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Abstract. In this study, we aimed at determining statistical models that allowed
for the classification of impact sounds according to the perceived material (Wood,
Metal and Glass). For that purpose, everyday life sounds were recorded, analyzed
and resynthesized to insure the generation of realistic sounds. Listening tests were
conducted to define sets of typical sounds of each material category. For the con-
struction of statistical models, acoustic descriptors known to be relevant for tim-
bre perception and for material identification were investigated. These models
were calibrated and validated using a binary logistic regression method. A dis-
cussion about the applications of these results in the context of sound synthesis
concludes the article,

1 Introduction

Sound classification systems are based on the calculation of acoustic descriptors that
are extracted by classical signal analysis techniques such as spectral analysis or time-
frequency decompositions. In this context, many sound descriptors depending on the
specificities of sound categories were defined in the literature, in particular in the frame-
work of MPEG 7 [1]. Indeed, descriptors were proposed for speech recognition [2],
audio indexing [3,4], music classification [5] or for psycho-acoustical studies related
to timbre [6, 7]. Nevertheless, these classification processes would be significantly im-
proved if perceptually relevant information conveyed in acoustic signals could be iden-
tified to enable fewer and more relevant descriptors to characterize the signal.

In this current study, we aim at detcrmining statistical models that allow catego-
rization of impact sounds as a function of the perceived material based on few acoustic
descriptors. For that purpose, we investigated the acoustic descriptors that are known
to be relevant for timbre perception and material identification. In practice, a sound




data bank constituted of realistic impact sounds from different materials (Wood, Metal,
Glass) was generated using analysis-synthesis techniques. Then, a morphing process
allowed us to build sound continua that simulate continuous transitions between sounds
corresponding to different materials. Listening tests were conducted to determinc the
sets of sounds that were judged as typical and non typical for each material category.
The use of sound continua allowed determining the perceptual borders between these
typical and non typical sounds as a function of the position along the continua. A statis-
tical model was calibrated and validated based on the calculation of selected descriptors
for each sound category. We finally address some perspectives of this study in particular,
in the domain of sound synthesis.

2 Determination of sound categories from perceptual tests

We recorded (at 44.1 kHz sampling frequency) impact sounds from everyday life ob-
jects of various materials (i.e. impacted wooden beams, metallic plates and various glass
bowls) that unambiguously evoked each material category. Then, based on the analysis-
synthesis model described in {8], we resynthesized thesc recorded sounds. To minimize
timbre variations induced by pitch changes, all sounds were tuned to the same chroma
(note C), but not to the same octave, due to the specific properties of the different mate-
rials. Hence, Glass sounds cannot be transposed to low pitches as they will no longer be
recognized as Glass sounds. The synthesized sounds therefore differed by 1, 2 or 3 oc-
taves depending upon the material. The new pitches of the tuned sounds were obtained
by transposition (dilation of the original spectra). In practice, Wood sounds were tuned
to the pitch C4, Metal sounds to the pitch C4 and C5 and Glass sounds to the pitch
C6 and C7. Based upon previous results showing high similarity ratings for tone pairs
that differed by octaves [9], an effect known as the octave equivalence, we presumed
that the octave differences between sounds should not influence categorization. Each
time the pitch was modified, the new value of the damping coefficient of each tuned
frequency component was recalculated according to a damping law measurcd on the
original sound [10], since the frequency-dependency of the damping is fundamental for
material perception [11]. Sounds were finally equalized by gain adjustments to avoid
an eventual influence of loudness in the categorization judgments.

The resynthesized sounds were further used to create 15 sound continua that sim-
ulate a progressive transition between the different materials. In particular, we built
5 continua for each of the following 3 transitions: { Wood-Metal}, {Wood-Glass} and
{Glass-Metal}. Each continuum, composed of 20 hybrid sounds, is built by using a
morphing process. The interpolation on the amplitudes of the spectral components was
computed by a crossfade technique. Concerning the damping, the coefficients were
estimated according to a hybrid damping law calculated at each step of the morph-
ing process. This hybrid damping law was computed from an effective linear inter-
polation between the 2 extreme damping laws. In practice, 15 continua (5 for each
of the 3 transitions) were built. Sound examples are available at http://www.lma.cnrs-
mrs. fr/~kronland/Categorization/sounds.html.

Sounds were pseudo-randomly presented through one loudspeaker (Tannoy S800)
located 1 m in front of the participants who were asked to categorize sounds as from



impacted Wood, Metal or Glass materials, as fast as possible, by pressing one response
button out of three. The association between response buttons and material categories
was balanced across participants.

Finally, 22 participants (11 women, 11 men), 19 to 35 years old were tested in this
experiment. They were all right-handed, non-musicians (no formal musical training)
and no known auditory or neurological disorders. They all gave written consent to par-
ticipate to the test and were paid for their participation.

Participants’ responses were collected and were averaged for each sound of all the
continua. Based on these responses, sounds were considered as typical if they were
classified in one category (i.e., Wood, Metal or Glass) by more than 70% of the partic-
ipants. From a statistical point of view, this threshold value approximately corresponds
to the percentage of values that are within one standard deviation away from the mean
value in the case of a normal distribution. We further considered these typical sounds
as sounds that were most representative of each material category.

3 Relationship between acoustic descriptors and sound categories

3.1 Acoustic descriptors

To characterize sounds from an acoustic point of view, we considercd the following
sound descriptors known to be relevant for timbre perception and material identifica-
tion: attack time AT, spectral centroid CGS, spectral bandwidth SB, spectral flux SF,
roughness R and normalized sound decay a.

The attack time AT is defined as the time necessary for the signal energy to raise
from 10% to 90% of the maximum amplitude of the signal. The spectral centroid CGS
and the spectral bandwidth SB were defined by:
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where w and § respectively represent the frequency and the Fourier transform of the
signal. The spectral flux SF is a spectro-temporal timbre descriptor quantifying the time
evolution of the spectrum. The definition presented in [12] was chosen. The roughness
R of a sound is commonly associated to the presence of several frequency components
within the limits of a critical band. In particular, R is closely linked to the concept of
consonance/dissonance [13]. The definition presented in [14] was chosen.

Finally, the sound decay quantifies the global amplitude decrease of the temporal
signal and is directly correlated to the damping. Since the damping is a fundamental cue
for material perception [11, 15-17], the sound decay is assumed to be a relevant acoustic
descriptor for our sounds. In practice, the sound decay is estimated from the slope of
the logarithm of the envelope of the temporal signal. Nevertheless, since the damping
is frequency dependent, this decrease depends on the spectral content of the sound.
In our case, typical sounds present a high variability of spectral content across material




categories. Consequently, to allow comparisons between sound decay values, we further
chose to consider a sound decay that was normalized with respect to a reference that
takes into account the spectral localization of the energy, i.e. the CGS value.

3.2 Binary logistic regression analysis

From classifications obtained from perceptual tests, we aim at estimating the member-
ship of a sound in a material category starting from the calculation of the 6 acoustic
descriptors described in the previous section: {AT, CGS, SB, SF, R, a}.

In our case, the dependent variables are qualitative; they represent the membership
(True) or the non membership (False) of the category. In order to build statistical models
to estimate the membership to a category, the binary logistic regression method is used.
The associated method of multinomial logistic regression is not adapted to the problem
because the best cstimators can be different from one category to another.

Three statistical models of binary logistic regression are then built based on the
acoustic descriptors. The problem of collinear parameters is overcome by a forward
stepwise regression. Logistic regression allows one to predict a discrete outcome, such
as group membership, from a set of variables that may be continuous, discrete, dichoto-
mous, or a mix of any of these. The dependent variable in logistic regression is usually
dichotomous, that is, the dependent variable can take the value 1 (True) with a prob-
ability of success , or the value 0 (False). This type of variable is called a Bernoulli
(or binary) variable. Logistic regression makes no assumption about the distribution of
the independent variables. They do not have to be normally distributed, linearly related
or of equal variance within each group. The relationship between the predictors and
response variables is not a linear function in logistic regression. The logistic regression
function which is the logit transformation of 7 is used:
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The function L, (x) was calibrated and validated for each category (Cat={Wood,
Metal, Glass}). Because we are dealing with sound continua, a segmented cross val-
idation procedure was used. The validation set was built by selecting 1 sound on 3
(corresponding to a set of 67 sounds). The calibration set was composed by the remain-
ing sounds (corresponding to a set of 133 sounds). Note that for a given material model,
the validation and calibration sets was built by excluding of sound continua that not
contain the material. For instance, the Metal category model is not concerned by the 5
sound continua of the transition {Wood-Glass}. For each category, the membership of
sounds correspond to the set of “typical” sounds that were defined from the results of
listening tests (cf. section 2). A stepwise selection method was used and the statistical
analysis was conducted with SPSS software (Release 11.0.0, LEAD Technologies).

3.3 Results and discussion

For each category model, the step summary is given in Table 1. The statistics Cox & Snell
R? and Nagelkerke adjusted R? try to simulate determination coefficients which, when



used in linear regression, give the percentage variation of the dependent variable ex-
plained by the model. Because a binary logistical model is used, the interpretation of
R? is not quite the same. In this case, the statistics give an idea on the strength of the
association between the dependent and independent variables (a pscudo-R? measure).

The results for calibration and validation processes are given in Table 2. Thus, the
predictive models are expressed by the function 7(x) in Eq. (2) and Lca(x) for each
category {Wood, Metal, Glass} is respectively given by:

Lwood(, CGS, SB) = —38.5 — 196a — 0.00864CGS + 0.01615B
Ljetar(er, SB) = 14.7 + 322c — 0.002535 B
Letass(SB,CGS, R, o, SF) = 14.33 — 0.006SB + 0.002CGS — 3.22R
+52.69cv — 0.001SF
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Table 1. Step summary (Nagelkerke R? adjusted value and the variable entered) of the logistic
regression method for each material category (Wood, Metal, Glass).

Category | Step N;agel'kerke Variable
R“ adjusted | entered
1 616 o
wOOD 2 .644 CGS
3 .854 SB
1 .637 a
METAL 2 718 SB
1 .086 SB
2 .164 CGS
GLASS 3 .300 R
4 377 «
5 410 SF

The logistic regression method revealed that the o parameter was the main predictor
for Wood (overall percentage correct at 85% at step 1) and Metal (82.7%) categories.
This result was in line with several studies showing that the damping was an important
acoustic feature for the material perception. Following a, the other important descrip-
tors revealed by the analyses were related to the spectral content of the sounds ({CGS,
SB} for Wood and SB for Metal), meaning that spectral information are also impor-
tant to explain material categorization. For the Glass category, most of the descriptors
were of equal importance in the classification model (all descriptors were taken into
account except AT). Thus, by contrast with the Wood and Metal categories, the mem-
bership of the Glass category could not be accurately predicted with few descriptors.
Moreover, the most relevant predictors for this category revealed by the analyses were
the spectral descriptors, ({SB, CGS, R}), while the temporal o parameter which was
the main predictor for Wood and Metal only was relegated at the 4th rank. This may be
due to the fact that Glass sounds presented a higher variability in sound decay values
than Wood or Mctal sounds. More interestingly, another explanation can be found in




the specificity of Glass category for which the perception of the material is intricately
associated to glasses (as everyday life objects). The corresponding sounds are gener-
ally characterized by high pitches and crystal-clear sounds (few spectral components).
Consequently, the discrimination between Glass sounds and the other sound categorics
can be explained by the spectral properties of Glass sounds (described by SB or CGS)
rather than by the damping.

Table 2. Classification table for each category (Wood, Metal, Glass) calculated on the calibration
(N=133) and validation (N=67) populations. The cut value is .5.

Calibration || Validation
& | Observed Predicied False | True | % correct || False | True | % correct
@}
o} False 78 4 95.1 40 1 97.5
2 True 8 | 43 84.3 4 | 22 84.6
Overall % 90.7 | 91.5 91 91 [95.6 92.5
- Predicted False | True | % correct || False | True | % correct
< | Observed
= False 50 [ 1277 806 27 | 7 794
= True 6 65 91.5 1 32 97
Overall % 89.3 [ 844 86.5 964 | 82 88
@ | Observed Predigted False | True | % correct {| False | True | % correct
i Falsc or | 7 929 437 3 934
&) True 17 19 52.8 10 10 50
Overall % 842 | 73 82.1 81.1 | 77 80.3

4 Sound synthesis perspectives

In addition to sound classification processes, these results are of importance in the con-
text of synthesis control. In particular, we are currently interested in offering an intuitive
control of synthesis models for an easy manipulation of intrinsic sound properties such
as the timbre. For instance, this aspect is of importance for Virtual Reality domain.
Indeed, the use of synthesis models can dramatically be improved in “sonification” pro-
cesses which generally deal with the choice of optimal synthesis parameters to control
sounds directly from a verbal description (in our case, directly from the label of the ma-
terial category: Wood, Metal or Glass). According to this perspective, we assume that
the acoustic descriptors highlighted in the predictive models would constitute a reliable
reference. In this section, we propose to discuss their actual relevancy from a synthesis
point of view.

First, the parameter « (related to the damping) was confirmed as an important pre-
dictor in agreement with previous psychoacoustical studies showing that damping is an



essential cue for material perception. The parameter o was kept as an accurate control
parameter and was integrated in the control of the percussive synthesizer developed in
our group [18). Moreover, the determination of typical sounds and non typical sounds
on each sound continuum allowed us to define characteristic domain (parameter range
values) of each material.

In addition to «, the statistical analyses further highlighted CGS and SB as most
relevant parameters in the predictive models. These results are in line with post hoc
synthesis cxpericnces revealed that, in addition to the damping, another parameter con-
trolling the spectral content of sounds is necessary for a more complete manipulation of
the perceived materials. Nevertheless, direct manipulations of the statistically relevant
parameters CGS or SB of a given impact sound do not allow intuitive modifications of
the nature of the perceived material. Actually, a separate analysis reflecting the tempo-
ral dynamics of the brain processes observed through electrophysiological data (also
collected during the listening tests), revealed that R is an adequate descriptor to account
for the perception and categorization of these different sound categories [19] and that it
offers a more accurate control of the synthesis model. This argument indicates that the
descriptors highlighted by statistical analysis as most relevant ones for sound classifi-
cation may not directly constitutc intuitive control parameters for synthesis purposcs.
To address this issue, we also aim at integrating data from brain imaging that inform
of the perceptual/cognitive relevancy of descriptors. Based on these considerations, wc
are currently investigating the possibilities to define a control space for material cate-
gories where the control of R in particular should accurately render the typical dissonant
aspect of Metal sounds [20].
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