
HAL Id: hal-00463480
https://hal.science/hal-00463480v1

Submitted on 12 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using UPPAAL for the secure and optimal control of
AGV fleets

Yoann Arnaud, Jean-Louis Boimond, Jose E.R. Cury, J.J. Loiseau, Claude
Martinez

To cite this version:
Yoann Arnaud, Jean-Louis Boimond, Jose E.R. Cury, J.J. Loiseau, Claude Mar-
tinez. Using UPPAAL for the secure and optimal control of AGV fleets. 7th Work-
shop on Advanced Control and Diagnosis ACD 2009, Nov 2009, Zielona Góra, Poland.
http://www.issi.uz.zgora.pl/ACD_2009/program/articles.html. �hal-00463480�

https://hal.science/hal-00463480v1
https://hal.archives-ouvertes.fr

Using Uppaal for the secure and optimal

control of AGV fleets

Yoann Arnaud ∗ Jean-Louis Boimond ∗∗ José E.R. Cury ∗∗∗

Jean Jacques Loiseau ∗ Claude Martinez ∗

∗ IRCCyN, 1 rue de la Noë, BP 92101, 44321 Nantes CEDEX 03,
France (e-mail: {yoann.arnaud,jean-

jacques.loiseau,claude.martinez}@irccyn.ec-nantes.fr)
∗∗ LISA, Université d’Angers, ISTIA, 62 Avenue Notre Dame du Lac,

49000 Angers (e-mail: jean-louis.boimond@istia.univ-angers.fr)
∗∗∗ LCMI-DAS, Universidade Federal de Santa Catarina, Florianópolis

SC 88040-900, Brazil (e-mail: cury@das.ufsc.br)

Abstract: The design and realization of an on line control system for automated guided vehicles
(AGV) is addressed. A synthesis method is proposed based on the use of the model checking tool
for timed automata Uppaal. This system has to route the vehicles while ensuring the system
safeness, a good coordination between vehicles and the optimization of performance criteria.
This problem is like synthesizing a Ramadge and Wonham supervisor combined with routing
and optimizing functions, that is an ongoing problem within the supervisory control theory.
The proposed concepts are validated through a software tool suite based on Uppaal in order
to generate optimal traces and interact with an AGV system emulated with Arena.

Keywords: Timed state automata,Uppaal, Control, Optimization, Automated guided
vehicules.

1. INTRODUCTION

In this paper, a synthesis method for the design of an auto-
mated guided vehicle (AGV) fleet control is proposed. This
control is based on the use of formal checking on timed
automata. This control system routes the vehicles along a
circuit in a production workshop in order to accomplish
missions allocated to the system. It must ensure that no
conflict or deadlock between vehicles occurs. Moreover, the
routing is calculated on-line so as to minimize the total
execution time of the missions allocated.

Methods from the Operational research domain have been
proposed ([Reveliotis (2000)], [Lawley et al. (1997)]) for
designing AGV fleet control systems. These methods are
based on optimization techniques in order to calculate a
good planification. These kinds of techniques are open-
loop and do not take into account drifts or breakdowns. To
solve this problem, S. Maza ([Maza and Castagna (2005)])
proposed to merge predictive scheduling techniques to on-
line reroutings that ensure the conservation of a deadlock-
free behaviour. The global optimization is lost and, a
priori, some possibilities are forgotten, to simplify the
planification. It is said that the behaviour is not maximaly
permissive.

Another solution for designing AGV fleet controls is using
the Ramadge and Wonham supervision control theory
([Ramadge and Wonham (1987)], [Ramadge and Wonham
(1988)], [Cassandras and Lafortune (1999)]) for solving
conflict and deadlock problems, linked with optimization
functions for calculating an optimal route. Thanks to this

theory, the existence of a solution is proved and the best
solution is conserved (maximal permissivity).

Combining supervision and optimization has been realised,
by adding costs on edges of automata that modelize AGV
systems. General theories have been developped by some
authors ([Grigorov and Rudie (2006)], [Kumar and Garg
(1995)], [Sengupta and Lafortune (1998)]) and inspired
precedent works of Arnaud et al. ([Arnaud et al. (2009)])
where an energy criterion is minimized. However, due to
parallelism between the AGV, a time criterion cannot be
optimized by adding costs on automata and therefore no
algorithm has been proposed in this direction.

We propose a new method based on the modelization of
AGV fleet systems with timed automata. The existence of
a control law satisfying the specifications of deadlock and
conflict avoidance and the calculation of a route planning is
like verifying the existence of a particular trace in a timed
automaton and finding this trace. The proposed method is
efficient for the synthesis of an AGV fleet control. Check-
ing our model with timed automata garanties maximal
permissivity, deadlock and conflict avoidance and a small
calculation time. Moreover, optimizing the total time to
accomplish missions is possible. Effective verification and
synthesis are realized with the help of Uppaal ([Bengtsson
et al. (1996)]), a software tool that implements the formal
verification algorithms for timed automata.

An AGV system is composed of a set of vehicles Vi dedi-
cated to the realization of tasks. The vehicles travel along
a circuit, divided in sections and intersections. Sections
are labelled with upper case letters. An AGV moving on

section DA travels on the section linking intersections
A and D, from D to A. The tasks to be accomplished
are called missions and consist in picking up and deliver-
ing manufactured parts on particular intersections called
workstations and denoted Wi.

The AGV control system has to ensure four functions.
The first one consists in routing on-line each vehicule on
the circuit in order to accomplish the missions allocated
by an upper level control system. The second function
consists in avoiding conflicts between vehicles (figure 1.1)
as the occupation by several AGV of a same section.
This ensures security for the process. The third function
ensures a good coordination of AGV on the circuit so
that no deadlock situation occurs (figure 1.2). Finally,
the fourth one concerns the selection of an optimal route
that minimizes the overall time needed by the AGV to
accomplish the missions allocated. Note that generation
of missions and their dispatching are not addressed here.

The second and third functions of the control system, the
conflict and deadlock avoidance, are usually solved by the
supervisory control theory. Therefore a solution to the
design problems could be reformulated in terms of minimal
time routing in a supervised automaton. As we shall see,
this argument permits to assess the existence of a solution
to the design problem, under mild assumptions. However,
as mentionned above, this approach does not lead to an
effective method. We shall not use this theory in practice.
The problem can be reformulated in terms of verification
of a timed automaton and effectively solved using software
tools that implement the algorithms from formal model
checking.

1.1 Conflict 1.2 Deadlock

Fig. 1. Situations to be avoided

The study of this article is about the class of AGV systems
composed of a garage, several workstations, a bidirectional
circuit and monodirectional vehicles.

The structure of this article is as follows. After this intro-
duction, we present in section 2 some basic tools about
timed automata, the tool Uppaal, and a formal proof for
the existence of a solution of our control design problem. In
section 3, the general techniques for modelizing and solving
our control problem with Uppaal are detailed. Section 4
presents the works of implementation of these techniques
in a software tool suite in order to validate the concepts on
an example. Finally, this article is concluded by recalling
the main contribution of this work in the framework of
AGV fleet control.

2. BASIC TOOLS

2.1 Timed Automata

This subsection is based on the work of Patricia Bouyer
presented in [Bouyer (2005)]. Let T be the time axis, often

assumed to be the set of non negative rational numbers
Q+ or equivalently, chosen as the set of natural numbers
N.

A timed automaton over T is a tuple (Σ, Q, T , I, F , X)
where:

• Σ is an alphabet of actions of finite dimension,
• Q is a finite set of states,
• X is a finite set of clocks,
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of final states,
• T ⊆ Q × [C(X) × Σ × 2X] × Q is a finite set of

transitions where C(X) is a set of constraints over
clocks described below. An element of T is denoted

q
g,a,Y :=0
−−−−−−→ q′.

Let X be a set of clocks, C(X) is a set of constraints
over clocks, over clock differences and over conjunctions of
previous constraints. C(X) is defined as follows:

g ::= x 1 c | x− y 1 c | g ∧ g | true,

where x ∈ X , y ∈ X , c ∈ Z, and 1 ∈ {<,≤, =,≥, >}.

In the previous definition, c is chosen in Z. This choice does
not imply loss of generality because a timed automaton
with clock constraints defined over Q can be equivalently
reduced to a timed automaton with clock constraints de-
fined over Z. Let v a function returning a clock valuation,
one say that v satisfies a constraint g (v � g), g being
of type x 1 c (resp. x − y 1 c), when v(x) 1 c (resp.
v(x) − v(y) 1 c).

Let a set Y ⊆ X , one denote [Y ← 0]v the value such
that, ∀ x ∈ Y, ([Y ← 0])v(x) = 0 and ∀ x ∈ X\Y, ([Y ←
0])v(x) = v(y).

Let a time sequence τ be a finite non decreasing sequence
built over elements of T (τ = (ti)1≤i≤p ∈ T∗). A word σ (or
a trace) is a sequence of actions (ai)1≤i≤p ∈ Σ∗. Finally,
a timed word, also called a timed trace, w is a sequence
(ai; ti)1≤i≤p ∈ (Σ × T)∗. Such a timed word is said to be
accepted by the considered automaton if it corresponds to
the execution trace of the automaton.

(q0, v0)
g1,a1,Y1

−−−−−→
t1

(q1, v1) . . .
gp,ap,Yp

−−−−−→
tp

(qp, vp),

{

v0(x) = 0, ∀x ∈ X,
vi−1 + (ti − ti−1) � gi,
vi = [Ci ← 0](vi−1 + (ti − ti−1)).

A timed automaton At admits a timed language Lt(At)
which is defined as the set of all words accepted by At.
One define the untimed language Untime(Lt(At)) as a
projection of language Lt(At), such that:

Untime((ai, ti)1≤i≤n) = (ai)1≤i≤n, n ∈ N,
∀(ai, ti)1≤i≤n ∈ Lt(At).

The number of configurations (pairs (q, v) composed by a
state and a clock valuation) is infinite for timed automata
because of the clock valuation v. Hence the direct trans-
position of verification methods on classical automata is
not possible. Nevertheless, Alur and Dill have developed
an abstraction technique in [Alur and Dill (1994)]. Thanks
to this technique a timed automaton can be represented
as a region graph which is a finite automaton. So, the
reachability problem in a timed automata is equivalent to

a reachability problem in a finite automaton and therefore
is decidable.

2.2 Modeling timed systems with Uppaal

Uppaal is a tool for modeling timed discrete event systems
and verifying some of their properties [Bengtsson et al.
(1996)]. We briefly recall the use of this tool in this section.

Modeling:

The following data types may be used to define data in an
Uppaal model:

• bool : boolean values,
• int : integer values,
• clock : clocks,
• chan: objects used to synchronize events between

templates,
• struct : data composed of data types cited above.

Types listed above may be declared in environments decla-
ration of the Uppaal model. Functions that use classical
patterns like for, while, if, may also be declared in the same
environments.

A template represents a subset of the global system that
is modeled as a graph composed of locations and edges.
It contains a declaration section where a local clock may
be defined. The locations are the nodes of a template
graph, they are identified by their names. An invariant
can be assigned to a location, this is a boolean expression
involving variables and clock valuations that forbid or not
to access a node. Furthermore, instanciation of templates
is possible, which might be usefull to model systems made
of identical subsystems.

The following features may be assigned to an edge:

• Selection: a selection allows to define a range of values
that may take a variable in the model.
• Guard : a guard is a boolean condition that enable the

firing of an edge. A guard may involve clock values and
variables of the model.
• Synchronisation: when edges of different templates

have to be synchronized, one assign a channel object
of type chan to these edges.
• Update: this feature is used for updating the variables

and clocks after the firing of an edge.

We recall that the model defined in Uppaal is not ex-
plicitly a timed automaton, but it is important to notice
that the semantic is exactly equivalent. It is clear that
the concept of guard corresponds to constraints defined
in section 2.1. The remaining data types, i.e. templates,
boolean variables, and invariants, corresponds to automa-
ton with guards. The notion of automata products explains
the use of templates to define timed automata. The use of
boolean variables is equivalent to the manipulation of state
automata. Finally, invariants are equivalent to guards.

Model checking:

Reachability problems are decidable (section 2.1) for the
class of timed automata considered. So, some properties
of timed automata can be verified with Uppaal, if they
are formulated as reachability problems. In Uppaal, a

property should be formulated using TCTL, a common
useful language for expressing properties. Queries are then
like ”@ expression” where @ ∈ {E[], E <>, A[], A <>},
which means:

• E <>: Does exist a trace leading to a state that
satisfy expression?
• E[]: Does exist a trace, finite or not, such that all

states satisfy expression?
• A <>: Do all traces lead to a state such that

expression is satisfied?
• A[]: Do all states satisfy expression?

The region graph is explored by Uppaal like a tree
using branch and bound algorithms. Exploration options,
breadth-first or depth-first are proposed. If the checker’s
answer to a property is true, a diagnotic trace can be
returned. Some trace corresponds to the first solution
found. The shortest one corresponds to the trace that
involve a minimum number of state evolution. Finally, the
fastest corresponds to a minimum execution time.

The choice of the exploration option implies different
behaviours of the checker, and may impact its efficiency.
Exploring deeply first will be more expensive in terms of
processor time consumption and less expensive in terms
of memory consumption than exploring widely first. This
choice has to be made depending on the behavior of
the checker with respect to a given model. Concerning
the diagnostic trace, the behaviour of the algorithm will
depend on the following options. If some trace is chosen,
the algorithm will stop after it finds a trace that satisfies
the query, if one exists. If an optimal trace is expected
(shortest or fastest), then the region graph will be totally
explored in order to find the best solution among the
existing ones. Obviously, this takes more time than finding
some trace.

2.3 Existence of a solution

This subsection is devoted to prove the existence of a
solution to the problem of designing a control that routes
the AGV on the circuit, prevents conflicts between AGV,
avoids deadlock situations and optimizes the route to be
taken by the vehicles.

This problem can be seen as a Ramadge and Wonham
supervision problem combined with an optimization prob-
lem. The second and third functions, about preventing
conflicts and deadlocks, can be solved with the use of the
supervision control theory of Ramadge and Wonham. This
theory is based on the use of automata for modeling a
system called G. Events are defined on edges, they can
be controlable or not. The theory consists in generating
a supervisor A which will act on controlable events of
G to forbid their occurence, if they lead the system to
a situation that does not respect some specifications. In
the case of AGV system study, all the events in G are
controlable (they all can be forbidden if necessary) and
the specifications consist in forbidding conflicts situations.
The result for this particular case is that the supervisor A
exists and is a sub-automaton of G (A ⊆ G). The states
in G that are not in A are states that generate conflicts
or deadlocks. Moreover the automaton is coaccessible with
respect to an initial state for the process. This gives the

property of deadlock avoidance. We make the hypothesis
that the circuit is well designed, so that the AGV can reach
any point of the circuit, and then come back to its garage.
So, we can assert that at least one solution that prevents
conflicts and dealocks exists in A. For instance, one so-
lution consists in moving each AGV one after another in
order to achieve missions one by one.

Let us now define the automaton At based on A, and
temporized with clock constraints. As temporizing an
automaton reduces its accessible state space, the untimed
language generated by At is included in the language
generated by A (Untime(Lt(At)) ⊆ L(A)). If the set
of clock constraints is reduced to constraints like x ≥ c
(x ∈ X, c ∈ N), the accessible state space is not reduced
since every configuration for the AGV system in A is
accessible in At too if the time elapsed in At is high enough.
This implies the following statement :

Untime(Lt(At)) = L(A), if x ≥ c, ∀x ∈ X, ∀c ∈ N

Therefore, the existence of a solution is proved, provided
the timed constraints are as above. This justifies the use
of Uppaal to calculate a solution.

3. SYNTHESIS OF AN AGV CONTROL SYSTEM
USING UPPAAL

Recall the problem we are trying to solve. Let a mission,
at most, provided for each AGV at a time. We are looking
for a sequence of movements to be send to the vehicles
to ensure that all the missions are achieved as quickly as
possible. In this section, we present the general techniques
for modeling an AGV system with Uppaal and solving
this control problem, so that the four following functions
are respected: first, routing the vehicles, second, managing
conflicts, third, preventing the occurrence of deadlock and
fourth, selecting an optimal route. For the sake of our
analysis, these various problems and their solutions are
exposed separately in this section. However, at the level of
the implementation, they are solved simultaneously during
the checking procedure.

Designing the Uppaal model is achieved with two steps.
First a basic model representing the movement of vehicles
without any restriction is designed (section 3.1). Then we
present in sections 3.2, 3.3 and 3.4 how to complete the
modelisation in order to fulfill the four functions cited
above.

3.1 Basic model

The basic model has to represent the movement of vehi-
cles on the studied circuit. For this purpose, the logical
behaviour of each AGV is represented in a template. Each
time an AGV moves on a new section, the garage or
workstations, a new location in the template is set, which
reflects a change of the model’s state. For example, if the
location W2 is set, then the AGV occupies the workstation
W2. If a location DA is set, the AGV is moving on the
section between A and D from D to A. For practical
reasons, each location in a template is named like XX xx
where XX is the name of the section and xx its number.
All the AGV templates are similar (same locations and
edges), except for the location named Init that can be

linked to any location depending on the AGV positions on
the circuit. Practically, this location Init allows a dynamic
definition of the AGV’s actual position on the circuit for
each template.

In order to keep a track of the position of each AGV on the
circuit, we define a variable vector pos of size nagv, where
nagv is the number of AGV composing the fleet. pos[i]
stores the number of the section or workstation occupied
by the AGV Vi and is updated by adding the appropriated
statement pos[i] = xx in the update field of each edge.

3.2 Realization of missions

The first function is about routing the vehicles on the
circuit, so that the missions allocated to the AGV are
achieved. With Uppaal, this consists in finding a particu-
lar trace in the timed automata represented by the model,
that corresponds to the achievement of these missions. The
completion of missions is stored in the logical variable
AGV OK. So, this problem consists in finding a trace
in the timed automaton that leads to a state verifying
Missions OK == True where

Missions OK =

nagv
∏

i=1

AGV OK[i]

and where AGV OK[i] is true when the AGV Vi has
accomplished its mission. In the model, the update field
on edges updates each AGV OK[i] as soon as an AGV
arrives to the workstation corresponding to its mission.

3.3 Conflict and deadlock avoidance

The second function is about forbidden conflictive situa-
tions, that means the simultaneous occupation of a work-
station or a section by at least two AGV. This ensures the
security of the process. This problem consists in locking
the firing of some edges, if this firing make the template
access to particular locations. This is realized with guards
on edges where a function is free() is added. This function
returns a boolean value true (resp. false) if the access to
a section shall be authorized (resp. forbidden).

The third function is about preventing the occurence of
deadlocks. This ensures a good coordination between all
the AGV on the circuit. This problem can be formulated as
a coaccessibility problem. If a state of the timed automaton
is coaccessible with respect to the initial state of the
process (in our case, all the AGV in the garage, location
number n0), so we can say that being in this state will
not generate a deadlock situation. This property comes
from results from the supervision control theory (section
2.3). Therefore, the problem consists in verifying that the
initial state of the process is accessible, once the missions
have been achieved. This is a similar problem to the one
of achieving missions and can be solved with the use of
logical variables. We represent the initial situation of the
process with the help of a boolean variable Home where

Home =

nagv
∏

i=1

(pos[i] == n0)

3.4 Verification and optimization

The last function consists in choosing an optimal route for
the AGV that minimizes the total time required for achiev-
ing the missions allocated. Recall that Uppaal has also
been used in order to solve optimization problems. Some
works are presented by Behrmann et al. in [Behrmann
et al. (2005)]. Similarly, we are exploiting this tool for
optimizing a time criterion. This problem is solved with
Uppaal by asking a diagnostic trace with the Fastest
option, so that the total time is minimized. The following
query is defined:

E <> Missions OK · Home

That means: Is there, in the region graph, a trace rep-
resenting the achievement of the missions and leading to
the initial state of the process? The time parameters to
be taken into account are the minimum duration of stay
of vehicles on circuit’s sections or workstations. So, the
firing of some edges is forbidden as long as this duration is
not elapsed. This is modeled with the addition of time con-
straints on guards. As seen in section 2.3, clock constraints
have to be as

x ≥ c , where x is a clock associated to a template
and c is the minimum duration imposed,

in order to garanty the systematic existence of a solution.
Moreover clocks have to be reset each time an AGV moves.
So, we add x := 0 in the update fields of edges. At this
stage, the modelisation allows us to achieve the mission
and return to the initial state of the process as quickly as
possible. However, only the realization of tasks in minimal
time is sought. We shall therefore, in the model, reset
all the clock constraints c just after the logical variable
Missions OK (that reflects the achievement of missions)
becomes true. That virtually freezes the flow of time at
this date and that corresponds now to our optimization
goal.

4. IMPLEMENTATION AND VALIDATION ON AN
EXAMPLE

The general techniques previously presented have been
applied on an example and implemented in a software
tool suite that controls an AGV system emulated with
Arena([Kelton et al. (2000)]), a tool for simulating dis-
crete event systems.

4.1 The AGV system

This circuit of the example AGV system is represented
in figure 2. The system is composed of a set of three
AGV Vi, i ∈ {1, 2, 3}, and a circuit made of sections, four
intersections (A, B, C, D), two workstations (W1, W2)
and a garage (W0).

This AGV system seems quite simple but is actually
complex due to the fact that all AGV can access to all
sections in both directions. Indeed, a template contains
19 locations and 36 transitions, that makes 6859 (193)
different situations and 38988 (3 × 192 × 36) different
evolutions between all these situations.

The control of this AGV system respecting the safety,
coordination and optimization constraints outlined earlier

W0

W1 W2

V1

V2V3A B C

D

Fig. 2. The AGV system studied

is implemented with Uppaal according to the principles
explained in section 3.

The modelisation of this AGV system leads to AGV’s
templates of the following form (figure 3):

AB_0

BA_1

AD_2

DA_3

BC_4

CB_5

BD_6

DB_7

CD_8

DC_9

AW_10

WA_11

W1_12

CW_13

WC_14

W2_15

DW_16 WD_17

W0_18

Init_19

Fig. 3. One AGV’s template.

The exploration of the solutions is achieved with the search
order breadth-first which provides for this model a better
response delay, as shown by the comparisons that have
been conducted experimentally on randomly selected cases
(cf. table below). Moreover, the memory consumption is
too small to be measurable.

Initial state Missions breadth (s) depth (s) ratio

(12,5,18) (-,15,12) 1,22 21,23 17,4

(18,2,7) (15,-,12) 0,81 7,15 8,8

(6,1,4) (12,15,-) 1,31 89,11 68,0

(11,18,9) (15,15,12) 3,63 38,97 10,7

(2,9,6) (15,15,12) 2,31 23,43 10,1

(3,8,15) (15,12,12) 3,02 85,35 28,3

4.2 Real-time implementation and validation

The AGV control system previously presented has been
implemented through a software tool suite. A similar
procedure has already been introduced in [Arnaud et al.
(2009)].

The structure of the software tool suite is represented
in figure 4. The AGV system is emulated by a real-time
simulator, built using the simulation tool for discrete event
systems Arena. A software tool has been written for
managing the calculation of optimal traces with Uppaal

and the communication with the emulator. The missions
to be achieved are specified by the user thanks to the
graphical user interface. The Uppaal model xml file is

generated in real time, actually every time a new mission
is defined. The xml file and the verification query are
then analysed by the executable verifyta.exe which comes
with the software tool Uppaal. An optimal trace is then
generated. It defines how to schedule orders to be sent to
AGV.

new mission

xml file

Verification
Model

generation

Query

Orders generation

Communication

Arena

Moving orders AGV position

Optimal trace

Fig. 4. Structure of the software tool suite.

5. CONCLUSION

A new method for the design of a control system for an
AGV fleet is presented. The first function of the control
system is to route the vehicles through their circuit, to
realize the missions that are allocated on line to the
AGV system. The different vehicles are routed in parallel,
which generates risky situations. Conflict (accident) and
deadlock avoidance are hence two important functions of
the AGV system. Finally, the minimization of the time
required to achieve the missions is a fourth objective of the
control system. The existence of a solution to this design
problem is shown. Formally, this existence is a consequence
of the supervisory control theory. The solution could be
obtained by the superposition of a supervisor coming from
this theory, and an optimization algorithm. Practically, no
such algorithm has been described and this approach, leads
to an open problem. An alternative is developed, that is
based on the use of the theory of timed automata. The
design problem is reformulated in terms of verification of
a timed automaton, that proceeds from the description of
the AGV system and of the control system specifications.
Uppaal, a powerful tool that implements the verification
algorithms for timed automata, is used to calculate a
solution to the control design problem. A software tool
suite has been developed, that permits the implementation
of the proposed design method. The approach is validated
on a realistic example.

REFERENCES

[Alur and Dill (1994)] R. Alur, D. Dill. A theory of timed
automata. Theoretical Computer Science, volume
126:2, pages 183-235, 1994.

[Arnaud et al. (2009)] Y. Arnaud, J.E.R. Cury, J.J.
Loiseau and C. Martinez. Pilotage sûr et optimal d’une

flotte de véhicules autoguidés. Journées Doctorales
MACS, Mars 2009.

[Behrmann et al. (2005)] G. Behrmann, K. Larsen, J. Ras-
mussen. Optimal scheduling using priced timed au-
tomata. ACM SIGMETRICS Performance Evaluation
Review, volume 32:4, pages 34-40, ACM Press, 2005.

[Bengtsson et al. (1996)] J. Bengtsson, K. Larsen, F. Lars-
son, P. Pettersson and W. Yi. Uppaal: a tool suite
for automatic verification of real-time systems. Lec-
ture Notes in Computer Science, Hybrid Systems III,
volume 1066/1996, pages 232-243, 1996.

[Bouyer (2005)] P. Bouyer. An introduction to timed au-

tomata. École d’été Temps Réel 2005, Nancy, Septem-
bre 2005.

[Cassandras and Lafortune (1999)] C.G. Cassandras and
S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[Grigorov and Rudie (2006)] L. Grigorov and K. Rudie.
Near-optimal online control of dynamic discrete-event
systems. Discrete Event Dynamic Systems, volume
16:4, pages 419-449, 2006.

[Kelton et al. (2000)] D. D. Kelton and D. A. Sadowski
and R. P. Sadowski. Simulation with Arena. McGraw-
Hill School Education Group, 2000.

[Kumar and Garg (1995)] R. Kumar and V. Garg. Opti-
mal supervisory control of discrete event dynamical
systems. SIAM Journal on Control and Optimization,
volume 33:2, pages 419-439, 1995.

[Lawley et al. (1997)] M. Lawley, S. Reveliotis and P.
Ferreira. Design Guidelines for Deadlock-Handling
Strategies in Flexible Manufacturing Systems. Inter-
national Journal of Flexible Manufacturing Systems,
volume 9:1, pages 5-30, 1997.

[Maza and Castagna (2005)] S. Maza and P. Castagna. A
performance-based structural policy for conflict-free
routing of bi-directional automated guided vehicles.
Computers in Industry, volume 56:7, pages 719-733,
2005.

[Ramadge and Wonham (1987)] P.J. Ramadge and W.M.
Wonham. Supervisory control of a class of discrete
event systems. SIAM Journal of Control and Opti-
mization, volume 25:1, pages 206-230, 1987.

[Ramadge and Wonham (1988)] P.J. Ramadge and W.M.
Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, volume 77:1, pages 81-98, 1989.

[Reveliotis (2000)] S.A. Reveliotis. . IIE Transactions, vol-
ume 32, pages 647-659, 2000.

[Sengupta and Lafortune (1998)] R. Sengupta and S.
Lafortune. An optimal control theory for discrete event
systems. SIAM Journal on control and Optimization,
volume 36:2, pages 488-541, 1998.

