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Carleman estimates for the one-dimensional heat equation with a

discontinuous coefficient and applications

Assia Benabdallah, Yves Dermenjian, Jérôme Le Rousseau 1

Laboratoire d’Analyse Topologie Probabilités, CNRS UMR 6632, Université d’Aix-Marseille I

39 rue F. Joliot-Curie, 13453 Marseille

Abstract

We study the observability and some of its consequences for the one-dimensional heat equation with a discontinuous
coefficient (piecewise C

1). The observability, for a linear equation, is obtained by a Carleman-type estimate. This
kind of observability inequality yields results of controllability to the trajectories for semilinear equations. It also
yields a stability result for the inverse problem of the identification of the diffusion coefficient. To cite this article:
A. Benabdallah, Y. Dermenjian, J. Le Rousseau, C. R. Mécanique — (2006).

Résumé

Inégalité de Carleman pour une équation de la chaleur à coefficient discontinu et applications. On
étudie l’observabilité et certaines de ses conséquences pour une équation de la chaleur à coefficient discontinu (C 1

par morceaux). L’observabilité, pour une équation linéaire, est obtenue au moyen d’inégalités de Carleman. Ce
type d’inégalités d’observabilité permet d’obtenir des résultats de contrôlabilité aux trajectoires pour des équations
semi-linéaires. Elle permet aussi de résoudre un problème inverse d’identification et de stabilité pour le coefficient
de diffusion. Pour citer cet article : A. Benabdallah, Y. Dermenjian, J. Le Rousseau, C. R. Mécanique — (2006).
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1. Introduction

The question of controllability of partial differential systems with discontinuous coefficients and its dual
counterpart, observability, are not fully solved yet. Recently, a result of controllability for a semilinear
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heat equation with a discontinuous coefficient was proven in [1] by means of a Carleman observability
estimate. Roughly speaking, as in the case of hyperbolic systems (see e.g. [2, page 357]), the authors of
[1] proved their controllability result in the case where the control is supported in the region where the
diffusion coefficient is the ‘lowest’. In both cases, however, the approximate controllability holds without
any restriction on the ‘monotonicity’ of the coefficients. It is then natural to question whether or not an
observability estimate holds in the case of non-smooth coefficients and arbitrary observation location.

In the one-dimensional case, the controllability result for linear parabolic equations was proven for
coefficients with bounded variations in [3]. The proof relies on Russel’s method [4]. However, the question
of the existence of a Carleman-type observability estimate remains open. The present paper provides a
positive answer in the case of piecewise C 1 coefficients.

Carleman estimates for parabolic equations with smooth coefficients were proven in [5]. The proof is
based on the construction of suitable weight functions β whose gradient is non-zero in the complement
of the observation region. In the non-smooth case, in [1], to obtain the observability, the authors have to
add the assumptions on the ‘monotonicity’ of the coefficients mentioned above. In both cases, the weight
function β was chosen in the domain of the operator ∇ · (c∇). Here, we do not impose this constraint,
which, with the jump of the derivative of β as a new parameter, enables us to control the interface terms
in the derivation of the Carleman estimate and therefore allows us to relax the ‘monotonicity’ condition
on the coefficient. Note however that the results of [1] are for the multidimensional heat equation. The
relaxation of the ‘monotonicity’ condition in the n−dimensional case, n ≥ 2, remains, to our knowledge,
open.

With such a Carleman estimate at hand, we treat the problem of the null controllability for classes of
semilinear parabolic equations of the form





∂ty − ∂x(c∂xy) + G (y) = 1ωv in Q,

y(t, x) = 0 on Σ,

y(0, x) = y0(x) in Ω,

(1)

where T > 0, Ω = (0, 1), Q = (0, T )×Ω, Σ = (0, T )×{0, 1} and where G : R → R is locally Lipschitz and
G (0) = 0 (further assumptions on the nonlinear function G or on the initial condition will be introduced
below).

We also provide a stability result for the inverse problem of the identification of the diffusion coefficient.

2. Global Carleman estimates

We consider a piecewise C 1 diffusion coefficient with a finite number of singularities. We shall thus
here assume that 0 = a0 < a1 < a2 < · · · < an = 1 and c|[ai,ai+1]

∈ C 1([ai, ai+1]), i = 0, . . . , n − 1. Let

j ∈ {0, . . . , n − 1} be fixed in the sequel and ω0 ⋐ ω ⋐ (aj , aj+1) be a non-empty open set. Let T > 0.
We shall use the following notations S = {a1, . . . , an−1}, Ω′ = Ω \ {a1, . . . , an−1}, Q = (0, T ) × Ω, and
Q′ = (0, T ) × Ω′.

We first introduce a particular type of weight functions, which are constructed using the following
lemma.
Lemma 2.1 There exists a function β̃ ∈ C (Ω) such that β̃|[ai,ai+1]

∈ C 2([ai, ai+1]), i = 0, . . . , n − 1,

satisfying β̃ > 0 in Ω, β̃ = 0 on {0, 1}, (β̃|[aj,aj+1]
)′ 6= 0 in [aj , aj+1]\ω0, (β̃|[ai,ai+1]

)′ 6= 0, i ∈ {0, . . . , n−1},

i 6= j, and the function β̃ satisfies the following trace properties: for some α > 0, (Aiu, u) ≥ α|u|2, u ∈ R
2,

with the matrices Ai, defined by
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Ai =


 [β̃′]ai β̃′(a+

i )[cβ̃′]ai

β̃′(a+
i )[cβ̃′]ai β̃

′(a+
i )[cβ̃′]2ai

+ [c2(β̃′)3]ai


 , i = 1, . . . , n− 1.

where [ρ]x = ρ(x+) − ρ(x−) for x ∈ (0, 1).

Choosing a function β̃, as in the previous lemma, we introduce β = β̃ + K with K = m‖β̃‖∞ and
m > 1. For λ > 0 and t ∈ (0, T ), we define the following weight functions

ϕ(t, x) =
eλβ(x)

t(T − t)
, η(t, x) =

eλβ − eλβ(x)

t(T − t)
, (2)

with β = 2m‖β̃‖∞ (see [1]). We introduce

ℵ =
{
q ∈ C (Q,R); q|[0,T ]×[ai,ai+1]

∈ C
2([0, T ] × [ai, ai+1]), i = 0, . . . , n− 1,

q|Σ = 0, and q satisfies (TC), for all t ∈ (0, T )
}
,

with

q(a−i ) = q(a+
i ), c(a−i )∂xq(a

−
i ) = c(a+

i )∂xq(a
+
i ), i = 1, . . . , n− 1. (TC)

Theorem 2.2 There exist λ1 = λ1(Ω, ω) > 0, s1 = (T + T 2)s̃1 > 0 and a positive constant C = C(Ω, ω)
so that the following estimate holds

s−1

∫∫

Q

e−2sηϕ−1 (|∂tq|
2+|∂x(c∂xq)|

2) dxdt+sλ2

∫∫

Q

e−2sηϕ |∂xq|
2 dxdt+s3λ4

∫∫

Q

e−2sηϕ3 |q|2 dxdt

+ sλ

n−1∑

i=1

∫ T

0

ϕ(t, ai)e
−2sη(t,ai)|∂xq(t, a

−
i )|2 dt+ s3λ3

n−1∑

i=1

∫ T

0

ϕ3(t, ai)e
−2sη(t,ai)|q(t, ai)|

2 dt

≤ C

[
s3λ4

∫∫

(0,T )×ω

e−2sηϕ3 |q|2 dxdt+

∫∫

Q

e−2sη |∂tq ± ∂x(c∂xq)|
2 dxdt

]
, (3)

for s ≥ s1, λ ≥ λ1 and for all q ∈ ℵ.

Proof. Arguing as in [5,1], we set ψ = e−sηq. We obtain, in the derivation of the Carleman estimate,
integral terms over Q′ and some time integrals over (0, T ) with trace terms at ai, i = 1, . . . , n−1. In fact,
the leading order terms for these time integrals at ai (w.r.t. to the parameters s and λ) are given by

µi := sλ

∫ T

0

ϕ(t, ai) [β′ |c∂xψ|
2(t, .)]ai

dt+ s3λ3[c2(β′)3]ai

∫ T

0

ϕ3(t, ai) |ψ(t, ai)|
2 dt, i = 1, . . . , n− 1.

We obtain µi = sλ
∫ T

0
ϕ(t, ai)

(
Aiu(t, ai), u(t, ai)

)
dt with u(t, ai) = (c(a−i )∂xψ(t, a−i ), sλϕ(t, ai)ψ(t, ai))

t,
with the 2×2 matrix Ai as in Lemma 2.1. This term is thus positive and can ‘absorb’ the remaining time
integrals at ai if we choose the parameters s and λ to be sufficiently large. The rest of the proof can be
adapted from [5,1]. �

Remark 1 In a similar fashion, we can obtain Carleman estimates with a ‘side observation’ for the op-
erators ∂t ± ∂x(c∂x), for instance with the term

sλ

∫ T

0

ϕ(t, 0)e−2sη(t,0)|∂xq|
2(t, 0) dt

replacing the volume integral over (0, T )× ω on the r.h.s. of (3). To this purpose, we need to introduce a

weight function β̃ according to the following lemma.
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Lemma 2.3 There exists a function β̃ ∈ C (Ω) such that β̃|[ai,ai+1]
∈ C 2([ai, ai+1]), i = 0, . . . , n − 1,

satisfying β̃ > 0 in Ω, β̃(1) = 0, (β̃|[ai,ai+1]
)′ ≤ ν < 0, i ∈ {0, . . . , n− 1}, and the function β̃ satisfies the

following trace properties: for some α > 0, (Aiu, u) ≥ α|u|2, u ∈ R
2 with the matrices Ai, defined as in

Lemma 2.1.

Remark 2 Note that an inequality, of the form of (3), with these pointwise terms on the l.h.s of the
Carleman estimates can still be obtained in the case of a smooth coefficient by simply choosing the weight
function β to have a jump condition for its derivative and satisfying the properties given by Lemma 2.1.

3. Controllability results

The Carleman estimate (3) allows to give observability estimates that yield results of controllability to
the trajectories for classes of semilinear heat equations. Considering a piecewise C 1 diffusion coefficient
with n − 1 points of discontinuities, a1, . . . , an−1, with 0 = a0 < a1 < · · · < an−1 < 1 = an. We let
ω ⋐ (aj , aj+1) be an non-empty open set for some j ∈ {0, . . . , n−1}. We first state an observability result
with an L2 observation. We let a be in L∞(Q) and qT ∈ L2(Ω). From Carleman estimate (3) we obtain
the following proposition.
Proposition 3.1 The solution q to





−∂tq − ∂x(c∂xq) + aq = 0 in Q,

q = 0 on Σ,

q(T ) = qT in Ω,

(4)

satisfies ‖q(0)‖2
L2(Ω) ≤ eCK(T,‖a‖∞)

∫∫
(0,T )×ω

|q|2 dxdt, where K(T, ‖a‖∞) = 1 + 1
T + T‖a‖∞ + ‖a‖

2/3
∞ .

The proof of this proposition can be found in [1]. Such an observability estimate yields the null con-
trollability of the following semilinear parabolic equation (1) where G : R → R is locally Lipschitz and
G (0) = 0. This implies that G (s) = sg(s), with g in L∞

loc(R).
Theorem 3.1 Let c be a piecewise C 1 diffusion coefficient with n− 1 points of discontinuities, 0 < a1 <

· · · < an−1 < 1. We let ω ⋐ (aj , aj+1) be an non-empty open set and we assume that G is locally Lipschitz.
Let T > 0 :

(i) Local null controllability: There exists ε > 0 such that for all y0 in L2(Ω) with ‖y0‖L2(Ω) ≤ ε,

there exists a control v ∈ L2((0, T )× ω) such that the corresponding solution to system (1) satisfies
y(T ) = 0.

(ii) Global null controllability: Let G satisfy in addition lim|s|→∞
|G (s)|

|s| ln3/2(1+|s|)
= 0. Then for all y0 in

L2(Ω), there exists v ∈ L2((0, T ) × ω) such that the solution to system (1) satisfies y(T ) = 0.

The proof is based on a fixed point argument and is along the same lines as that in [6] and originates
from [7].

Remark 3 A similar result holds for a boundary control, i.e., by imposing y = v at either 0 or 1, with
v ∈ L2(0, T ). Note that as usual, y(T ) = y∗(T ) can replace y(T ) = 0 in the previous statements, where y∗

is any trajectory defined in [0, T ] of system (1), corresponding to some initial data y∗0 ∈ L2(Ω) and any
v∗ in L2((0, T ) × ω) (L2(0, T ) in the case of a boundary control). For the local controllability result, one
has to assume ‖y0 − y∗0‖L2(Ω) ≤ ε, with ε sufficiently small.
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4. Stability for a discontinuous diffusion coefficient

In [8], the authors establish a uniqueness result for the discontinuous diffusion coefficient c as well as a
stability inequality. This inequality estimates the discrepancy in the coefficients c and c̃ of two materials
(with the same geometry) with an upper bound given by some Sobolev norms of the difference between
the solutions y and ỹ to





∂tỹ − ∂x(c̃∂xỹ) = 0 in Q,

ỹ(t, x) = h(t, x) on Σ,

ỹ(0, x) = ỹ0(x) in Ω,





∂ty − ∂x(c∂xy) = 0 in Q,

y(t, x) = h(t, x) on Σ,

y(0, x) = y0(x) in Ω.

(5)

Set u = y − ỹ and q = ∂tu. Then q is solution to the following problem




∂tq − ∂x(c∂xq) = ∂x((c− c̃)∂x∂tỹ) in Q′,

q = 0 on Σ,

transmission conditions (TCg) on S × [0, T ],

with

q(x−) = q(x+), (c∂xq)(x
−) = (c∂xq)(x

+) + g(x, t), (TCg)

where x ∈ S = {a1, . . . , an−1}, the set of singularities for both c and c̃, and

g(x, t) = ((c− c̃)∂x∂tỹ)(x
+) − ((c− c̃)∂x∂tỹ)(x

−).

If the solutions y and ỹ to (5) satisfy some (regularity) conditions (that can be achieved with some
choices of boundary conditions h and initial conditions y0 and ỹ0 in L2(Ω) – see [8] for details) we have
the following stability result.
Theorem 4.1 We assume that the diffusion coefficients c and c̃ are piecewise constant with the same
singularity locations. Then there exists a constant C such that

|c− c̃|2L∞(Ω) ≤ C|∂x(∂ty − ∂tỹ)(., 0)|2L2(0,T ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′), (6)

where Ω′ is the open set Ω with the singularities of c removed.
A Carleman estimate is the key ingredient in the proof of such a stability estimate. In [8], this Carleman
estimate was proven in any dimension but with an additional ‘monotonicity’ assumption on the discontin-
uous diffusion coefficient. In the present case, we can establish such a Carleman estimate for a piecewise
C 1 diffusion coefficient. Choosing the weight function as in Lemma 2.3, we have the following estimate.
Theorem 4.2 Let t0 > 0, in (0, T ) and g(., ai) ∈ H1(t0, T ), i = 1, . . . , n − 1. There exist λ1 > 1,
s1 = s1(λ1) > 0 and a positive constant C so that the following estimate holds

|M1(e
−sηq)|2L2(Q′) + |M2(e

−sηq)|2L2(Q′) + sλ2

∫∫

Q

e−2sηϕ|∂xq|
2 dxdt+ s3λ4

∫∫

Q

e−2sηϕ3 |q|2 dxdt

≤ C

[
sλ

∫ T

t0

e−2sηϕ |∂xq|
2(t, 0) dt +

∫∫

Q

e−2sη |∂tq ± ∂x(c∂xq)|
2 dxdt+ sλ

∫ T

t0

∫

S

e−2sηϕ|g|2 dσdt

+

∫ T

t0

∫

S

e−2sηϕ4|g|2 dσdt +s−2

∫ T

t0

∫

S

e−2sη|∂tg|
2dσdt

]
, (7)

for s ≥ s1, λ ≥ λ1 and for all q ∈ ℵg, with M1 and M2 given by

M1ψ = ∂x(c∂xψ) + s2λ2ϕ2(β′)2cψ + s(∂tη)ψ, M2ψ = ∂tψ − 2sλϕcβ′∂xψ − 2sλ2ϕc(β′)2ψ,
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and ℵg is given by

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×(ai,ai+1)

∈ L2(t0, T,H
2((ai, ai+1)),

i = 0, . . . , n− 1, q|Σ = 0 and q satisfies (TCg) a.e. w.r.t. t
}
. (8)

Remark 4 Observe that in Theorem 4.1 and Theorem 4.2, we need not assume that jumps for c are greater
than some positive constants ∆ at its points of discontinuities, as is done in [8]. This is due to the choice

made on the weight function β̃ in Lemma 2.3. This remark is to be connected to the proof of Theorem 1.3
in [8, estimate (1.16) and following arguments].
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Ann. Inst. H. Poincaré, Analyse non lin. 17 (2000) 583–616.

[8] A. Benabdallah, P. Gaitan, J. Le Rousseau, An inverse problem for the heat equation with discontinuous diffusion

coefficients, Preprint: LATP, Universités de Marseille, www.cmi.univ-mrs.fr/∼jlerous/publications.html (2005).

6


