | Covert Channels -Here to Stay?[END_REF]. They consider systems modeled as hierarchical message sequence charts and transformed into Büchi games, with transducers for encoding and decoding messages of arbitrary size. In this setting, the existence of an effective covert channel corresponds to the existence of a strategy and is proved decidable, under certain restrictions for the model and the transducers.

Contribution.

In this work, we follow the latter qualitative approach and we propose a general definition for covert channels, in the framework of rational transducers. There is a potential covert channel if we can find a way to encode and decode any binary message, and if the encoder and decoder mechanisms, defined as transducers, can be computed. We show that this notion of covert channel is different from interference and iterated interference. The problem of covert channel detection is then to synthesize the two encoding and decoding transducers. We give a necessary condition for existence of a covert channel: this condition consists in the presence of what we call an encoding state, a condition which was directly considered as part of the covert channel definition in [START_REF] Hélouet | Scenarios and Covert channels: another game[END_REF]. We also show that the existence problem is undecidable in the general case, but can be solved in polynomial time when the system is functional.

Outline.

Section 2 gives preliminary definitions and Section 3 compares the notions of covert channels and iterated interference. Section 4 shows how to reduce the existence of an effective covert channel to a simpler problem, yielding a necessary condition on the existence of a covert channel. Section 5 proves that the problem of existence of a cover channel is undecidable in the general case, while Section 6 provides a procedure for decision in the case of functional transducers. We discuss open problems and future work in Section 7.

Preliminaries

In this section, we recall general definitions used in the sequel.

Finite words

Let A be a finite alphabet and A * the set of words over A, with ε for the empty word. A language is a subset of A * and we set A ε = A ∪ {ε}. The length of a word u is written |u| and for 1

≤ i ≤ |u|, u[i] is the ith letter of u. If B is a subset of A, then |u| B = |{i ∈ N | u[i] ∈ B}| is the number of letters of u that are in B. The projection on B * , denoted by proj B , is the morphism from A * onto B * such that proj B (a) = a if a ∈ B and ε if a ∈ A \ B.
We recall a simple form of the folklore Defect Theorem ([START_REF] Lothaire | Combinatorics on words[END_REF] or [START_REF] Harrison | Introduction to formal language theory[END_REF]):

Lemma 1. Let u, v ∈ A * be two words. Then uv = vu if and only if there exist a word w and two integers m, n ≥ 0 such that u = w m and v = w n .

As a consequence, it can be proved that if u and v do not commute, the set {u, v} is a code: any word x in the language {u, v} * has a unique decomposition

x = w 1 • • • w n where ∀1 ≤ i ≤ n, w i ∈ {u, v}
Moreover, given word u, there exists a word w such that the set of words that commute with u is w * .

For two words u and v, we write v u when v is a prefix of u. We say that v is a k-bounded prefix of u if its length differs from the length of u by at most k letters and we denote by Pref k (u) the set of k-bounded prefixes of u:

Pref k (u) = {v ∈ A * |v u ∧ |u| -|v| ≤ k}. For instance, over A = {0, 1}, Pref 2 (010110) = {010110, 01011, 0101}.

Transition Systems

A labeled transition system (LTS) is a tuple M = S, s 0 , Lab, ∆ where S is a set of states, s 0 is the initial state, Lab is a set of labels and ∆ ⊆ S × Lab × S is the transition relation. We use the notation

s a -→ s ′ if (s, a, s ′) ∈ ∆. An LTS M is finite if S and ∆ are finite. A run from s ∈ S is a finite sequence of transitions ρ = s a 1 -→ s 1 a 2 -→ • • • an -→ s n .
The last state of the sequence, i.e. the state s n , is denoted by last(ρ) and the trace of ρ is trace(ρ) = a 1 • • • a n . We write s w = ⇒ s ′ if there is a run ρ from s to s ′ with trace w. The set of runs starting from s in M is Runs(s, M) and Runs(M) = Runs(s 0 , M).

A finite automaton, or automaton for short, M = S, s 0 , Lab, ∆, F , is a finite LTS along with a set F ⊆ S of final states. A word w ∈ Lab * is accepted by M if w = trace(ρ) for some ρ ∈ Runs(M) with last(ρ) ∈ F . The language accepted by M, denoted by L(M), is the set of words accepted by M. A rational language is a language accepted by a finite automaton. Note that the languages considered here are often prefix-closed. When the set of final states is omitted, it implicitly means that F = S i.e. all states are final states. We define the sets

Reach(M) = {s ∈ S | ∃ρ ∈ Runs(M), last(ρ) = s} and CoReach(M) = {s ∈ S | ∃ρ ∈ Runs(s, M), last(ρ) ∈ F }. If a state s ∈ S does not belong to Reach(M) ∩ CoReach(M), then M ′ = S\{s},
s 0 , Lab, ∆, F accepts the same language as M. Therefore, in the sequel, we only consider automata for which S = Reach(M) ∩ CoReach(M).

Rational Transducers

A relation τ between two sets E and F is a subset of E × F . For e ∈ E, the set of images of e by τ is τ

(e) = {f ∈ F | (e, f) ∈ τ }. The domain of τ is Dom(τ) = {e ∈ E | ∃f ∈ F, (e, f) ∈ τ } and the image of τ is Im(τ) = {f ∈ F | ∃e ∈ E, (e, f) ∈ τ }.
For an alphabet A, and a subset P of A * , we denote by Id(P) the identity relation {(w, w) | w ∈ P } on A * × A * and by Id k (P) the relation between words and their k-bounded prefixes in P :

Id k (P) = {(u, v) ∈ P × P | v ∈ Pref k (u)}. Note that Id 0 = Id.
Given alphabets A and B, a rational transducer (or transducer for short) is a finite automaton whose set of labels is A * × B * . The language accepted by a transducer M is a rational relation [START_REF] Sakarovitch | Éléments de théorie des automates[END_REF] between A * and B * . The transducer M is said to implement the corresponding relation which is also denoted by M. Hence, the set of images by M of a word w ∈ A * is written M(w). When M(w) is a singleton, it will also denote its only element, with a slight abuse of notations. If the domain of M is A * , then M is said to be complete. The transducer is functional if for each word w ∈ A * , there is at most one word in M(w). The composition of rational transducers M on A * × B * and M ′ on B * × C * , denoted by M ′ • M, is a rational transducer on A * × C * , as shown by Elgot and Mezei in [START_REF] Elgot | On relations defined by generalized finite automata[END_REF]. Moreover, the image and the inverse image of a rational set by a rational transducer is rational [START_REF] Sakarovitch | Éléments de théorie des automates[END_REF].

Any transducer on A * × B * admits a normal form where each transition is labeled either by (a, ε), also written a|ε, or by (ε, b), written ε|b, with a ∈ A ε and b ∈ B ε . This representation preserves the accepted relation and can be used to syntactically derive an automaton on alphabet A ⊎ B ∪ {ε} from a transducer, where ⊎ denotes disjoint union: if M = S, s 0 , A * × B * , ∆, F is transducer in normal form, the automaton M ′ = (S, s 0 , A ⊎ B ∪ {ε}, ∆ ′ , F) is obtained by defining ∆ ′ as follows:

-If s h|ε --→ s ′ ∈ ∆, then s h -→ s ′ ∈ ∆ ′ -If s ε|ℓ -→ s ′ ∈ ∆, then s ℓ - → s ′ ∈ ∆ ′ -If s ε|ε -→ s ′ ∈ ∆, then s ε - → s ′ ∈ ∆ ′ 3 Opacity, Iterated Interference,

and Covert Channels

We now define a transducer based model for covert channels and compare this definition with interference, a notion sometimes considered too tight to effectively test real-world security policies [START_REF] Ryan | Non-interference, who needs it?[END_REF][START_REF] Zdancewic | Challenges for Information-flow Security[END_REF]. We consider a system with two users: a high-level user whose actions are in an alphabet H and a low-level user whose actions are in alphabet L. In our setting, each user can only execute and see its own actions and the system will be described by a transducer M implementing a rational relation of H * × L * . The system contains a covert channel if high-level actions can influence low-level ones in a way to ensure that any binary message can be transmitted. Hence, the transducer model abstracts the system as a black box reading inputs on alphabet H and producing outputs on L. The only restriction put so far on M is that the relation between input and output is a rational relation.

On the other hand, we also assume that the mechanism used to transmit a message through M is limited by defining an encoder E as a transducer that reads binary input and produces output in H. Symmetrically, the decoding mechanism D is also a rational transducer which decodes letters in L into a binary word.

Transducer model of a covert channel

The definition below states that there is a covert channel if the message is correctly transmitted. However, to take into account possible delays of transmission, we do not require that the binary word obtained by D be strictly identical to the word initially sent by E. Rather, we accept as a result a k-bounded prefix, for some k ≥ 0. Note that since all binary words must be encoded, existence of a covert channel implies that encoder E is complete. A system containing a covert channel is described in the following example, adapted from [START_REF] Hélouet | Scenarios and Covert channels: another game[END_REF].

Example 1. We consider a simple transmission medium in which packets can be either long or short. It is assumed that the content of the packets themselves are monitored and therefore no sensitive information can be transmitted by this means. The higher level user asks the medium to open a connection, then transmits either a long or a short packet. A short packet is transmitted in one step while a long packet is transmitted in two parts by the medium: an incomplete packet followed by a completed one, the type of the latter being a short packet type. The corresponding transducer is depicted in Fig. 1. A way to code any binary message is to transmit a long message for a 0 and a short one for a 1. The receiver decodes a sequence of an incomplete packet followed by a completed one by a 0, and a complete packet by a 1. The corresponding encoder and decoder are displayed in Fig. 2.

OpenServer|OpenClient

Comparison with opacity and interference

A system is said to be interferent if an exterior observer can deduce whether an internal (protected) action has occurred [START_REF] Goguen | Security policy and security models[END_REF][START_REF] Focardi | Classification of security properties (part I: information flow)[END_REF]. Thus, it can be seen as a one bit leak of information. If an observer can deduce several occurrences of internal actions, the interference is repeated, or iterated. We formally define this notion through the more general one of opacity [START_REF] Bryans | Opacity generalised to transition systems[END_REF], which captures a wide range of security properties. We present a simplified version of opacity from [START_REF] Badouel | Concurrent secrets[END_REF].

Definition 2 (Opacity). Let S and K be two rational languages over an alphabet A, with S ⊆ K, and let L be a subset of A. Then S is said opaque

with respect to K if proj L (S) ⊆ proj L (K \ S), i.e. ∀w ∈ S, ∃w ′ ∈ K \ S such that proj L (w) = proj L (w ′).
Thus, S is opaque if low-level observations viewed as words over L cannot distinguish the secrets in S. For a system described by an automaton, non interference states that a low-level user cannot discover if a high-level action occurs. Thus non interference can be expressed as an opacity property where the secrets are words containing at least one high-level letter, hence belong to the language S 1 = L * HA * .

Definition 3 (Interference). Let S k = (L * • H) k • A * , for any integer k > 0. An automaton M is interferent if S 1 is not opaque w.r.t L(M). This automaton has an iterated interference if ∀k > 0, S k is not opaque w.r.t L(M).
Covert channels have often been linked to interference or iterated interference. Indeed, a system with no iterated interference will not have a covert channel. However, despite the intuition that iterated interference can yield any number of bits of information to the observer, a system can have iterated interference without having a covert channel. The following example is one such case.

Example 2. Consider the transducer M 2 of Fig. 3, where h is a high-level action and ℓ is a low-level action. We can see that there is an iterated interference, since every time an ℓ is seen, the low-level user knows that there has been at least an h. More formally, if A 2 is the automaton associated with M 2 , its language is

L(A 2) = (h + • ℓ) * . For an integer k > 0, let w = (h • ℓ) k . Let w ′ ∈ L(A 2) \ S k . Since S k is the set of words that contain at least k occurrences of h, w ′ contains at most k -1 letters h. As a word of L(A 2), w ′ contains more hs than ℓs, hence w ′ contains a number p ≤ k -1 letters ℓ. The projection on L = {ℓ} of w is ℓ k while the projection of w ′ is ℓ p , with p < k.
However, it is impossible for the high-level to encode arbitrary messages for the-low level. This claim is proved in Section 4.2. The underlying intuition is that any number of h will result in an inferior number of ℓ. This will introduce confusion in any coding, and prevent using the system as a covert channel.

A Necessary Condition for Covert Channels

Our main objective is, given a system, to decide the existence of a covert channel. In our framework, the problem is stated as follows: for a transducer M from H to L, are there an integer k and two transducers E on {0, 1} * × H * and D on L * × {0, 1} * , that implement a covert channel of delay k on M. In this section, we give a necessary condition for a positive answer to this question. After eliminating the delay parameter, we prove that existence of a covert channel implies the presence of at least one encoding node in the system, a condition which was in fact taken as part of the covert channel definition in [START_REF] Hélouet | Scenarios and Covert channels: another game[END_REF], together with a winning strategy.

Elimination of the delay parameter

We first show that verifying encoding and decoding can be done for channels of delay 0. Then we show that these channels encompass all channels.

Lemma 2. Let M be a transducer on H * × L * and let E and D be two transducers on {0, 1} * ×H * and L * ×{0, 1} * , respectively. It can be decided whether E and D implement a covert channel of delay 0 for M.

Proof. It can be decided whether a transducer is functional. Moreover, the equality of languages is decidable for functional transducers. In particular, the relation

Id 0 ({0, 1} *) is functional. If D •M•E is not functional, E and D do not implement a covert channel of delay 0. If D •M•E is functional,
it can be decided whether it is equal to the identity, and therefore if E and D implement a cover channel of delay 0.

However, deciding whether two transducers implement a covert channel of delay k = 0 is not straightforward.

Not being able to check candidate encoder and decoder transducers makes the problem of existence of solutions more difficult. Nevertheless, it can be shown that looking only for covert channels with no delay is sufficient.

Lemma 3. If a transducer M contains a covert channel of delay k, then it also contains a covert channel with no delay.

Proof. Suppose M has a covert channel of delay k. We define the krepetition morphism R × k over {0, 1} * by: R × k (0) = 0 k+1 and R × k (1) = 1 k+1 In the reverse way, let R ÷ k be the relation defined by

R ÷ k = (R × k) -1 . We claim that R ÷ k •Id k ({0, 1} *)•R × k = Id({0, 1} *). Relations R × k and R ÷
k are implemented by the transducers represented in Fig. 4(a) and Fig. 4(b), respectively.

Let u ∈ {0, 1} * and v be its image by

R × k . If u = u 1 • • • u n with u i ∈ {0, 1}, then v = u k+1 1 • • • u k+1 n . The k-bounded prefixes of v are v 0 = u k+1 1 • • • u n , v 1 = u k+1 1 • • • u 2 n , . . . , v k = u k+1 1 • • • u k+1 n . For every i ∈ {0, . . . , k -1}, R ÷ k (v i) = ∅. The image of v k by R ÷ k is u 1 • • • u n = u, so R ÷ k • Id k ({0, 1} *) • R × k = Id({0, 1} *). Now if E and D are two transducers such that Id({0, 1} *) ⊆ D•M•E ⊆ Id k ({0, 1} *) then R ÷ k • D • M • E • R × k ⊆ R ÷ k • Id k ({0, 1} *) • R × k = Id({0, 1} *). By taking E • R ×
k as an encoder and R ÷ k • D as a decoder, we obtain a covert channel without delay. Even if it can be decided if two transducers implement a covert channel with no delay, finding those two transducers is hard. In fact, we show in the next section that the general problem is undecidable. However, we reduce the problem by looking only for transducers that have a specific structure. Theorem 1 gives this specific shape depicted in Fig.s 6(a) and 6(b). The proof of this theorem relies on Lemma 4. This lemma exhibits a generic path in an encoding transducer, represented in Fig. 5, where state r accepts two different input words in a loop. From this lemma, an encoding state is obtained for the system itself. Lemma 4. Let A = S, s 0 , M, ∆, F be an automaton over a (not necessarily free) monoid (M, •, ε). Suppose there exist a, a 0 , a 1 , a ′ ∈ M such that a 0 •a 1 = a 1 .a 0 and all words of a•{a 0 , a 1 } * •a ′ are accepted by A. Then there exist some states r ∈ S and f ∈ F and some words w ∈ a • {a 0 , a 1 } * , w 0 , w 1 ∈ {a 0 , a 1 } * , and

w ′ ∈ {a 0 , a 1 } * • a ′ , such that w 0 • w 1 = w 1 • w 0 and s 0 w = ⇒ r, r w ′ = ⇒ f , r w 0 =⇒ r and r w 1 =⇒ r. Proof. Let N A be the number of states of A. A simple loop is a run s a 1 -→ s 1 a 2 -→ • • • an -→ s n with s = s n
and all other states are distinct. In this proof, only simple loops are considered. There are at most

N A × 2 N A loops in A. Since ∀m > N A , a • a m 0 • a ′ ∈ L(A)
, there is at least one loop in the automaton whose trace is in {a 0 } * . Let k 0 be the number of loops in the automaton whose traces are in {a 0 } * (or a 0 -loop for short). Let m > N A . Consider the words z = a m 0 • a 1 and

Z = a • z k 0 +1 • a ′ and the run ρ = s 0 a = ⇒ s a a m 0 = = ⇒ s 1 a 1 = ⇒ s ′ 1 • • • a m 0 = = ⇒ s k 0 +1 a 1 = ⇒ s ′ k 0 +1 a ′ = ⇒ s a ′
with trace Z, where s a ′ ∈ F . For 1 ≤ j ≤ k 0 , let ρ j = s ′ j a m 0 = = ⇒ s j+1 be the corresponding sub-run of ρ, while ρ 0 is the sub-run s a a m 0 = = ⇒ s 1 . Each ρ j contains a a 0 -loop. Since there are k 0 + 1 such sub-runs, a same a 0 -loop of trace w 0 ∈ {a 0 } * occurs in two different sub-runs ρ j 1 and ρ j 2 . Then the run ρ can be written as

s 0 a = ⇒ • • • s j 1 u = ⇒ r w 0 =⇒ r v = ⇒ s ′ j 1 +1 • • • s j 2 u = ⇒ r w 0 =⇒ r v = ⇒ s ′ j 2 +1 • • • s ′ k 0 +1 a ′ = ⇒ s a ′ . Let w = a • z j 1 -1 • u, w 1 = v • z j 2 -j 1 -1 • u, and w ′ = v • z k 0 -j 2 • a ′
be the words labeling respectively the sub-run from s 0 to r, the sub-run

r v = ⇒ s ′ j 1 +1 • • • s j 2 u = ⇒ r
, b 1 , b ′ ∈ {0, 1} * , h, h 0 , h 1 , h ′ ∈ H * , a state r ∈ S and a state f ∈ F such that b 0 • b 1 = b 1 • b 0 , s 0 b|h = = ⇒ r, r b ′ |h ′ ==⇒ f , r b 0 |h 1 = == ⇒ r and r b 1 |h 2 = == ⇒ r.
Proof. Lemma 4 is applied to the projection of E on its input.

A pattern having been isolated in the system, we can prove the main theorem of this section. It states that the encoder can be reduced to this very pattern and, by transforming the decoder accordingly, still have a covert channel. More precisely, if two words forming a code can be transmitted by the channel, then it is sufficient to encode 0 with one of these words and 1 by the other.

Theorem 1. If a transducer M contains a covert channel, it can be implemented by transducers E(h, h 0 , h 1 , h ′) and D(ℓ, ℓ 0 , ℓ 1 , ℓ ′) as depicted in Fig. 6, where: Proof. Suppose M contains a covert channel implemented by E 0 and D 0 . Transducer E 0 = S, s 0 , {0, 1} * ×H * , ∆, F is complete on its input. Recall that every state of S is both reachable and co-reachable. By Lemma 5, there exist words w, w 0 , w 1 , w ′ ∈ Dom(E 0) = {0, 1} * , with w 0 •w 1 = w 1 •w 0 such that there exist paths s 0 w|v = = ⇒ s, s w 0 |v 0 ===⇒ s, and s

-h, h 0 , h 1 , h ′ ∈ H * , ℓ, ℓ 0 , ℓ 1 , ℓ ′ ∈ L * , -h 0 • h 1 = h 1 • h 0 and ℓ 0 • ℓ 1 = ℓ 1 • ℓ 0 .
w 1 |v 1 ===⇒ s. In addition,
there is a final state s f ∈ F and a run s

w ′ |v ′ = == ⇒ s f . We claim that v 0 •v 1 = v 1 •v 0 . By contradiction, suppose v 0 •v 1 = v 1 •v 0 . Then v • v 0 • v 1 • v ′ = v • v 1 • v 0 • v ′ ∈ E 0 (w • w 0 • w 1 • w ′) ∩ E 0 (w • w 1 • w 0 • w ′). We can choose D 0 • M complete on Im(E), because we can replace E 0 by E ′ 0 = Id 0 (Dom(D 0 • M)) • E 0 . Thus (D 0 • M)(v • v 0 • v 1 • v ′) = w • w 0 • w 1 • w ′ because D 0 • M • E 0 = Id({0, 1} *). The same reasoning on v • v 1 • v 0 • v ′ yields (D 0 • M)(v • v 1 • v 0 • v ′) = (D 0 • M)(v • v 0 • v 1 • v ′) = w • w 1 • w 0 • w ′ , which is a contradiction with w 0 • w 1 = w 1 • w 0 . Let E 1 = E(v, v 0 , v 1 , v ′
) and F = E(w, w 0 , w 1 , w ′) having the structure depicted in Fig. 6(a). We can see that E 1 ⊆ E 0 • F. Let G = D(w, w 0 , w 1 , w ′) and D ′ 0 = G • D 0 , having the structure depicted in Fig. 6(b). We have

D ′ 0 • M • E 1 ⊆ G • D 0 • M • E 0 • F = G • F = Id({0, 1} *) Let v ∈ {0, 1} * . Either (D ′ 0 • M • E 1)(w) = w or (D ′ 0 • M • E 1)(w) = ∅. Since Im(E 1) ⊆ Im(E 0) ⊆ Dom(D 0 • M), (D ′ 0 • M • E 1)(w) cannot be empty so (D ′ 0 • M • E 1)(v) = v. Therefore E 1 is an encoder for M. Transducer M ′ = Id(Dom(D ′ 0))•M•E 1 = S ′ , s ′ 0 , {0, 1} * ×L * , ∆ ′ , F ′ is complete on {0, 1} * . By Lemma 5, there exist states s ′ ∈ S ′ , s ′ f ∈ F ′ , words u, u 0 , u 1 , u ′ ∈ Dom(M ′) ⊆ {0, 1} * , with u 0 • u 1 = u 1 • u 0 ,

and runs

s ′ 0 u|ℓ = = ⇒ s ′ , s ′ u 0 |ℓ 0 = == ⇒ s ′ , s ′ u 1 |ℓ 1 = == ⇒ s ′ , and s ′ u ′ |ℓ ′ ==⇒ s ′ f . Let D = D(ℓ, ℓ 0 , ℓ 1 , ℓ ′) as depicted in Fig. 6(b). We have D • M ′ • F ′ = Id({0, 1} *) with F ′ = E(u, u 0 , u 1 , u ′). We have D • M ′ • F ′ = D ′ • Id(Dom(D ′ 0)) • M • E 1 • F ′ . Since Dom(D) ⊆ Dom(D ′ 0), we obtain D • Id(Dom(D ′ 0)) = D. Encoder E = E 1 • F ′
can be put under the form depicted in Fig. 6(a), by defining h, h 0 , h 1 , h ′ as follows. Suppose

u = u 1 • • • u j , u 0 = u 1 0 • • • u k 0 , u 1 = u 1 1 • • • u m 1 , and u ′ = u ′1 • • • u ′m , where each u i ∈ {0, 1}. Then let h = v • v u 1 • • • v u j , h 0 = v u 1 0 • • • v u k 0 , h 1 = v u 1 1 • • • v u n 1 , h ′ = v u ′1 • • • v u ′m • v ′ . Suppose that h 1 and h 2 commute. Then v u 1 0 • • • v u k 0 • v u 1 1 • • • v u n 1 = v u 1 1 • • • v u n 1 • v u 1 0 • • • v u k 0 .
Since v 0 and v 1 form a code, this can happen only if the sequences of indexes are the same. That is to say if u 0 • u 1 = u 1 • u 0 , which is a contradiction. Therefore h 0 and h 1 do not commute. The property ℓ 0 • ℓ 1 = ℓ 1 • ℓ 0 can be proved in similar fashion as

v 0 • v 1 = v 1 • v 0 has been, which concludes the proof.
As a result, we obtain a necessary condition on the structure of encoders and decoders, which can be transposed onto the system itself.

Theorem 2. Let M = S, s 0 , H * × L * , ∆, F be a transducer that contains a covert channel. Then there exist a state s ∈ S and four words h 0 , h 1 ∈ H * and ℓ 0 , ℓ 1 ∈ L * such that s

h 0 |ℓ 0 = == ⇒ s and s h 1 |ℓ 1 = == ⇒ s. Moreover, h 1 • h 0 = h 0 • h 1 and ℓ 1 • ℓ 0 = ℓ 0 • ℓ 1 .
Proof. Since there is a covert channel in M, E(h, h 0 , h 1 , h ′) and D(ℓ, ℓ 0 , ℓ 1 , ℓ ′) implement a covert channel for M, by Theorem 1. So, {(h|ℓ)•{(h 0 |ℓ 0), (h Lemma 4, there is a state s ∈ S and four words h

1 |ℓ 1)} * • (h ′ |ℓ ′)} ⊆ L(M). As (h 0 |ℓ 0) • (h 1 |ℓ 1) = (h 1 |ℓ 1) • (h 0 |ℓ 0), by
′ 0 , h ′ 1 ∈ H * and ℓ ′ 0 , ℓ ′ 1 ∈ L * such that s h ′ 0 |ℓ ′ 0 = == ⇒ s, s h ′ 1 |ℓ ′ 1 = == ⇒ s, h ′ 1 • h ′ 0 = h ′ 0 • h ′ 1 , and ℓ ′ 1 • ℓ ′ 0 = ℓ ′ 0 • ℓ ′ 1 .
Such a state s in a system exhibits a behaviour similar to an encoding node in [START_REF] Hélouet | Scenarios and Covert channels: another game[END_REF], so we call it an encoding state.

We can now prove the claim of Section 2 stating that transducer M 2 depicted in Fig. 3 does not contain a covert channel. Since Dom(M 2) = {h} * , there are no words h 0 and h 1 in Dom(M 2) such that h 0 •h 1 = h 1 •h 0 which contradicts the necessary condition of the previous theorem.

It should be noted that the presence of such an encoding state does not however guarantee the existence of a covert channel in the general case. For example, in the (non functional) system of Fig. 7, state s 4 is an encoding state. However, an h can also lead to s 3 , which simulates s 4 , but in which no word can be encoded: indeed, after a h 0 or a h 1 , both a ℓ 0 and a ℓ 1 can be produced. Hence, all words made of h 0 and h 1 of a given length n will have the same set of images. More precisely, for any

word u = h • h i 1 • • • h in , where ∀k, i k ∈ {0, 1}, N (u) = ℓ • (ℓ 0 + ℓ 1) n .
In that case, the non-functionality of N breaks the locality of the encoding state property.

Covert channels cannot be detected

We shall now prove that, unfortunately, the existence of a covert channel is undecidable in the general case of our setting. This is done by reducing Post's Correspondence Problem (PCP) [START_REF] Post | A variant of a recursively unsolvable problem[END_REF]: starting from an instance I of PCP, we build a transducer M I such that I has a solution if and only if there exist an encoder and a decoder implementing a covert channel for M I . The construction builds on the undecidability proof for transducer equality [START_REF] Gurari | An introduction to the theory of computation[END_REF], with an involved additional construction to obtain the channel property. The main idea underlying the transducer construction is to require a sequence of indexes along to a bit, and transmit the correct bit if and only if the sequence is a non-trivial solution of the instance I.

Otherwise the system can insert errors.

Theorem 3. The problem of existence of a covert channel in a transducer is undecidable.

We first give the construction of transducer M I from an instance I of PCP and we then give two lemmas proving the correctness of this construction. Let I = (x 1 , y 1) . . . , (x n , y n) ∈ ((A *) 2) n be an instance of PCP over alphabet A. We consider the alphabets B = {⊤, ⊥}, N = {1, . . . , n}, A B = A ∪ B, and N B = N ∪ B. For b ∈ B, we define b by ⊤ = ⊥ and ⊥ = ⊤. Recall that such an instance can also be seen as a pair of morphisms x and y, with

x(σ) = x i 1 • • • x i k and y(σ) = y i 1 • • • y i k for any word σ = i 1 • • • i k ∈ N * .
Hence PCP can be reformulated as the existence of a sequence σ, with |σ| > 0, such that x(σ) = y(σ).

We now build a transducer M I in N * B ×A * B which computes a relation such that for b ∈ B and σ ∈ N * :

M I (b • σ) = A + • b ∪ (A + \ {x(σ)}) • b ∪ (A + \ {y(σ)}) • b
This transducer takes as an input a bit and a sequence of indexes and outputs either any non-empty word followed by the same bit or a word which is not the image of the sequence by x followed by the opposite of the input bit or a word which is not the image of the sequence by y followed by the opposite of the input bit

M I (b 1 • σ 1 • • • b p • σ p) = M I (b 1 • σ 1) • • • M I (b p • σ p) while M I (v) = ∅ if v / ∈ (B • N *) * . The construction of M I = Q, q 0 , N * B ×A * B , ∆, {q 0 } is as follows. The set Q of states of M I is: Q = {q 0 } ∪ B × ({q * , q x , q y , q > , q < , q = } ∪ Q I)
where

Q I =   n i=1 |x i | j=1 q i,j x   ∪   n i=1 |y i | j=1 q i,j y  
is a set containing a state for each letter in each word of the instance I.

The only initial and final state is q 0 . The set ∆ of transitions of M I is built by the following rules, for each b ∈ B, z ∈ {x, y}, i ∈ N , and a ∈ A:

(R1) For q ∈ {q * , q x , q y }, q 0 b|ε -→ (b, q) ∈ ∆; M I reads b and make the initial nondeterministic choice of outputting -either any non-empty word followed by b (state q *), -or a word which is not x(σ) followed by b (state q x), -or a word which is not y(σ) followed by b (state q y).

(R2) (b, q *) i|ε -→ (b, q *) ∈ ∆, (R3) (b, q *) ε|a --→ (b, q *) ∈ ∆; this rule and the previous simply allow the state q * to read and write anything (reading on N and writing on A).

(R4) (b, q *) ε|a•b
---→ q 0 ∈ ∆; M I outputs a letter (to prevent the output of an empty word) and the bit that was read on the transition from

q 0 . (R5) If |z i | > 0, then (b, q z) i|ε -→ (b, q i,1 z) ∈ ∆, (R6) For 1 ≤ j < |z i |, (b, q i,j z) ε|z i [j] ---→ (b, q i,j+1 z) ∈ ∆, (R7) (b, q i,|z i | z) ε|z i [|z i |]
-----→ (b, q z) ∈ ∆; the transitions created by the three last rules enable M I to read an input i and produce z i , going back to q z at the end.

(R8) If |z i | = 0, then (b, q z) i|ε -→ (b, q z) ∈ ∆; this rule is analogous to rules (R5-7) when z i = ε. (R9) For 1 ≤ j < |z i |, (b, q i,j z)
ε|ε -→ (b, q <) ∈ ∆; these transitions stop the outputting of z i , going to q < . (R10) (b, q <) i|ε -→ (b, q <) ∈ ∆; in q < , the input is read but no output is produced.

(R11) (b, q z) ε|a --→ (b, q >) ∈ ∆, (R12) (b, q >) ε|a --→ (b, q >) ∈ ∆; these transitions output at least one letter of A without reading anymore input (i.e. it should have all been read before).

(R13) For 1 ≤ j < |z i |, and if a = z i [j], (b, q i,j z) ε|a --→ (b, q =) ∈ ∆; taking these transitions introduce a wrong letter in z i .

(R14) (b, q =) i|ε -→ (b, q =) ∈ ∆, (R15) (b, q =) ε|a --→ (b, q =) ∈ ∆; at state q = ,
anything is read (on alphabet N) and anything is produced (on alphabet A) (R16) For q ∈ {q < , q > , q = }, (b, q) ε|b -→ q 0 ∈ ∆; returning from a state where an error has been made produces the opposite of the input bit.

Transducer M I is composed of two symmetrical parts that keep in memory one bit b of information (see Fig. 8(a)). The part of M I consisting of state q * does not look at its input and generates any word of A + , appending b after it. On the other hand, on input b • σ (|σ| > 0), the other states (which will be called the diff-part in the sequel) generate either a word which is not x(σ), or a word which is not y(σ), appending b after it (see Fig. 8(b)).

The parts of M I relative to x and y are similar, hence rules (R5-13) are presented in a general form for z, representing either x or y. Rules (R5-8) create a sub-part of M I able to produce z(σ). However, since q z is not an accepting state, this exact output shall not be produced in this part. Indeed, rules (R9-15) introduce errors in this word. These errors can be of three forms. Firstly, the outputted word can be a strict prefix of z(σ) (rules (R9-10)). Secondly, the outputted word can contain z(σ) as a strict prefix (rules (R11-12)). Thirdly, an error can be introduced by producing a letter than was not the one expected in an output of z i (rules (R13-15)). The structure of this part of M I (for b = ⊤ and z = x) is depicted in Fig. 9. The transitions of rules (R4) and (R16) lead back to q 0 , allowing the whole process to be repeated. If, for an input b • σ with |σ| > 0, the sequence σ is a solution of I, then w = x(σ) = y(σ) will not be generated by the diff-part of M I , hence w • b will be an output whereas w • b will not 5 . Conversely, if the sequence σ is not a solution of I, then w = x(σ) = y(σ) will be generated by the diff-part of M I (in this case in the "y part" of the transducer), hence both w • b and w • b will be outputs. Note that in both cases, there will be other outputs: all u • b and u • b for u ∈ A + \ {w}. When |σ| = 0, which is always a trivial solution of I, the empty word ε cannot be produced in the q * part of M. Hence neither b nor b will be produced (alone). Even if the above mentioned only the case of an input in B • N * , it can be generalized to the case of (B • N *) * . Indeed, q 0 is the only initial and final state and the structure of M I ensures that q 0 is left reading a letter of k = |u| B . Suppose there is an encoder E and a decoder D that implement a covert channel for M I . By Theorem 1, these transducers can be chosen as in Fig. 6. Let

(⊤, q =) (⊤, q 1,1 x) (⊤, q n,1 x) (⊤, q 1,2 x) ⊤|ε ε|⊥ ε|⊥ ε|⊥ 1|ε n|ε • • • ε|x1[1] ε|x1[|x1|] {(ε|a)|a ∈ A} {(ε|a)|a ∈ A} ε|ε ε|ε {(i|ε)|i ∈ N } {(ε|a)|a ∈ A, a = x 1 [1]} {(ε|a)|a ∈ A, a = x 1 [2]} {(i|ε)|i ∈ N } {(ε|a)|a ∈ A}
β 1 • • • β p ∈ {0, 1} * . We consider words u = β 1 • • • β p • β 1 • • • β p and u ′ = β 1 • • • β p • β 1 • • • β p
where 0 = 1 and 1 = 0. The image of these words by E are respectively We can thus conclude that M I has a covert channel if and only if I has a (non-trivial) solution. Since PCP is undecidable, the problem of existence of a covert channel in a transducer is undecidable. The corresponding transducer M I 0 is partly depicted (only the ⊤, x part) in Figure 11. This instance has a solution σ = 1311322 which yields the word w = abbaabbabbabb. On input ⊤1311322, M I 0 can output any non-empty string followed by a ⊤ by a run looping through state q * . In particular, abbaabbabbabb⊤ is a possible output. On the same input, some other strings followed by a ⊥ may be an output, e.g. abbaabbabaa⊥ which is the product of a run

v = h • h β 1 • • • h βp • h β 1 • • • h βp • h ′ and v ′ = h • h β 1 • • • h βp • h β 1 • • • h βp • h ′ . Since the image of v (resp. v ′) by D • M I is u (resp. u ′), v
q0 ⊤|ε --→ qx 1|ε --→ q 1,1 x ε|a --→ q 1,2 x ε|b --→ q 1,3 x ε|b --→ qx 3|ε --→ q 3,1 x ε|a --→ qx 1|ε --→ q 1,1 x ε|a --→ • • • q0 qx q> q< q = ε|⊥ ε|⊥ ε|⊥ ε|a, ε|b 1|ε, 2|ε, 3|ε
1|ε, 2|ε, 3|ε, ε|a, ε|b q * (⊤|ε) ε|a⊤, ε|b⊤ 1|ε, 2|ε, 3|ε, ε|a, ε|b q 1,1

x q 1,2

x q 1,3

x q 2,1

x q 3,1 •

• • ε|a --→ q 1,2 x ε|b --→ q 1,3 x ε|b --→ qx 1|ε --→ q 1,1 x ε|a --→ q 1,2 x ε|b --→ q 1,3 x ε|a --→ q = ε|a --→ q = ε|⊥ --→ q0.
However, abbaabbabbabb⊥ is not an output, since after reading ⊤1311322 and producing abbaabbabbabb, the run ends in state q x (or q y) which is not accepting and cannot reach q 0 without reading more input. Hence encoding 0 with ⊤1311322 and 1 with ⊥1311322, while decoding 0 with abbaabbabbabb⊤ and 1 with abbaabbabbabb⊥ yields a covert channel on M I 0 .

Covert channel synthesis for functional transducers

We finally show that covert channel synthesis is possible for functional transducers, with polynomial complexity. Intuitively, functional transducers introduce a small amount of noise in the system. Therefore, structural properties are sufficient to decide the existence of a covert channel. Consider a transducer M = S, s 0 , H * × L * , ∆, F and a state s ∈ S. We define the transducer M s = S, s, H * × L * , ∆, {s} which differs from M only by its initial and final states.

′ 1 = s 0 u|ℓ = = ⇒ s w|ℓ 1 ==⇒ s v|ℓ ′ = = ⇒ s f in Runs(M). Therefore, ℓ • ℓ 0 • ℓ ′ and ℓ • ℓ 1 • ℓ ′ are both images of u • w • v and M is not functional, which is a contradiction.
Remark that, since s is both the initial and final state, and M s is functional, we have ∀w 0 , w 1 ∈ Dom(M s), M s (w 0 • w 1) = M s (w 0) • M s (w 1).

In the sequel, we call E(h, h 0 , h 1 , h ′) and D(ℓ, ℓ 0 , ℓ 1 , ℓ ′) (or E and D for short when their parameters are clear from the context) the two transducers depicted in Fig. 6. We also call E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) (or E 0 and D 0 for short when their parameters are clear from the context) the two transducers depicted in Fig. 12.

The following lemma expresses the fact that in the case of functional transducers, the existence of a covert channel is equivalent to the existence of an encoding state, which Theorem 2 established as a necessary condition. Lemma 9. Let M = S, s 0 , H * × L * , ∆, F be a functional transducer. There is a covert channel in M if and only if there exist s ∈ S, h 0 , h 1 ∈ H * and ℓ 0 , ℓ 1 ∈ L * such that the transducers E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) implement a covert channel for M s .

Proof. Suppose M contains a covert channel. Then by Theorem 2, there is a state s at the intersection of two cycles: s

h 0 |ℓ 0 = == ⇒ s and s h 1 |ℓ 1 = == ⇒ s. In M s , which is functional, s is both the initial and final state. Therefore for any u, v ∈ Dom(M s), M s (u) • M s (v) = M s (u • v).
In particular, it is true for any word u in the language (h 0 + h

1) * ⊆ Dom(M s). If u = h b 1 • • • h bn , where b 1 , . . . , b n ∈ {0, 1}, then v = M s (u) = M s (h b 1) • • • M s (h bn) = ℓ b 1 • • • ℓ bn .
Remark that the decomposition of u, and hence of v, is unique since

h 1 • h 0 = h 0 • h 1 and ℓ 1 • ℓ 0 = ℓ 0 • ℓ 1 .
It is therefore clear that E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) implement a covert channel for M s .

On the other hand, suppose there is a state s ∈ S, and two transducers E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) that implement a covert channel for M s . Since s is both reachable and coreachable, there exist some runs s 0 (h|ℓ) = == ⇒ s and s (h ′ |ℓ ′) = === ⇒ s f , with s f ∈ F , h, h ′ ∈ H and ℓ, ℓ ′ ∈ L. For any word x ∈ (h 0 + h 1) * , M(h•x•h ′) = ℓ•M s (x)•ℓ ′ (since both M and M s are functional). For a word u

= b 1 • • • b n ∈ {0, 1} * , let v = E(h, h 0 , h 1 , h ′)(u) = h•h b 1 • • • h bn •h ′ . Now let w = M(v) = ℓ • ℓ b 1 • • • ℓ bn • ℓ ′ . We have that D(ℓ, ℓ 0 , ℓ 1 , ℓ ′)(w) = b 1 • • • b n = u.
Therefore E(h, h 0 , h 1 , h ′) and D(ℓ, ℓ 0 , ℓ 1 , ℓ ′) implement a covert channel for M.

In order to find encoding states, for any word h ∈ H * , we consider the set NCI(h, M) of words whose image by M do not commute with the image of h. More formally, given a transducer M and a word h ∈ Dom(M),

We shall now deduce the main result of this section, namely the decidability of the existence of covert channels in functional systems: Theorem 4. Let M = S, s 0 , H * × L * , ∆, F be a functional transducer. It can be decided in PTIME whether M has a covert channel. Moreover, an encoder and a decoder can be synthesized, if they exist.

Proof. The decision procedure goes as follows: for each state s ∈ S, consider transducer M s . As before, M s can be pruned so that all its states, in the set S s , are both reachable and co-reachable. Then compute a word h whose image by M s is not ε. This can be done by looking if there is

Conclusion and Future Work

In this work, we proposed a new definition for covert channels, based on transducer composition which significantly differs from the one based on iterated interference. However, the existence problem itself is undecidable in the general case. But, in the case of functional transducers, the problem is decidable in polynomial time. The huge complexity gap suggests that for some subclass of transducers more general than functional ones, some decidability results may be obtained. We also need to extend our definition, in order to deal with cases where the high-level user can see a part of the low-level actions. Another direction for future work would be to investigate the control problem: can we find a controller to avoid covert channels in a system ? An orthogonal problem would be to extend this notion of covert channel to the framework of timed systems.

Definition 1 .

 1 Two transducers E on {0, 1} * × H * and D on L * × {0, 1} * implement a covert channel of delay k for a transducer M = S, s 0 , H * × L * , ∆, F if Id({0, 1} *) ⊆ D • M • E ⊆ Id k ({0, 1} *).

Fig. 1 .Fig. 2 .

 12 Fig. 1. Transducer M1 for packet transmission medium

Fig. 3 .

 3 Fig. 3. A transducer M2 with iterated interference but no covert channel

Fig. 4 .

 4 Fig. 4. Transducers used to suppress the delay in a covert channel

w= ⇒ r, r w 0 =⇒ r, r w 1 =⇒ r, and r w ′ =Fig. 5 .

 01′5 Fig. 5. A generic path in M

Fig. 6 .

 6 Fig. 6. General form of encoder and decoder.

 This relation is extended to N * B by M I (ε) = {ε} and for b 1 , . . . , b p ∈ B and σ 1 , . . . , σ p ∈ N * :

Fig. 8 .

 8 Fig. 8. Global structure of MI.

Fig. 9 .

 9 Fig. 9. Structure of the (⊤, x) part of MI that accepts {(⊤ • σ, u • ⊥)|u = x(σ)} * .

Fig. 10 .

 10 Fig. 10. Encoder and decoders Mσ and Mw, where σ is a solution of the instance I of PCP and w the corresponding word.

 and v ′ must have at least an image by M I . Moreover, v and v ′ contain exactly the same number k of letter of B. Hence by M I , both v and v ′ have the same set of images (A + • B) k . So the image of v and v ′ by D • M I are the same. Therefore, (D • M I • E)(u) = (D • M I • E)(u ′) while u = u ′ , which is a contradiction with the fact that E and D implement a covert channel for M I .

Example 3 .

 3 Consider the following instance of PCP: I 0 = (abb, a), (b, abb), (a, bb)

Fig. 11 .

 11 Fig. 11. Part of transducer MI 0 encoding PCP instance I0. Only the ⊤-x quarter has been represented due to lack of space.

Lemma 8 .==⇒ s and ρ 1 = s w|ℓ 1 ==⇒

 81 Let M = S, s 0 , H * × L * , ∆, F be a functional transducer. Then ∀s ∈ S, M s is also functional.Proof. Suppose there is a word w in the domain of M s whose image contains at least two distinct words ℓ 0 , ℓ 1 ∈ L * . Consider the two corre-sponding runs ρ 0 = s w|ℓ 0 s in Runs(M s). As s ∈ S = Reach(M)∩CoReach(M), there is a run ρ = s 0 u|ℓ = = ⇒ s v|ℓ ′ = = ⇒ s f ∈ Runs(M)with s f ∈ F . So we can build two runs ρ ′ 0

Fig. 12 .

 12 Fig. 12. General form of encoder and decoder.

s 1 , s 2 ∈

 12 S s , s.t s 1 he|ℓe ---→ s 2 with h e ∈ H * and ℓ e ∈ L + and finding a run ρ = s 0 ⇒ s 1 he|ℓe ---→ s 2 ⇒ s 0 . If no such state can be found, then Im(M s) = {ε} and it is clear that M s does not have a covert channel. Computing S s (the pruning of M s) can be done in O(|M| 2). The run ρ can be found from s 1 and s 2 in O(|M| 2) too. So computing h whose image by M s is not ε can be done in O(|M| 2). Let ℓ = M s (h). Let C(ℓ) ⊆ L * be the set of words that commute with ℓ. This set is v * were v is the shortest word such that there existsk ∈ N such that v k = l (by Lemma 1). A deterministic automaton A v of size O(|v|) recognizes v * . An automaton A Im(Ms) of size O(|M|) recognizes Im(M s). Therefore the intersection automaton of A v and A Im(Ms) , automaton A C ′ of size O(|v| × |M|) recognizes C ′ (ℓ) = Im(M s) \ v * .The emptiness problem for this automaton can be solved in O((|v| × |M s |)3). If C ′ (ℓ) is empty, then so is its preimage by M, and therefore NCI(h, M) = ∅ and there is no covert channel (byLemma 11). Otherwise, since C ′ (ℓ) ⊆ Im(M s), M -1 s (C ′ (ℓ)) = NCI(h, M s) = ∅, and there is a covert channel in M s , which can be synthesized by the construction in the proof of Lemma 11, in linear time with respect to |M s |.By Lemma 9, the existence of a covert channel in one transducer M s is equivalent to the existence of a covert channel in M, and the construction of the encoder and decoder for M from the ones for M s can be done as in the proof ofLemma 9, in linear time with respect to |M s |. Since |v| ≤ |ℓ| ≤ |M s | ≤ |M|, the whole procedure goes in O(|M|) × O(|M| 2 + |M| 6 + |M|) = O(|M| 7).

We can assume that there is no index i such that xi = yi = ε, hence w = ε.

⋆ Work partially supported by project DOTS (ANR-06-SETI-003) ⋆⋆ Author partially supported by an NSERC discovery grant (Government of Canada)

B, reached producing a (possibly different) letter of B, and that no other transition either reads or outputs a letter of B.

The two following lemmas prove the correctness of this construction. Lemma 6. If I has a solution then M I has a covert channel. Proof. Suppose σ = i 1 • • • i k is a solution of I, with k > 0 and w = x(σ) = y(σ). Consider transducer M σ of {0, 1} * × N * B that accepts the relation

It is clear that, since σ is a solution of I, the outputs of M I on input v will be

In particular, the word

Any other form of input will not be accepted by M w . For the particular input v ′ , M w will yield the original word β 1 • • • β p . Since v is the only output of M I • M σ that can be accepted by M w , we now have that

and therefore M σ and M w implement a covert channel for M.

Lemma 7. If I has no solution then M I has no covert channel.

Proof. Suppose I has no trivial solution. Then M is the relation

All words in Dom(M I) with same number of letters of B have exactly the same set of images. Namely for u ∈ N * B , M I (u) = (A + • B) k , where we define the language NCI(h,

Lemma 10. Given a functional transducer M and a word h ∈ Dom(M), NCI(h, M) is a rational subset of L * .

Proof. Let ℓ = M(h). Consider the language C(ℓ) = {ℓ ′ ∈ L * |ℓ • ℓ ′ = ℓ ′ • ℓ} of the words commuting with ℓ. By Lemma 1, there exists a word v ∈ L * such that

Since the image of a rational transducer is rational, Im(M) is rational and

Hence NCI(h, M) is the inverse image by a rational transducer of a rational set, and is therefore rational.

We shall now prove that for a given state, it can be decided whether it is encoding.

Proof. Remark that, by construction of M the initial state is the only final state. Let h ∈ M -1 (Im(M) \ {ε}). Also note that since M is functional and M(ε) = ε, h = ε.

Suppose that E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) implement a covert channel for M, and that NCI(h, M) = ∅. For i ∈ {0, 1}, let u i = M(h i), and u = M(h). Since h 0 / ∈ NCI(h, M) and h 1 / ∈ NCI(h, M), u • u 0 = u 0 • u and u • u 1 = u 1 • u. Then there exists v ∈ L * and three integers m, m 0 , m 1 such that u = v m , u 0 = v m 0 , u 1 = v m 1 (by Lemma 1). Therefore u 1 • u 0 = u 0 • u 1 = v n+p , which contradicts the fact that E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) implement a covert channel for M.

Conversely, suppose that

Since s is both the initial and final state, and M is functional, ∀w

And, as ℓ 0 •ℓ 1 = ℓ 1 •ℓ 0 by construction of NCI(h, M),

. So E 0 (h 0 , h 1) and D 0 (ℓ 0 , ℓ 1) implement a covert channel for M.