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Some Remarks on Differentiable Sequences and Recursivity

We investigate the recursive structure of differentiable sequences over the alphabet {1, 2}. We derive a recursive formula for the (n + 1)-th symbol of a differentiable sequence, which yields to a new recursive formula for the Kolakoski sequence. Finally, we show that the sequence of absolute differences of consecutive symbols of a differentiable sequence u is a morphic image of the run-length encoding of u.

Introduction

In 1965, W. Kolakoski [START_REF] Kolakoski | Elementary problem 5304[END_REF] proposed the following problem:

"Describe a simple rule for constructing the sequence:

K = 12211212212211211221211212211211212212211212212 • • •
What is the n-th term? Is the sequence periodic?" This sequence, called now the Kolakoski sequence, is in fact the unique sequence starting with 1 and identical to its own run-length encoding.

The Kolakoski sequence has been investigated in many papers [START_REF] Brlek | A note on differentiable palindromes[END_REF][START_REF] Carpi | Repetitions in the Kolakovski [sic] sequence[END_REF][START_REF] Carpi | On repeated factors in C ∞ -words[END_REF][START_REF]Notes on the Kolakoski sequence[END_REF][START_REF] Culik | Alternating iteration of morphisms and the Kolakovski [sic] sequence[END_REF][START_REF] Dekking | What is the long range order in the Kolakoski sequence?[END_REF][START_REF] Kimberling | Advanced problem 6281[END_REF][START_REF] Lepistö | Repetitions in Kolakoski sequence[END_REF][START_REF] Paun | How much Thue is Kolakovski [sic]?[END_REF][START_REF] Steacy | Structure in the Kolakoski sequence[END_REF][START_REF] Steinsky | Kolakoski sequence, integer sequences, differentiable sequences, smooth sequences, combinatorics of words. (Concerned with sequences A000002[END_REF]. Although the non-periodicity of the sequence was shown immediately, the problem of finding a good 1 formula for the n-th term is still open, and is related to other open problems. The most famous open problems on the Kolakoski sequence (up to now) are as follows: Is the sequence recurrent? Is the frequency of 1's and 2's asymptotically the same? Is the set of factors of the sequence closed under reversal and/or swap of the symbols?

The Kolakoski sequence K (sequence A000002 in Sloane's database) and the sequence k (sequence A078880) obtained from the former by deleting the first symbol are the unique fixed point of the run-length encoding operator ∆. A sequence u over the alphabet {1, 2} such that ∆(u) is still a sequence over {1, 2} is called a differentiable sequence. The problems stated above for the Kolakoski sequence remain unsolved for the wider class of sequences that are differentiable arbitrary many times, called smooth sequences [START_REF] Brlek | A note on differentiable palindromes[END_REF][START_REF] Brlek | Combinatorial properties of smooth infinite words[END_REF].

In this paper we study the recursive relationship between any differentiable sequence u and its run-length encoding ∆(u). We start by defining, for any differentiable sequence u, the sequences ϕ n (u) and γ n (u). The sequence ϕ n (u) is defined by

ϕ n (u) = |∆(u 1 u 2 • • • u n )|. In other words, ϕ n (u) is equal to 1 plus the number of symbol changes in u 1 u 2 • • • u n . The sequence γ n (u) is defined by γ n (u) = |u n+1 -u n |.
The sequences ϕ n (K), ϕ n (k) and γ n (K) are known (sequences A156253, A156351, and A156728 respectively).

Remark 1. We shall write ϕ n , γ n instead of ϕ n (u), γ n (u) when no confusion arises.

In Theorem 3.1 we derive a recursive formula for γ n

γ n = 1 -(u ′ ϕn -1)γ n-1
where u ′ = ∆(u). This formula yields to recursive formulas for u and ϕ(u) (Corollaries 3.2 and 3.3)

u n+1 = 3 -u n + (u ′ ϕn -1)(u n -u n-1 )
ϕ n+1 = ϕ n + 1 -(u ′ ϕn -1)(ϕ n -ϕ n-1 ) When u = K 1 K 2 • • • is the Kolakoski sequence, our recursive formula gives K n+1 = 3 -K n + (K ϕn -1)(K n -K n-1 )
A different approach allows us to derive an alternative recursive formula for the n + 1-th term of a differentiable sequence. Indeed, in Theorem 3.4, we prove that

u n+1 = u n + (3 -2u n ) n + 1 - ϕn i=1 u ′ i
When u is the Kolakoski sequence, this latter formula is equivalent to one of Steinsky [START_REF] Steinsky | Kolakoski sequence, integer sequences, differentiable sequences, smooth sequences, combinatorics of words. (Concerned with sequences A000002[END_REF], obtained with different techniques.

As a last result, in Lemma 3.5, we show that for any differentiable sequence u, the sequence γ n is a morphic image of the sequence ∆(u), under the morphism µ : 1 → 1, 2 → 01.

Differentiable sequences

An alphabet, denoted by Σ, is a finite set of symbols. A sequence over Σ is a sequence of symbols from Σ. The length of a finite sequence u is denoted by |u|. A right-infinite sequence over Σ is a non-ending sequence of symbols from Σ. Formally, a right-infinite sequence is a function f : N -→ Σ. For an abuse of notation, we shall often write f n for f (n).

A run in a sequence u is a maximal block of consecutive identical symbols. Let u be a sequence over Σ. Then u can be uniquely written as a concatenation of consecutive runs of the symbols of Σ, i.e. u = x i 1 1 x i 2 2 x i 3 3 • • • , with x j ∈ Σ, x j = x j+1 and i j > 0. The run-length encoding of u, noted ∆(u), is the sequence of exponents i j , i.e.

∆(u) = i 1 i 2 i 3 • • • .
Remark 2. From now on we set Σ = {1, 2}.

We say that a sequence u over Σ is differentiable if ∆(u) is still a sequence over Σ. Since Σ = {1, 2} we have that u is differentiable if and only if neither 111 nor 222 appear in u.

the sequel we note ∆(u

) = u ′ 1 u ′ 2 • • • for u a differentiable sequence.
Definition 2.1. A right-infinite sequence u over Σ is a smooth sequence if it is differentiable arbitrary many times over Σ.

The most famous examples of smooth sequences are the Kolakoski sequences:

k = 2211212212211211221211212211211212212211212212 • • • and K = 1k = 12211212212211211221211212211211212212211212212 • • •
which are the fixed points of ∆.

The following lemma is a straightforward consequence of the definition of ∆.

Lemma 2.1. Let uv be a differentiable sequence. Then ∆(uv) = ∆(u)∆(v) if and only if the last symbol of u and the first symbol of v are different.

Let u = u 1 u 2 u 3 • • • be a finite or infinite sequence over Σ. We define the two functions ∆ -1 1 and ∆ -1 2 by:

∆ -1 1 (u) = 1 u 1 2 u 2 1 u 3 • • • ∆ -1 2 (u) = 2 u 1 1 u 2 2 u 3 • • • In such a way, u = ∆(∆ -1 x (u)) for any x ∈ Σ. Remark 3. Let u = u 1 u 2 • • • u n be a sequence over Σ. Then for every x ∈ Σ |∆ -1 x (u 1 u 2 • • • u n )| = n i=1 u i

Conclusion

The main purpose of this paper was to unify the description of various sequences described in the Sloane's database and related to the Kolakoski sequence. We showed that, indeed, all these sequences or recurrences can be easily deduced from more general equalities holding for any differentiable sequence. Unfortunately, it appears that all these results are finally only another way to write the definition of differentiability of a sequence over the alphabet {1, 2}. Thus, the challenge to find a formula for the n-th symbol of the Kolakoski sequence without the knowledge of the preceding symbols is still open.

Table 1: First values of the sequences K, ϕ(K), ϕ(k), γ(K), corresponding, respectively, to Sloane's database entries A000002, A156253, A156351, and A156728 . 

• • • u ′ ϕ n-1 | = ϕ n-1 = ϕ n -1.In summary, we have n i=1 v i = ϕ n -1 + γ n . On the other hand, by Equation1, we have n i=1 γ i = n-1 i=1 γ i + γ n = ϕ n -1 + γ n .

 [START_REF] Brlek | A note on differentiable palindromes[END_REF]The second author acknowledges the support of an Exchange Grant on the program "AutoMathA: Automata, from Mathematics to Applications" of the European Science Foundation.

Recursivity

Let u = u 1 u 2 • • • be a differentiable sequence. We define, for every n > 0

The definition of ∆ directly implies that ϕ n (u) is equal to 1 plus the number of symbol changes in u 1 u 2 • • • u n . With our notation:

for every n > 1.

We also define, for every n > 0

The sequences ϕ n (K), ϕ n (k) and γ n (K) are present in the Sloane's database as sequence A156253, A156351, and A156728 respectively. The first values of these sequences are reported in Table 1.

We thus have Theorem 3.1. Let u = u 1 u 2 • • • be a differentiable sequence. Then for every n > 0

From the previous remark and from Equation 2we have Corollary 3.2. Let u = u 1 u 2 • • • be a differentiable sequence. Then for every n > 0

And from Equations 1 and 2 we derive

Then for every n > 0

Example 2. When u is the Kolakoski sequence K, Equation 3 gives

We now give another recursive formula for the n+1-th symbol of a differentiable sequence.

Theorem 3.4. Let u = u 1 u 2 • • • be a differentiable sequence. Then for every n > 0

The claim then follows from Remark 4.

Example 3. For u = K, Equation 6 becomes

Equation 7 can be found in a paper of Steinsky [START_REF] Steinsky | Kolakoski sequence, integer sequences, differentiable sequences, smooth sequences, combinatorics of words. (Concerned with sequences A000002[END_REF], where ϕ n (K) is replaced by ρ n (K) = min j : j i=1 K i ≥ n . But it is easy to see that for any differentiable sequence u one has ϕ n = min j : j i=1 u ′ i ≥ n . We now show that, for any differentiable sequence u, the sequence γ n (u) is a morphic image of the sequence ∆(u). Lemma 3.5. Let µ be the morphism defined on Σ by µ :

1 -→ 1 2 -→ 01 and let v n be the sequence µ(∆(u)). Then v n = γ n .

Proof. It is sufficient to prove that the sequences v n and γ n have the same partial sums. We have two cases:

Case 2. u n = u n+1 . This implies that u ′ ϕn = 2 and so n i=1 v i = n-1 i=1 v i . On the other hand, we must have u n-1 = u n and therefore, arguing as in Case 1, we obtain n-1 i=1 v i = |u ′