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Abstract 
This paper presents various approaches dealing with heterogeneous reaction combined with 
interaction between neighboring units of observation developed in the spatial econometric 
literature, in the framework of cross-sectional models, and applied to the study of growth and 
convergence processes. We present the main econometric specifications capturing discrete or 
continuous spatial heterogeneity: the spatial regimes model and the locally linear, 
geographically weighted regression (GWR). We then examine how these specifications can 
be extended to further allow for spatial autocorrelation. 
 
Keywords: spatial econometrics, heterogeneity, spatial autocorrelation 
JEL: C21, O47, R11 
 
 
Résumé 
La présence d'effets spatiaux, hétérogénéité et dépendance spatiales, dans les processus de 
croissance et de convergence régionales a récemment été mis en évidence dans la littérature. 
Cet article est une introduction aux différentes approches méthodologiques, développées en 
économétrie spatiale dans le contexte des modèles en coupe transversale et appliquées à 
l'étude des processus de croissance, dont l'objectif est de traiter le problème de l'hétérogénéité 
combinée à l'interaction entre unités d'observations voisines. Les spécifications d'économétrie 
spatiale intégrant l'hétérogénéité spatiale discrète ou continue, en particulier le modèle à 
régimes spatiaux et le modèle de régression localement linéaire, géographiquement pondéré 
(GWR) sont d'abord présentées. Deux approches alternatives permettant la prise en compte 
simultanée de l'hétérogénéité spatiale continue et de la dépendance spatiale sont ensuite 
développées. 
 
Mots-clés : Econométrie spatiale, hétérogénéité, autocorrélation spatiale 
JEL : C21, O47, R11 
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“Notwithstanding the general rule that ‘everything affects everything else’, it is often useful to assess whether 

the dominant effects are caused by reaction to external forces or by interaction between (neighbouring) 

individuals.”1 
(Cliff and Ord, 1981, p.141) 

 

 

1.  Introduction 
Over the last few years, numerous studies have been carried out to analyze economic 

convergence among countries or regions and recognizing at the same time the need to include 

spatial effects (Abreu et al., 2005; Ertur et al., 2006; Fingleton and López-Bazo, 2006). For 

example, a large number of contributions analyzing the β-convergence hypothesis impose 

strong homogeneity assumptions on the cross-economy growth process, since each economy 

is assumed to have an identical aggregate production function. However, modern growth 

theory suggests that different economies should be described by distinct production functions. 

In other words, β-convergence models should account for parameter heterogeneity (Brock 

and Durlauf, 2001; Durlauf, 2001; Durlauf et al., 2005; Temple, 1999). Evidence of 

parameter heterogeneity has been found in non-spatial models using different statistical 

methodologies, such as in Canova (2004), Desdoigts (1999), Durlauf and Johnson (1995) and 

Durlauf et al. (2001). Each of these studies suggests that the assumption of a single linear 

statistical growth model applying to all countries or regions is incorrect.  

Moreover, Ertur et al. (2007) argue that in a spatial context, similarities in legal and 

social institutions, as well as culture and language might create spatially local uniformity in 

economic structures, leading to situations where rates of convergence are similar for 

                                                 
1 The terms reaction and interaction are emphasised by the authors. 
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observations located nearby in space. Parameter heterogeneity is then spatial in nature and 

estimating a “global” relationship between growth rate and initial per capita income, which 

applies in the same way over the whole study area, doesn’t allow capturing the important 

convergence rate differences that might occur in space. 

The instability in space of economic relationships illustrated by this example is called 

spatial heterogeneity. This phenomenon can be observed at several spatial scales: behaviors 

and economic phenomena are not similar in the center and in the periphery of a city, in an 

urban region and in a rural region, in the “West” of the enlarged European Union and in the 

“East”, etc. In an econometric regression, these differences may appear in two ways: with 

space-varying coefficients and/or space-varying variances. The first case is labeled structural 

instability of regression parameters, which vary systematically in space. The second case 

pertains to heteroscedasticity, which is a frequent problem in cross-sections. 

Spatial heterogeneity is one of the two spatial effects analyzed by the field of spatial 

econometrics (Anselin, 1988). This effect operates through the specification of the reaction of 

the variable of interest to explanatory variables or the specification of its variance. The other 

is spatial autocorrelation, or the coincidence of value similarity and locational similarity. It is 

aimed at capturing interaction between neighboring units of observation. This effect is also 

highly relevant in growth and convergence analysis. Indeed, as pointed out by Easterly and 

Levine (2001), there is a tendency for all factors of production to gather together, leading to a 

geographic concentration of economic activities. As a consequence, any empirical study on 

growth and convergence should explicitly acknowledge this phenomenon of spatial 

interdependence between regions or countries. Moreover, as pointed out by Abreu et al. 

(2005), this distinction between spatial heterogeneity and spatial dependence can be related to 

two different ways of modeling spatial data in growth regressions: models of absolute 

location and models of relative location.  Absolute location refers to the impact of being 

located at a particular point in space (continent, climate zone) and is usually captured through 

dummy variables.  Relative location refers to the effect of being located closer or further 

away from other specific countries or regions.   

 While spatial autocorrelation has been the focus of several literature reviews (Anselin 

and Bera, 1998; Anselin, 2006 for instance), spatial heterogeneity is much less presented per 

se. In the convergence context, spatial effects have also already been the focus of several 

literature reviews: Abreu et al. (2005), Rey and Janikas (2005) and Fingleton and López-Bazo 

(2006). However, these studies focus more on the appropriate treatment and interpretation of 

spatial autocorrelation in convergence models and/or distribution dynamic approaches. Abreu 
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et al. (2005) present some models of absolute location but limit their discussion to models for 

discrete spatial heterogeneity, while several recent studies extend these to models with 

continuous space-varying coefficients (Bivand and Brunstad, 2005; Eckey et al., 2007; Ertur 

et al., 2007). 

In this context, this chapter is double-aimed. First, we present the main econometric 

specifications capturing spatial heterogeneity, or models of absolute locations, in the 

terminology of Abreu et al. (2005). Here, we focus on structural instability, as well as on 

specific forms of heteroscedasticity and we provide examples of applications pertaining to 

growth econometrics. Secondly, we examine how these specifications can be extended to 

further allow for spatial autocorrelation in models of heterogeneous reaction. Concerning this 

second point, it should be noted that spatial autocorrelation and spatial heterogeneity entertain 

complex links. First, as pointed out by Anselin and Bera (1998) and Abreu et al. (2005), there 

may be observational equivalence between these two effects in a cross-section. Indeed, a 

cluster of high-growth regions may be the result of spillovers from one region to another or it 

could be due to similarities in the variables affecting the regions' growth. Secondly, 

heteroscedasticity and structural instability tests are not reliable in the presence of spatial 

autocorrelation. For instance, Anselin and Griffith (1988) show that spatial autocorrelation 

affects the size and power of the White and Breusch-Pagan tests of heteroscedasticity. 

Anselin (1990a) also provides evidence that the Chow test for structural instability is not 

reliable in the presence of spatial autocorrelation. Conversely, spatial autocorrelation tests are 

affected by heteroscedasticity (Anselin, 1990b). Thirdly, spatial autocorrelation is sometimes 

the result of an unmodelled parameter instability (Brunsdon et al., 1999a). In other words, if 

space-varying relationships are modelled within a global regression, the error terms may be 

spatially autocorrelated. We detail some of these issues in the growth and convergence 

context in this chapter.  

Note that heterogeneity can also be modeled using spatial panel data models. 

However, this alternative approach will not be considered here as a complete survey is 

provided by Anselin et al. (2008). Therefore, we focus here exclusively on the cross-sectional 

approach. Also, due to space constraints, we do not review distribution dynamics approaches 

to economic convergence and focus exclusively on spatial econometric modeling issues.2 

Bearing these different elements in mind, this chapter is organized as follows. The next 

section presents the specifications allowing for discrete heterogeneity, i.e. when different 

parameters are estimated following spatial regimes. The following sections are devoted to 

                                                 
2 See Rey and Janikas (2005) and Rey and Le Gallo (2008) for such a review.  
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continuous heterogeneity models: geographically-weighted regressions (section 3) and their 

generalizations (section 4). Section 5 concludes and provides some research directions. 

 

2.  Discrete spatial heterogeneity 
Spatial instability of the parameters necessitates specifications in which the 

characteristics of each spatial observation are taken into account. Therefore, we could specify 

a different relationship for each zone i of the sample: 

         iiii xy εβ += ' Ni …,1=  (1) 

where iy  represents the observation of the dependent variable for zone i;  is the  

vector including the observations for the K explanatory variables for zone i. It is associated to 

'
ix (1, )K

iβ , a  vector of parameters to be estimated. Finally, in general, the variance differs with 

i: 

( ,K

i iid

1)

(0, 2 )iε σ∼ . Of course, given N observations, it is not possible to estimate consistently 

NK parameters and N variances: this is the incidental parameter problem. Therefore, a spatial 

structure for the data must be specified. The spatial variability of the mean of the coefficients 

of a regression can be discrete, if systematic differences between regimes are observed, or it 

can be continuous over the whole area. Note that, similarly to panel data models, a random 

variation could also be specified, under the form of a random coefficients model. As this 

possibility is not explicitly spatial, it will not be further considered in this chapter.3  

 

Consider first the models for discrete spatial heterogeneity, which have been applied 

extensively to study the club convergence hypothesis in a spatial context. Assume that the 

area under study is divided into several regimes. If only one variable is under study, a spatial 

ANOVA can be undertaken in order to investigate whether the mean of this variable is 

different across the regimes. Spatial versions of ANOVA have also been suggested by 

Griffith (1992).  

                                                 
3 See Anselin (1988) for further details on the random coefficients model in a cross-sectional context. See also 
Brunsdon et al. (1999b) for a comparison between random coefficients models and the GWR model, which is 
considered in section 3 of this chapter.  
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More generally, in a regression model, consider the case of two regimes, indicated by 

1 and 2.4 It can be written as follows:  
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where 1y  and 2y  are the  and  vectors of observations for the dependent 

variable; 1
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β β=  can be performed with the traditional Chow test. However, more sophisticated error 

structures can be specified, such as groupwise heteroscedasticity (3) and/or spatial error 

autocorrelation (4): 
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 or      2(0, )uW u u iidε ρ ε σ= + ∼  (4) 

where W is a ( , )N N  spatial weights matrix. Both possibilities can be combined or a different 

spatial process may be specified for each regime. In each case, maximum likelihood should 

be carr

ecisions 

must b

                                                

ied out and the Chow test must be spatially adjusted (Anselin, 1990a).  

This framework has been applied to consider specific forms of parameter 

heterogeneity in absolute β-convergence regressions, in which case the explanatory variable 

is the growth rate of per capita income and the explanatory variable is the initial per capita 

income. Indeed, while absolute β-convergence is frequently rejected for large sample of 

countries and regions, it is usually accepted for more restricted samples of economies 

belonging the same geographical area. This observation can be linked to the presence of 

convergence clubs: there is not only one steady state to which all economies converge. From 

an econometric point of view, one equation must be estimated for each club and d

e made as to how the cross-sectional sample should be partitioned.  

Some papers just use a priori spatial regimes, such as Northern and Southern 

European regions (Neven and Gouyette, 1995) or regions belonging to cohesion countries and 

the others (Ramajo et al., 2008). Exploratory spatial data analysis may also prove useful in 

this task. Indeed, these techniques, by exploiting the specific spatial nature of the data are 

useful in characterizing the form of spatial heterogeneity by detecting the local concentrations 
 

4 The generalization to more than two regimes is straightforward.  
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of similar values, by using Getis-Ord statistics (Ord and Getis, 1995) or LISA statistics 

(Anselin, 1995). For example, Le Gallo and Ertur (2003) show that the spatial distribution of 

per capita GDP in Europe before the recent enlargement is characterized by a strong North-

South polarization. More recently, Ertur and Koch (2006a) show that this polarization scheme 

is replaced by a new West-East polarization scheme if the last enlargement of the European 

Union to Central and Eastern European countries is taken into account. These polarization 

schemes represent evidence in favor of the existence of at least two spatial regimes in the 

European regions. This information is then used to estimate β-convergence models with 

spatial regimes as in equation 2 (Fischer and Stirböck, 2006; Le Gallo and Dall’erba, 2006), 

possibly associated with groupwise heteroscedasticity, and spatially autocorrelated error 

terms as in equations 3 and 4 (Ertur et al., 2006), or a spatial lag of the form Wy (Dall’erba 

and Le Gallo, 2008). However, as pointed out by Rey and Janikas (2005), the existing 

specification search procedures should be extended to be able to distinguish between spatial 

dependence and spatial heterogeneity while formal specification search strategies for spatial 

heterog

(1999) non-parametric 

specifi tion by allowing a spatial lag term or a spatial error process.  

eneity have yet to be suggested. 

While non-spatial papers use endogenous detection methods, such as regression trees 

(Durlauf and Johnson, 1995), it should be emphasized that a technique allowing for an 

endogenous estimation of regimes together with taking into account of spatial autocorrelation 

stills needs to be developed (Anselin and Cho, 1998). A first step in this direction is the paper 

by Basile and Gress (2005) who suggest a semi-parametric spatial autocovariance 

specification that simultaneously takes into account the problems of non-linearities and 

spatial dependence. In that purpose, they extend Liu and Stengo’s 

ca

 

If no information is available on spatial regimes, or if one thinks that the mean of a 

variable or that the regression coefficients do not change brutally between regimes, it is 

preferable to use specifications allowing for continuous spatial variations across the whole 

study area. The urban literature has frequently used trend surface analysis models and/or the 

expansion method. In the first case, the coordinates of each location (such as latitude and 

longitude) are added in the regression model so that the main characteristics of the regression 

surface, such as simple “North-South” or “East-West” drifts or more complex drifts for 

higher-order functions can be described (Agterberg, 1984). In the second case, the regression 

coefficients are deterministic (Casetti, 1972) or stochastic (Anselin, 1988) functions of 

expansion variables, such as the coordinates of each location. However, the expansion 
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method suffers from two main drawbacks (Fotheringham et al., 2000, 2004). First, these 

techniques only allow capturing trends in relations in space, the complexity of these trends 

being determined by the complexity of the specified expansion equations. The estimates of 

the parameters may therefore obscure important local variations to the broad trends 

represented by the expansion equations. Secondly, the form of the expansion equations must 

be specified a priori. To overcome these problems, Geographically Weighted Regression 

(GWR) has been developed and applied in several papers focusing on economic convergence.   

3.  Ge

servation by using the values of the 

characteristics taken by the neighboring observations. 

ation (1) where a 

K unknown parameters must be estimated for each observation 

 

 

ographically weighted regression (GWR) 
The geographically weighted regression (GWR), or equivalently the locally linear 

regression method (LWR), has been developed by McMillen (1996) and Brunsdon et al. 

(1996). Most details concerning this method are developed in two books (Fotheringham et al., 

2000, 2004). GWR is a locally linear, non-parametric estimation method aimed at capturing, 

for each observation, the spatial variations of the regression coefficients. For that purpose, a 

different set of parameters is estimated for each ob

 

Formally, consider again as a point of departure the general formul

vector of i:  

'
K

y x x
1

i i i i ik ik i
k

β ε β ε
=

= + = +∑  (5) 

where 2(0, )i iidε σ∼ , 1,...,i N= . In order to estimate the parameters ikβ  of model (5), we 

assume that observations close to location i  exert more influence on the estimation of ikβ  

than those located farther away. The idea  then to use a distance-decay weighting scheme 

that spatially ries wit i . Formally, let i

 

h 

 is

va β  be the Weighted Least Squares (WLS) estim

f the 

ator 

vector iβ  of the K  unknown para s. It is written

i

meter  in matrix form as: o

 ˆ
i

1( ' ) 'iX V X X V y−=β

with the same notations as before and 1 2[ , .., ]i i i iNV diag v v v

 (6) 

,.=  is a ( , )N N  diagonal matrix, 

specific to each location i . The diagonal elements of iV  represent the geographic weighting 

given to the observations surrounding i, generally specified using a continuous and monotone 

decreasing function of the distance between lo

words a kernel function. 

cation i  and all other observations, in other 
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This methodology differs from the traditional non-parametric kernel estimation where 

the weights refer to the attribute space of the explanatory variables (Cleveland et al., 1988). 

In contrast, GWR uses weights referring to the location in geographical space and therefore 

allows estimating local rather than global parameters. Different weighting schemes or kernel 

functions have been suggested in the literature (McMillen, 1996; MacMillen and McDonald, 

1997; Fotheringham et al., 2000). On  of the mose t commonly used weighting function is the 

aussian kernel, for a given location  we havG e:  i ,

 2 2exp( / )ij ijv d h= −                 1,...,j N=  (7) 

where ijd  is the Euclidian distance between locations i  and j  and h is referred to as the 

bandwith parameter that can be determined by a cross validation procedure. Another 

possibility is to use a truncated kernel by setting the we hts to zero outside a radius d and to 

decrease monotonically to zero inside 

ig

ijthe radius as  increases. For example consider a 

bisquare weighting function written as: 

  (8) 

eighting function as suggested by McMillen (1996) and McMillen and 

McDonald (1997): 

 

 d

2 2 2(1 / ) if ,ij ij
ij

d d d d
v

⎧ − ≤⎪= ⎨0 if ijd d>⎪⎩

or even a tri-cube w

33

1 (ij
ij ij i )

d
v I d d

⎡ ⎤⎛ ⎞
⎢ ⎥= − <⎜ ⎟  (9) 

id⎢ ⎥⎝ ⎠⎣ ⎦

where id  is the distance of the mth nearest observation to i  and ( )I ⋅  is an indicator function 

that equals one when the condition is true. The window size, m, is the number of nearest 

neighbors and determines the observations which receive non-zero monotonically decreasing 

weights, whereas the observation farther away are given zero weights. Again it can be 

determined by cross-validation. 

Note also that a mixed version of GWR has been suggested by Brunsdon et al. 

(1999a) and Mei et al. (2004, 2006), in which some coefficients are allowed to vary in space 

while others remain constant. From an empirical point of view, GWR is useful to identify the 

nature and patterns of spatial non-stationarity over the studied area. Indeed, the result of a 

GWR is a set of localized estimations of the parameters, together with localized versions of t-

statistics and measures of quality of fit. These local measures are associated to specific 
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locations, so that they can be mapped to illustrate the spatial variations of the relationship 

under s

 traces of remaining spatial nonstationarity can be found. However, 

they do

 speed increases from south to north. The half-life period ranges 

from le

ent 

and percentage of fixed asset invested in State Owned Enterprises, show significant spatial 

non-sta

tudy (Mennis, 2006). 

 

We review here some of the most recent contributions related to regional growth and 

development. Bivand and Brunstad (2005), in their paper focusing on the detection of spatial 

misspecification in growth models using the R environment, estimate a conditional 

convergence model including a spatially lagged endogenous variable and spatial regimes for 

Western Europe over the period 1989-1999. They find support for the role of agricultural 

subsidies in accounting for variations in regional growth. Higher levels of agricultural support 

are associated with lower levels of growth, even after some measure of human capital has 

been introduced. They also consider a GWR specification to essentially ascertain their results 

by exploring whether any

 not fully interpret their GWR results due to some methodological problems which 

will be discussed below. 

Another attempt to use GWR regressions in the regional growth context has been 

made by Eckey et al. (2007) in a paper focusing on regional convergence in Germany over 

the period 1995-2002 using disaggregated data on a sample of 180 labor market regions. They 

estimate a model based on Mankiw et al. (1992) allowing all coefficients, especially the rate 

of convergence, to vary across regions. Each region seems to converge using both absolute 

and conditional convergence models as the local convergence parameters are all negative. 

The value of the convergence

ss than 20 years for some regions in northern Germany to more than 50 years for 

regions in southern Bavaria. 

Finally, let us mention the contribution of Yu (2006) to the regional development 

literature in his study of the development mechanisms in the Greater Beijing Area using 

GWR. The analysis reveals two results: first, regional development mechanisms in the 

Greater Beijing Area, such as Foreign Direct Investment, per capita fixed asset investm

tionarity; and second, development mechanisms have strong local characteristics. 

 

From a methodological point of view, several problems plaguing GWR estimation and 

inference must be mentioned here. First, concerning statistical inference, in order to know 

whether the local estimations of parameters are significantly different between them and 

compared to the OLS estimator, parametric tests have been suggested by Brunsdon et al. 
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(1999a) and Leung et al. (2000a). Secondly, LeSage (2004) argues that the presence of 

aberrant observations due to spatial enclave effects, shifts in regime or outliers can exert 

undue influence on the GWR estimates. Therefore, he suggests a Bayesian estimation 

approach that detects these observations and downweights them to lessen their influence on 

the estimates. Thirdly, Wheeler and Tiefelsdorf (2005) point out that the local regression 

estimates are potentially collinear even if the underlying exogenous variables in the data 

generating process are uncorrelated. This collinearity can degrade coefficient precision in 

GWR and lead to counter-intuitive signs for some regression coefficients. Using Monte-Carlo 

simulations, Wheeler and Calder (2007) show that Bayesian models with spatially varying 

coefficients (Gelfand et al., 2003) provide more accurate regression coefficients. Finally, 

facing the various inference problems encountered by GWR, Páez et al. (2002a) place GWR 

in a different statistical framework, interpreting GWR as a spatial model of error variance 

heterogeneity, i.e. heteroscedasticity. The variance of the error term is defined as an 

exponential function of the squared distance between two observations and has then a precise 

geographical interpretation. While this approach is a special case of the well-known 

multiplicative heteroscedasticity model developed by Harvey (1976), it nevertheless 

represe

nally, Pace and LeSage (2004) introduce 

nts a real breakthrough in the GWR literature and allows the derivation of formal 

heterogeneity tests. 

There still remains an important methodological problem pointed out by Páez et al. 

(2002b) and Pace and LeSage (2004): spatial dependence may not be eliminated even at the 

optimal bandwidth as it is often assumed in the related literature where it is considered that 

spatial dependence is mainly due to inadequately modeled spatial heterogeneity. Actually, 

this methodological problem is related to the complex links between spatial heterogeneity and 

spatial dependence often underlined and more generally to the reaction versus interaction 

debate first pointed out by Cliff and Ord (1981, p.141) in the spatial econometrics literature. 

Even when heterogeneous reactions are taken into account as in the GWR framework, it 

could be the case that there are also interactions between units of observation that should be 

modeled with a spatially dependent covariance structure. Therefore, Brunsdon et al. (1998) 

have proposed to include the spatially lagged endogenous variable in the GWR model and 

Leung et al. (2000b) have suggested a test of spatial autocorrelation of the GWR residuals. 

Moreover, Páez et al. (2002b) formulate a general model of spatial effects that includes as 

special cases GWR with a spatially lagged endogenous variable (GWR-SL) and GWR with 

spatially autocorrelated residuals (GWR-SEA). Fi
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spatial autoregressive local estimation (SALE) based on a computationally competitive 

recursi

4.  Generalized GWR 
We first consider here a straightforward generalization of the m

o added in the mo

 

ve maximum likelihood estimation method. 

 

odel proposed by Páez 

et al. (2002b) where the spatial lags of the explanatory variables are als del: 

1

2

y W Y X
W u
ρ β ε

ε λ ε
⎧ = + +⎪
⎨

= +⎪⎩

�
 (10) 

where (0, )u N Ω∼  is the  vector of the dependant variable; ( ,1)N [ ]1X X W Xι=�; y  with 

ι  a s;( 1)N ×  vector of one  X  a ( , ( 1))N K −  matrix of the explanatory variables excluding 

the constant and 1W X  its spatial lag; β  is the ((2( 1) 1),1)K − +  vector of the associated 

parameters to be estimated; ρ  and λ  are the spatial autoregressive param 2W  

ed spatial weights matrices; 

eters;  and 1W

are row-standardiz Ω  is the diagonal covariance m  the atrix of

error term u  with elements denoted by iiω . More precisely, they adopt a specific form for

o

 this 

covariance matrix as f llows: 2GσΩ =  and define its elements as 2
ii i i

0ij

( ,g z )ω σ γ=  and 

ω =  for i j≠ . Hence the variance of the error term u  is a function of a ( ,1)p  vector of 

known variables iz , an unobservable parameter vector γ  and an unknown constant 2σ . The 

geographically weighted specification is then obtained by defining a variance model of the 

exponential form as in Páez et al. (2002a): 

 oi o oi o oig a dγ γ=  (11) 

which is a special case of the previous form lation with 1

2( , ) exp( )

u p =  and where the observable 

variable oid  is the distance between location o  and observation i  for 1,...,i N= . This 

particular geographical specification locational heterogeneity 

by Páez . (2002a, 2002b). The parameter 

 of the error variance is called 

et al oγ  is then th called kernel  in the 

tradition GWR literature. The generalized GWR model can therefore be defined in terms of 

rameters as f lows: 

e so-  bandwidth

local pa ol

 1o o o o oW y X A y X

2o o o o o o

oy
W u B u

ρ β ε β ε⎧= + + = +
⇒ ⎨  

ε λ ε ε
⎧
⎨

= + =⎩ ⎩

� �
(12) 

where 1o oA I Wρ= − ; 0 2oB I Wλ= −  and . Note that  and 2
o o(0, )o ou N Gσ∼  oA B  depend on 

local parameters oρ  and oλ  respectively and oG  depends on the local parameter oγ . 
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 If no spatial lags of the explanatory variab e allow . les ar ed, i.e [ ]X Xι=� , it is easily 

seen that when 0o oρ λ= =  then o oA B I= = , and this model reduces to the standard GWR 

model; when 0oλ =  then oB I= , and we obtain a GWR model which includes the spatially 

lagged endogenous variable (GWR-SL); when 0oρ =  then oA I= , and we obtain a GWR 

model with spatially autocorrelated errors (GWR-SEA). Páez et al. (2002b) propose to 

estimate those two generalized GWR models by iterated maximum likelihood. They also 

derive formal Lagrange multiplier tests against severa ication including a 

and tests for locational heterogeneity in global models in presence of a spatially lagged 

endogenous variable or in presence of spatial error autocorrelation. More flexibility is 

allowed in the specification of the model by using 

l form sspecif

test for om autocorrelation in GWR models 

 of mi

itted endogenous spatial lag, a test for spatial error 

[ ]1X X W Xι=  which also includes 

spatial 

eneity and spatial autocorrelation in an efficient way 

sing recursive spatial maximum likelihood. Their appro

sequence of N spatial autoregressions, one for each observation, using a range of sub-sample 

�

lags of the explanatory variables; the estimation method as well as all of the tests 

proposed by Páez et al. (2002b) may then be straightforwardly generalized to such a model at 

practically no cost. 

 

An alternative approach to the generalization of the GWR model is proposed by Pace 

and LeSage (2004): spatial autoregressive local estimation (SALE) allows to simultaneously 

considering spatial parameter heterog

u ach is based on the estimation of a 

sizes. Consider the spatial Durbin Model (SDM) where the spatial lags of the explanatory 

variables are also added in the model: 

 y X Wyβ ρ ε= +� +  (13) 

here the same notations as before and assuming that w 2 )NI . The concentrated log-(0,Nε σ∼

likelihood function for the global SDM model is then written as follows, for fixed ρ , 

omitting the constant term (Pace and Barry, 1997): 

 [ ]( ) ln ln ( )
2
NL I W SSEρ ρ ρ= − −  (14) 

where SSE denotes the sum of squared residuals. Since the maximum likelihood estimation of 

the global SDM model relies on least squares estimates and the computation of the log-

determinant, a recursive spatial es method is conceivable. Pace and LeSage (2004, 

ive spatial maximum likelihood approach based on recursive 

timation 

p. 35) develop such a recurs
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m bined with recursive least atrix decompositions used to compute log-determinants com

squares. More specifically, their approach to compute the log-determinant that appears in (14) 

relies on the decomposition of ( )I Wρ−  into two triangular matrices L  and U , i.e. 

( )I W LUρ− = , known as the LU decomposition. It is straightforward to show that: 

 
1

ln ln ln
N

jj
j

I W U uρ
=

− = =∑  (15) 

ere jju  is the diagonal element in position ( , )wh j j ix U . Pace and LeSage (2004) 

underline ive nature of the LU decom on

of the matr

the recurs siti  to de  a spatial autoregressive 

local estim

po sign

ation method for the SDM model. Indeed, the log-determinant of the successive 

sub-matrices are the successive sums of the logarithms of the diagonal elements of the matrix 

U , so that we have: 11u  for the first sub-matrix, 11 22ln lnu u+  for the second one, and m

generally 
1
ln jjj

u
=∑  for the mth sub-matrix with m n

ore 

m
≤ . 

To implement the estimation procedure for observation i , note that the observations in 

the sample are first ordered with respect to their distance to observation i . Also, the rows and 

colum i . ns of the weights matrix are conse atrix by 

Suppose now that we want to consider sub-samples of size equal to  corresponding to the 

ation . More specifically, the local profile log-likelihood 

nction of Pace and LeSage (2004) is written as follows (omitting the constant term):  

quently reordered. Denote that m W

m

 im -nearest neighbors to observ

fu

 [ ]( ) ln ln ( , )
2i i i i iL I W SSE mmρ ρ ρ= − −  (16

It can therefore be rewritten as: 

 

) 

[ ]
1

( ) ln ( ) ln ( ) where
2

m

i i i jj i
j

mL u SSE m m nρ ρ ρ
=

= − ≤∑  (17

sive method of Pace and Barry (1997) is then used

, ) 

The recur  to estimate iρ , which may then 

be interpreted as the local spatial autocorrelation parameter. We note th  these 

estimat

at as m N→

es approach the global estimates based on all N  observations that would arise from 

the global SDM model. The procedure is then repeated for all the observations in the sample 

1,...,i N=  yielding a sequence of N spatial autoregressions. 

 

A Bayesian variant of this approach, labeled BSALE has been developed in Ertur et 

al. (2007) in the empirical regional convergence framework and applied to a sample of 138 

European regions over the period 1980-1995. On the one hand, regarding heterogeneity as 
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with the standard GWR approach, the proposed locally linear spatial autoregressive model 

partitions the cross-sectional sample observations by treating each location along with 

neighboring locations as a sub-sample. This avoids arbitrary decisions regarding how to 

partition the sample observations, but allows for variation in the parameter estimates across 

all observations. On the other hand, it is assumed that similarities in legal and social 

institutions as well as culture and language might give rise to local uniformity in economic 

structures, leading to similar local schemes for convergence speeds and thus to a concept of 

local convergence. In other words, there should exist spatial clustering in the magnitudes of 

the β-convergence parameter estimates. However, the locally linear spatial estimation method 

does not impose a priori similar convergence speeds for spatially neighboring observations. 

Rather

ugal, Spain, some French regions), are 

conver

interpretation of the results in a strict statistical sense. 

One common criticism that can be made to most of the applications of GWR or SALE 

presented in the growth and convergence literature is the lack of rigorous theoretical 

, β-convergence parameters for each region in the sample are estimated based on the 

sub-sample of neighboring regions. Furthermore, Bayesian techniques produce robust 

estimates with regards to potential outliers and heteroscedasticity of unknown form. A 

Markov Chain Monte Carlo (MCMC) estimation method is then developed to implement the 

proposed approach. 

The econometric results obtained using different sub-sample sizes show clear 

evidence that indeed the spatially lagged endogenous variable should be included in the 

specification. As the sub-sample size increases, they get larger positive modal values for the 

local spatial autocorrelation coefficients. Individual estimates exhibit local spatial dependence 

of a sufficiently large magnitude to create bias in standard GWR least-square estimates even 

for relatively small sub-sample sizes. Estimated local spatial autocorrelation coefficients also 

present a clear country dependent spatial pattern. Concerning the individual β-convergence 

parameter estimates, it should be noted that country-level differences are apparent: estimates 

change abruptly as one move from one country to another. In addition, there is also 

substantial variation between regions within a country. Samples of draws generated during 

MCMC sampling are then used to produce confidence intervals. It appears that only 31 

regions, mainly located in south-western Europe (Port

ging. All other regions are characterized by non significant estimates. These 

conclusions are similar for sub-sample sizes varying from roughly one-fourth to three-fourths 

of the sample size. However, it should be noted that the estimates suffer from sample re-use 

as in the case of other locally linear non-parametric estimation methods preventing 
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foundations, as the estimated regressions are not derived as reduced forms from structural 

theoretical models embedding both continuous spatial parameter heterogeneity and spatial 

interaction.5 To our knowledge, Ertur and Koch (2007) is the first attempt to develop such a 

theoretical growth model, which leads to the local SDM model as the relevant econometric 

reduced form to be estimated. More precisely, their augmented Solow model includes both 

physical capital externalities as suggested by the Frankel–Arrow–Romer model and spatial 

externalities in knowledge to model technological interdependence. They suppose that 

technical progress depends on the stock of physical capital per worker, which is 

complementary with the stock of knowledge in the home country. It also depends on the stock 

of knowledge in other countries which affects the technical progress of the home country. The 

intensity of this spillover effect is assumed to be related to some concept of socio-economic 

or institutional proximity, which is captured by exogenous geographical proximity. Their 

model provides, as a reduced form, a conditional convergence equation, which is 

characterized by complete parameter heterogeneity and which is therefore estimated using 

SALE on a sample of 91 countries over the period 1960-1995. Their econometric results 

support their model as all the coefficients have the predicted signs and underline spatially 

varying

l scale, it would be interesting to figure out what modifications are needed to 

adapt them at the regional scale to help to better understand regional growth and convergence 

 
                                                

 convergence speeds across countries as well as varying coefficients for all other 

explanatory variables and their spatial lags as the saving rates and population growth rates. 

Ertur and Koch (2006b) extend this model by including human capital as a production 

factor following Mankiw et al. (1992) and propose to model human capital externalities along 

the lines of Lucas (1988). Technological interdependence is still modeled in the form of 

spatial externalities in order to take account of the worldwide diffusion of knowledge across 

borders. The extended model also yields a spatial autoregressive conditional convergence 

equation including both spatial autocorrelation and parameter heterogeneity as a reduced 

form. However, in contrast to Mankiw et al. (1992), their results show that the coefficient of 

human capital is low and not significant when it is used as a simple production factor. Further 

research is therefore needed to investigate the role played by human capital in growth and 

convergence processes. In addition, those models having been developed for countries at the 

internationa

processes. 

 
5 Until recently, this criticism was also valid for the simpler spatial specifications of convergence models. Some 
important contributions by Egger and Pfaffermayr (2006), López-Bazo et al. (2004), Vayá et al. (2004) fill the 
gap between theoretical and empirical models. 
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5.  Co

etric reduced forms that would be 

estimated using the spatial econometric toolbox. 

, Reidel, Boston. 

Anselin L. (2006) Spatial econometrics, in: Mills T.C., Patterson K. (Eds.) Palgrave 

Ans

onomics Statistics, Springer-Verlag, Berlin. 

ncluding remarks 
This chapter aimed at presenting various approaches dealing with heterogeneous 

reaction eventually combined with interaction between neighboring units of observation 

developed in the spatial econometric literature, in the framework of cross-sectional models, 

and applied to growth and convergence processes. Discrete and continuous forms of 

heterogeneity allowing spatial variations in regressions coefficients have been studied. 

Geographically Weighted Regressions have been used in the empirical growth and 

convergence literature to model spatial heterogeneity in regression coefficients and their 

generalizations taking into account spatial autocorrelation as well as spatial heterogeneity are 

especially interesting. Further modeling strategies may include newly developed Bayesian 

models with spatially varying coefficients (Gelfand et al., 2003) and neural networks 

(Lebreton, 2005). The toolbox of the applied growth researcher is now very diverse and rich. 

However, most importantly, we believe that, in further research, more efforts should be 

oriented towards developing, especially at the regional scale, spatial structural theoretical 

growth models, which would provide the basis of econom
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