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Abstract

In this paper, we present a tiling method for generating piles of rocks without any computationally demanding
physically-based simulation. Previous techniques rely on a periodic tiling of rocks and generate unrealistic repet-
itive patterns. In contrast, our approach relies on a modified corner cube algorithm to generate a set of aperiodic
tiles. We generalize the construction method so that the geometry of rocks should straddle corner cubes with a view
to avoiding unrealistic gaps in the arrangement of rocks. Moreover, we propose an original technique to control
the shape of rocks into contact by computing the Voronoi cells using a parameterized anisotropic distance. Our
method has been successfully used to generate landscapes and stone huts and walls with thousands of rocks piled

together.

Categories and Subject Descriptors (according to ACM CCS): [Computer Graphics]: Three-Dimensional Graphics

and Realism

Keywords: Procedural modeling, natural phenomena, aperiodic tiling.

1. Introduction

Modeling and rendering realistic images of natural land-
scapes is an important problem in computer graphics. Beau-
tiful images of complex terrains covered with vegetation
have been produced by many computer graphics researchers
and artists in the film industry. Unfortunately, the rendered
scenes often lack many details, which betrays the synthetic
nature of the scene.

A vast variety of techniques have been proposed for gen-
erating and rendering terrains, simulating ecosystems and
creating realistic plant models, simulating aging and weath-
ering phenomena. In contrast, generating details such as
rocks, stones, fallen leaves or branches covering the ground
remains an open area of research.

In this paper, we focus on rocks and stones that are con-
spicuous in nature and may be found everywhere in land-
scapes such as in rocky mountains, deserts , at the bottom of
cliffs, sea shores or by river banks. They play an important
part in the realism of a natural scene, as their presence pro-
vides the viewer with a hint about the age of a rocky scene as
well as indirect indications about the erosion and the charac-
teristics of the environment.

Figure 1: Dried stone huts created with aperiodic tiling

1.1. Related work

The challenge stems not only from the complexity and diver-
sity of rock shapes, but also from the huge number of rocks
in contact and piled together in a virtual scene.

Terrain generation There are three main approaches
to generating synthetic terrains: fractal landscape
modeling [MKMS89, ST89], physical erosion simula-
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Figure 2: Synthetic overview of the rock generation process, the bunny model is used as the support object

tion [KMNS88, NWDO05, MDHO7] and terrain synthesis from
images or sample terrain patches [ZSTRO7]. While those
techniques are efficient for creating large scale terrains,
they do not generate the geometry of rocks and rely on
procedural texturing methods or displacement maps to
render rocks.

Rock generation In general, a few rocks models are cre-
ated by artists and located in the scene by hand, which is
impractical for generating thousands of rocks. Relying on
only a few instances produces unrealistic replication arti-
facts. While collision detection techniques can be used to
create piles of rocks, this approach is computationally de-
manding and difficult to control.

[MISO1] proposed a texture based tiling method com-
bined with a bump mapping scheme to create stones paving
a path. The method creates stones by a displacing a two-
dimensional map and can’t create rock piles.

[Miy90] proposed a procedural model for generating
stone walls. [LDGO1] presented a general cellular pattern
based technique for generating stone walls according to the
architectural settings and the geometric features of the un-
derlying shape. This method tends to generate regular pat-
terns on surfaces suited for architectural models, whereas
we focus on aperiodic volumetric distributions for natural
sceneries.

Aperiodic tiling Several two-dimensional aperiodic tiling
techniques [CSHDO03, BPB09, SKP05] have been proposed
to distribute natural objects such as trees over the surface of
a terrain in a natural way with a view to avoiding repetitive
patterns. Wang cubes [LEQ*07] have been successfully used
for volume illustration applications. Poisson sphere distribu-
tions [LDO6a] based on a three-dimensional aperiodic tiling
of points have been successfully used to locate instances of
objects in space. The main limitation of those techniques is
that instances are separated by a minimum distance and can’t
be into contact.

Recently, [PGMGO09] proposed an original tiling tech-
nique for generating rock piles from a material layer rep-
resentation of terrains. The proposed method has two major
weaknesses however. The periodic tiling scheme produces
unrealistic patterns, and there is no control over the shape of
rocks that are generated.

1.2. Contributions

In this paper, we present an original aperiodic tiling scheme
for generating rocks into contact based on a modified corner
cube [LD06a] generation algorithm. Our method proceeds in
two steps (Figure 2). First, we generate a set of aperiodic
tiles of rocks while guaranteeing contact between neighbor-
ing rocks. This step is performed once and for all as a pre
processing step. Rock piles are then generated by virtually
tiling space with the precomputed set of aperiodic tiles and
instancing only those rocks that intersect a support object.

We present an original method for controlling the shape
of rocks by computing the Voronoi cells generated by a set
of seed points using a class of anisotropic distance function.
Our technique enables us to generate different kinds of mod-
els, including flat sharp edged rock or smooth and round peb-
bles.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of our aperiodic tiling gener-
ation algorithm and notations. Sections 3, 4 and 5 describe
the computation of the set of aperiodic tiles, the computation
of the bounding volumes of rocks and the erosion process
used to compute the final rock shapes. Section 6 presents
how rocks piles are created from a support shape. Section 7
presents some results before we finally conclude this work.

2. Overview and notations

In this section, we present an overview of our method for
generating a set of aperiodic tiles of rocks into contact.

Periodic tiling Let us recall the fundamentals of the peri-
odic algorithm presented in [PGMGO09]. First, a set of points
Py, is distributed inside a cubic tile C. By considering that the
cube C virtually tiles space, it is possible to construct closed
Voronoi cells, denoted as V), for every point p;. The result-
ing set of cells V periodically tiles space. The Voronoi cells
give a good approximation of convex rock shapes into con-
tact. The final geometry of the rocks is created by eroding the
surface of Voronoi cells almost everywhere but at some ran-
dom contact points located on the faces so that rocks should
nicely pack together.

An important limitation of this approach is that unnatural
repetitive patterns appear, the more so as the ground surface
is smooth as illustrated in Figure 3.
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Figure 3: Unrealistic patterns with periodic tiling
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Figure 4: A number of different corner cubes from a com-
plete set of 256 configurations, and a tiling generated from
the set of corner cubes

Corner Cubes Recall that corner cubes [LLD06a] are an ex-
tension of corner tiles [LD06b] to three dimensions. Corner
cubes are cubic tiles with colored corners. Similar to Wang
tiles [CSHDO3], the cubes have a fixed orientation. A com-
plete set of corner cubes over 2 colors consists of 28 =256
cubes. One corner cube is characterized by the color of its
8 corner vertices (Figure 4). A tiling is generated by placing
the cubes next to each other such that adjoining corners have
matching colors.

The aperiodic tiling problem Corner cubes, which have
been proposed to generate Poisson Sphere distributions,
could be a means to generate a set of aperiodic tiles of points
Pr. Unfortunately, it is not possible to create the rock vol-
umes Vy directly from the set of aperiodic tiles in a consis-
tent way. The reason for this is that the rock volume gener-
ation technique, although local, is based on the computation
of the Voronoi cells of points py. Let us consider a corner
cube C, the geometry of a volume V; depend on the neigh-
bors of its seed point pg, which can belong to a different
neighboring corner cube.

Figure 6 illustrates the Voronoi cell straddling problem
in two dimensions: two different rock volumes V; and V;
are generated for the same seed point p; depending on the
neighboring corner cubes whose configurations, denoted as
BRBR and RRBR respectively, are different albeit compat-
ible with the corner colors of the corner cube C.

Figure 6: Two different rock volumes Vy, and V,é can be
generated for a single seed point py but with different com-
patible corner cubes

Corner cube grids We propose a new structure, corner
cubes grids, as a means to solve the Voronoi cell straddling
problem. By decomposing the corner cubes into a grid of n’
cells C;jx, we can keep track of the neighborhood of seed
points into the corner cube generation scheme and propose
a construction process that avoid ambiguities in the creation
of the Voronoi cells.

Rock mesh
creation

Corner cube = Rock volume Erosion
generation generation step

Set of 256 rock tiles

Corner cube grid

Figure 7: Overview of our rock generation technique

Our method enables us to create a set of aperiodic rock
tiles, with rocks straddling the corner cubes and consistent
together. This results in more natural rock distributions, as
illustrated in Figure 5.

Overview Our method, as illustrated in Figure 7, proceeds
into four steps:

1. Generate a set of 256 corner cubes, which are decom-
posed into a grid of cells, denoted as C; ks and create a set
of seed points py for each cell.
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2. Create a rock volume V for every seed point p; by com-
puting the Voronoi cells from the set of vertices p; using
an anisotropic distance function.

3. Generate an implicit representation of the rocks by
eroding the Voronoi cells V; using spheroidal ero-
sion [BFO™*07].

4. Finally, create the mesh representation by polygonizing
the implicit surface model of the different rocks.

3. Corner cube grid generation

In this section, we present the corner cube grid generation
process. Without loss of generality, we assume corners have
2 colors, thus we aim at generating a set of 256 cubic tiles.

Vertex cell X
Vertex region
Edge cell — Face region
Face cell
7 Edge region
I

Corner cube

Figure 8: The corner cube grid structure (n = 5)

Let C denote a generic corner cube. We decompose C into
a grid of n3 cells denoted as Ciji- The different cells C; j; will
be referred to as vertex, edge, face and center cells (Figure
8). We decompose the corner cube grid into a set of different
regions which will be referred to as vertex, edge, face and
center regions. They are defined as the 8 corner cells, the
n—2 cells along the 12 edges of the corner cube, the (n — 2)>
cells on the 6 faces of the corner cube and the remaining
(n—2)3 cells inside the cube respectively.
Vertex region

1-neighborhood Edge region

¥

Vertex neighboring region Edge neighboring region
Figure 9: Two-dimensional representation of the neighbor-
ing regions of a vertex region and an edge region

We define the neighboring cells of a given region as the
cells in the 1-neigborhood of the cells of this region (Fig-
ure 9). Note that the 1-neightborhood of a region contains
cells outside of the corner cube. This property, along with
the seed point generation algorithm, play an important part
in the construction of the 256 corner cube grids as they are
used to keep track of the points p; already created to avoid
ambiguous configurations in the definition of volumes V.

Creation of seed points During the generation of the 256
corner cubes, we create the random distribution of seed
points py in the different cells C;j; of the neighboring re-
gions. One or more seed points may be created in the cells.
Let s denote the maximum number of seed points per cell
and let n; denote the number of seed points in a cell. Seed
points py are created using a low discrepancy sequence in
every cell. As we will see in the next section, the parameter
ny defines the relative density of seed points within a cell,
thus the relative size of the Voronoi volumes V.

Vertex neighboring region R

Vertex neighboring region B
o o

Seed point generation in vertex neighboring region

o °
o o
o
[
o O 5
o
o o

Copy of seed points in the RB edge neighboring region

o |® o [°
) . ... o
B . .
o|® e [°o
.
. o
o.. o ) o

Generation of seed points in empty cells

Figure 10: Overview of the first two steps of the seed point
generation algorithm for an RB edge

Recall that we present the algorithm for the corner cube
grid structure built from 2 different colors. By combinations,
to create the 256 corner cube configurations, we need to gen-
erate 2 vertex regions, 12 edge regions, 48 face regions and
256 center regions. The seed points p; are sequentially cre-
ated in the vertex, edge, face and center regions. The algo-
rithm proceed as follows:

1. Generate the seed points py in the 2 corner regions and in
the neighboring cells.

2. For all the 12 edge regions, copy the seed points p; of the
vertex neighboring cells. Generate new seed points only
within the empty cells of the edge region and the edge
neighboring cells.

3. For all the 48 face regions, copy the seed points p; of
the vertex and edge neighboring cells. Generate new seed
points only within the empty cells of the face region and
the face neighboring cells.

4. Finally, for all the 256 center regions, copy the seed
points p; of the vertex, edge and face neighboring cells
before generating the new seed points in the empty cells
of the center region.

Figure 10 illustrates the process for an RB edge. At the
end of the construction process, we create a set of 256 cor-
ner cube tiles by assembling the corresponding vertex, edge,
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face and center regions. The set of corner cube tiles has a
consistent distribution of seed points that guarantee that the
rock volumes V; will perfectly match, even when straddling
the borders of the cubes.

4. Rock volume generation

In this section, we address the computation of the rock vol-
umes Vy from the seed points.

We define the volumes V; as the Voronofi cells of points
Pk Instead of using the Euclidean distance which creates
round shaped rocks, we propose to use an anisotropic dis-
tance. Several anisotropic distance functions have been pro-
posed in [CBS96] for modeling implicit primitives. We pro-
pose to rely on an ellipsoidal anisotropic distance function
to control the overall shape and orientation of stones.

Figure 11: Round shaped rocks generated with . =1, B =
1, Y= 1and g; € [1,2] and one seed point per cell

For every seed point p;, we define an anisotropic ellip-
soidal distance function, denoted as d(p), as follows:

di(p) = fi(p)
8k
Let x, y, z denote the vectors of the local frame attached
to every seed point py, and o, B, ¥ refer to the parameters
that characterize the relative size along the frame axes. The
function fi(p) is defined as:

fe(P) = oy ((p—pi)x)> +Be((P— P)Y)” +%((p — Pr)2)

The parameters g; and the number of seeds per cell n; are
used to control the relative size of rocks: the higher ny, the
smaller the Voronoi volumes V. The parameter g; > 0 tunes
the relative size of the rocks. In our system, the values of g
are defined by using a uniform random distribution over a
control interval [1,gmax]. In our own implementation, we
define gmax = 4 so as to limit the range of the relative size
of rocks.

If n; has the same value for every cell, then the generated
rock volumes V; and therefore the final rock models will
have approximately the same size (Figure 11). In contrast,
if ny is obtained by randomly sampling the range of values
ng € [1,s], we create rock volumes with very different sizes,
such as rocks and gravel (Figure 12).

Figure 12: Rocks of different sizes obtained witho. =1, p =
1, y=1, gx € [1,3] and from 1 to s = 20 seed points per cell

Figure 13: Flat shaped rocks obtained by using o =5, p =
5, ¥ =1 as scaling coefficients, g € [1,3] and one seed
points per cell

The local frame system (x,y,z) is generated by uniform
random distribution. The coefficients oy, B, and 7y are ob-
tained by using a uniform random distribution over an input
interval characterizing the maximum extent of the rocks in
every direction. Figure 13 shows several flat rock models
(after erosion).

[ _ °
pkO Q|
1]

s =]

Voxel identifiers Seed point

Figure 14: Erosion of the discrete Voronoi volumes

Discrete implementation Since creating the Voronoi cells
using anisotropic distances is a very complex problem, we
perform the rock volume generation step by computing a
discrete Voronoi diagram. We subdivide the corner cubes C
into a grid G of n3g voxels. The parameter ng defines the
resolution of the grid that will be used to compute the dis-
crete Voronoi cells and perform the erosion process which
will be presented in the next section. Therefore, ng should
be set high enough to guarantee that the grid can capture all
the Voronoi volumes. This is performed by computing the
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inverse of the minimum distance between all seed points py.

Let G; i denote a voxel of this grid and v; j; denote the cen-
ter of the voxel. For every voxel, we first compute a unique
identifier that stores the index k of its corresponding seed
point p (Figure 14). This step is efficiently performed by
evaluating the minimum distance between the center of the
voxel and the seed points dj (v;jx). This discrete representa-
tion will enable us to perform the erosion of the rock vol-
umes to generate the final rocks shapes into contact.

5. The erosion process

The rock volume generation process provides us with a voxel
based representation of the rock volumes V. The erosion
step aims at carving and sculpting the rock shapes out of
those coarse volumes while maintaining contact points be-
tween the final rock shapes with a view to generating con-
vincing rock piles.

, n
) "\

Figure 15: Rocks into contact after the erosion process. The
contact points have been represented as red shaded spheres

The erosion process proceeds in four steps. First we gen-
erate a set of contact points between the coarse rock vol-
umes. Then we define an attenuation field that will dampen
erosion in the neighborhood of contact points (Figure 16).
We perform a user controlled number of spheroidal erosion
steps [BFO*07] and generate an implicit representation of
the rocks. Finally, we create the meshes of the rocks by us-
ing standard implicit surface meshing techniques [LC87].

Contact points The contact points between the different
rock volumes are created in two steps. We generate a contact
point, denoted as ¢;;, for every two rock volumes V; and V;
into contact. The contact point is created on the line segment
[pip;] by finding the position that satisfies d;(c;;) = d;(c;;)
using a bisection algorithm.

Note that it is possible to randomly discard a few contact
points so as to create more space between rocks. However
this may results in some floating rocks. In our system, we
keep all the contact points between rock volumes so as to
obtain visually plausible stable configurations.

Generation of the erosion damping field The rocks are
generated by eroding the rock volumes V; while preserv-
ing the contact points between those volumes. Thus, ero-
sion must be dampened in the neighborhood of the con-
tact points (Figure 16). For every contact point ¢;;, we de-
fine the compactly supported damping function ®;;(p) as a
piecewise linear function of the distance to the contact point,
O)ij(p) = (l)ij(r) with r = ||p—c,-j|| and:

0 ifr<a
wjj(r)={ (r—a)/(b—a) ifa<r<b
1 otherwise

The parameter a defines the contact radius of the spherical
region where no erosion occurs. This parameter enables us
to control the size of the contact surfaces between rocks. The
parameter b controls the size of the blending region between
full erosion and no erosion.

The final damping field ®(p) is defined as the combina-
tion of all the damping fields w;;(p) as follows:

(0ij(p))

o(p) = min 5
(h]) € [O,}’lg - 1}
By using the minimum function we guarantee that no erosion
occurs within the spherical region r < a.

Rock volume Vi Weak erosion

Rock shape R j

Contact region

Blending region

Strong erosmn

Figure 16: Definition of the erosion damping regions
around contact points

Erosion process The erosion process is performed in two
steps. First, we initialize the voxels G;j of the voxel grid
with a parameter denoted as p;j; = 1 that characterizes the
erosion state of the voxel. If p;j; = 0, then the voxel is com-
pletely eroded and becomes empty (Figure 18).

The erosion process is performed by iteratively computing
which cells have to be eroded, and evaluating the amount of
erosion. Only the voxels at the surface of the rock volume,
i.e. that share a face with either another empty voxel or a



A. Peytavie, E. Galin, J. Grosjean, S. Merillou. / Procedural Generation of Rock Piles using Aperiodic Tiling

Figure 17: A virtual canyon with piles of rocks and boulders lying in the river (25313 rocks)

Partially eroded border voxel 0<p < 1 Fully eroded voxels p =0

Contact region < N | |
N (€]
NEVSEN J
H T e NI
\
Oﬁ 1 [ ™ Contact point

Protected voxel preserving contact p = 1

Figure 18: Erosion of the discrete Voronoi volumes

voxel of different identifier, should progressively erode. Let
€(p) denote the amount of erosion at a point p in space at
a given iteration. We define the evolution of the state of a
voxel V; jy as:

Figure 19: Example of rocks generated into a corner cube
grid structure, the rocks have been shaded with same color
as the corner cube grid cells and some rocks removed to see
the interior of the tile

Mesh generation process For every rock, we identify the
voxels in the grid with the corresponding identifier and de-
fine an implicit surface representation of its volume. We de-
fine the field function values at the centers of the cells v;j;
as:

r(vijk) =2pijx — 1 r(vije) € [-1,1]

The field function r(p) for every point in space is obtained
as a tri-linear interpolation of those values. Thus, we eas-
ily create the mesh of the rocks by standard implicit surface
meshing techniques [LC87].

6. Rock instantiation

Rock piles are created by using a support object O that de-
fines the shape of the rock pile. We can use any kind of
model that provides us with a point membership function,
denoted as s(p). In our system, we used implicit represen-
tations (Figure 17, 24), procedural models (Figure 22) and
closed triangle meshes (Figure 23).

Figure 20: Rock instantiation process

Assuming that the corner cubes are placed with their cor-
ners on integer grid points, a stochastic tiling is obtained by
assigning a random color to each integer grid point. We gen-
erate rocks form the precomputed set of tiles by analyzing
corner cubes straddling the object O (Figure 20).

V.. p,
ijk < k Created
~ ‘
Q| 0 0 o
Rockshape 11@ @4 Anchor points Not created

Figure 21: Rock selection process
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Figure 22: A Zen garden scene featuring 94658 small stones organized into lines and circular patterns

For every rock, we associate a set of anchor points A =
{a;} which are defined as the union of the centers v;;; of
the voxels and the seed point p;. For all anchor points, we
evaluate the point membership function s(a;) and compute
the number of anchor points inside and outside of the object
O respectively (Figure 21). We instantiate rocks that have a
relative number of anchor points inside the object above a
given threshold.

Figure 23: A meshed statue converted into rocks

This method enables us to avoid the creation of rocks with
only a small intersection with the geometry of the support
object. In practice, for large rock piles, we eliminate rocks
whose distance to the surface is larger than twice the maxi-
mum radius of the Voronoi embedding spheres.

7. Results and discussion

We have implemented our aperiodic rock tiling algorithm
into a modeling application coded in C++. We have applied
our method to create the different scenes shown throughout
this paper: a canyon (Figure 17), a Zen garden (Figure 22)
and dried stone huts (Figure 24). Renderings were performed
by using Mental Ray on the textured meshes produced by our
method.

Realism Our aperiodic tiling method greatly enhances the
overall realism of rock piles by avoiding unnatural repetitive
distribution patterns that occur with periodic schemes.

Control Because we do not rely on physically based sim-
ulations for computing the collisions between rocks, our
method lends itself for real time modeling of complex
scenes. In particular, it is very efficient for controlling the
location of stones and creating special effects. The volumet-
ric model describing how rocks should fit line and circular
patterns in the Zen garden was generated procedurally.

The ancient dried stone huts demonstrate that our method
can efficiently instantiate thousands of stones for creating
complex architectural models. The volumetric model repre-
senting the walls and roof was sketched using our imple-
mentation of the Arches system [PGMGO09] in less than two
minutes.

n | Stones | Time
5 7355 23
6 | 17166 73
7 | 33217 176

Table 1: Timings (in seconds) for generating tiles

Timings Our rock pile generation technique can create
thousands of rocks piled together very efficiently. Table 1
reports timings for generating the set of aperiodic tiles as
well as the number of cells n. The Voronoi volume computa-
tion and the erosion processes were performed using a finer
grid G, with ng = 10 X n so that the resolution should be fine
enough to capture the details of smaller stones.

Note that the creation of the corner cube grid with seed
points is negligible: most of the time is spent in the Voronoi
volume generation, the erosion process and in the creation of
the meshes of the rocks from their implicit representation.
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Figure 24: Bories (ancient dry stone huts) generated with our rock tiling technique (28032 stones)

Recall that the geometry of rocks in the cubic tiles is gen-
erated once and for all as a preprocessing step. In contrast,
instantiating the rocks in a scene can be performed very ef-
ficiently.

8. Conclusion

We have proposed an original aperiodic tiling technique for
generating piles of thousands of rocks. Our method not only
avoids repetitive patterns that occur when using periodic
tiling, but also provides simple control over both the shape
of rocks and the shape of rock piles. This enables us to create
a vast variety of models (including gravels or pebbles) and
improve the overall realism of natural sceneries.
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