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This paper is devoted to the investigation of a quasistatic evolution model for a continuum which undergoes damage and possibly fracture. In both cases, the model appears to be ill posed so that it is necessary to introduce a relaxed variational evolution preserving the irreversibility of the process, the minimality at each time, and the energy balance. From a mechanical point of view, it turns out that the material prefers to form microstructures through the creation of fine mixtures between the damaged and healthy parts of the medium. The brutal character of the damage process is then replaced by a progressive one, where the original damage internal variable, i.e. the characteristic function of the damaged part, is replaced by the local volume fraction. The analysis rests on a locality property for mixtures which enables to use an alternative formula for the lower semicontinuous envelope of the elastic energy in terms of the G-closure set.

Introduction

Damage in a brittle elastic medium is characterized by the decrease of its elastic properties during a series of loading-unloading tests. In brutal damage, each point of the material is supposed to exhibit only two states: either damaged or undamaged. Thus the natural internal variable describing the damage phenomenon is the characteristic function of the damaged part of the body. When the material is subjected to a time-dependent loading, where all rate dependent effects like viscosity or inertia are neglected, one can consider damage as a rate independent process, and it is relevant to understand how the damage internal variable evolves in time.

A general abstract theory of quasistatic evolution problems for rate independent materials has been introduced in [START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF], and it is the subject of many applications as e.g. in plasticity [START_REF] Conti | Single-slip elasto-plastic microstructures[END_REF][START_REF] Maso | Quasistatic evolution problems for linearly elastic-perfectly plastic materials[END_REF][START_REF] Mielke | Existence of minimizers in incremental elasto-plasticity with finite strains[END_REF] or fracture [START_REF] Maso | A model for the quasistatic growth of brittle fractures: existence and approximation results[END_REF][START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF][START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] (see [START_REF] Mielke | Evolution of rate-independent systems[END_REF] for an exhaustive literature on the subject). All these models share the same idea of adding a dissipation energy to the potential energy. The dissipation potential depends on the internal variable(s) of the underlying process, and the fundamental property characterizing the rate independency is that it is positively one homogeneous. Then the same methodology applies by first discretizing the time variable, and then letting the time step tend to zero. A first difficulty occurs at the discrete time level about the well posedness of the successive minimization problems which may fail to have solutions. If so, it is then necessary to introduce the relaxed problem leading to a relaxed variational evolution. This kind of problems has been studied in [START_REF] Mielke | Γ-limits and relaxations for rate-independent evolutionary problems[END_REF] in the more general framework of stability of rate independent processes through Γ-convergence, which is a well suited mode of convergence for static minimization problems (see [START_REF] Maso | An introduction to Γ-convergence[END_REF]). More particular analysis have been carried out for the stability of quasistatic crack evolution through homogenization in [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF], or through dimensional reduction in [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF].

Partial brittle damage is an example where the original discrete evolution is ill posed (see [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF][START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF]). Indeed, even at the first time step the minimization of the total energy (i.e. the sum of potential energy and the dissipation energy) has no solution due to the non convexity of the elastic energy. From a mathematical point of view, we observe that minimizing sequences oscillate so that they are unable to reach a minimizer. From a mechanical point of view, these oscillations stand for microstructures that the material needs to develop for energetic convenience. The relaxation of the original problem consists thus in the creation of mixtures between the weak material (the part of the body which may already be damaged) and the strong one (the undamaged part of the body), and the characteristic function of the damaged part (the original internal variable) is replaced by the local volume fraction which is a function taking its values in the full interval [0, 1]. Thus it may happen that some points of the medium are no longer either healthy or damaged, but that they result from a fine mixture between both phases. Our goal here is to state existence results (see Theorems 1.1 and 1.2) for relaxed quasistatic evolution models involving damage (see [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF]) and possibly fracture (see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]) in the framework of nonlinear elasticity, in contrast with [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF][START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF] where the authors considered linearized elasticity. Our analysis will be close to that of [START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF]; we also refer to [START_REF] Garroni | Threshold-based quasi-static brittle damage evolution[END_REF] where a threshold based model is considered, by analogy with stress yield criteria used in plasticity or fracture. We also refer to [START_REF] Allaire | Simulation numérique de l'endommagement à l'aide du modèle Francfort-Marigo, Actes du 29ème congrès d'analyse numérique[END_REF][START_REF] Allaire | A level set method for the numerical simulation of damage evolution[END_REF] where are performed numerical simulations of the damage quasistatic evolution model introduced in [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] that we are considering here. They use respectively the homogenization and the level set methods, employed for shape optimization problems which are very close to damage.

The previous discussion shows the importance of the theory of homogenization, and in particular mixtures, for the study of the quasistatic damage evolution. In fact, a localization property proved in [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF] for energies resulting from a mixture between two arbitrary materials will be instrumental because it will enable us to obtain an alternative formula for the relaxed energy. The local character of G-closure states that, at least for convex energies, any effective energy obtained by an arbitrary mixture between two materials can be locally recovered as the pointwise limit of a sequence of effective energies obtained as a periodic mixture between the same materials with the same local volume fraction. More specifically, if W 1 and W 2 are convex functions being the stored energy densities of two different materials, and χ is a characteristic function, then we define W χ by W χ (x, ξ) := χ(x)W 1 (ξ) + (1χ(x))W 2 (ξ), and by (W χ ) hom its homogenized energy density (see (4.2)). For any θ ∈ [0, 1], define the following set

P θ (W 1 , W 2 ) := f : ∃ χ satisfying Q χ dx = θ and f = (W χ ) hom ,
made of all energy densities obtained by a periodic mixture of W 1 and W 2 in proportions θ and 1θ. We denote by G θ (W 1 , W 2 ) the closure of P θ (W 1 , W 2 ) for the pointwise convergence. For any θ ∈ L ∞ (Ω; [0, 1]), let us further introduce G θ (W 1 , W 2 ) as the set of all possible Carathéodory functions f such that there exists a sequence of characteristic functions (χ k ) satisfying χ k * -⇀ θ in L ∞ (Ω; [0, 1]), and

Ω f (x, ∇u) dx = Γ-lim k→+∞ Ω W χ k (x, ∇u) dx.
The localization result proved in [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF] states that if W 1 and W 2 have suitable growth and coercivity conditions, then f ∈ G θ (W 1 , W 2 ) if and only if f (x, •) ∈ G θ(x) (W 1 , W 2 ) for a.e. x ∈ Ω.

In our application, W 1 and W 2 will stand for, respectively, the stored energy densities of the damaged and undamaged parts of the body occupying the open set Ω ⊂ R N in its reference configuration. Hence we have W 1 ≤ W 2 since damage decreases the rigidity of the structure. We assume that W 1 and W 2 ∈ F(α, β, p) satisfy suitable p-growth and p-coercivity conditions with p > 1 (see (2.1)), and that they are uniformly convex (see (2.4)) and of class C 1 . We also assume that Ω has a Lipschitz boundary which can be split into the union of two disjoint sets ∂Ω = ∂ N Ω ∪ ∂ D Ω, where ∂ D Ω is open in the relative topology of ∂Ω. We suppose that the Neumann part ∂ N Ω of the boundary is free, while the Dirichlet part ∂ D Ω is subjected to a time dependent boundary deformation g(t), where g ∈ W 1,1 ([0, T ]; W 1,p (Ω)). In view of the growth and coercivity properties of the stored energy density, the natural space of all kinematically admissible deformation fields at time t is given by A(t) := {v ∈ W 1,p (Ω) : v = g(t) H N -1 -a.e. on ∂ D Ω}.

Note that we are considering here scalar valued functions so that, from the point of view of modeling, only the two dimensional case (N = 2) is meaningful. Indeed, in that case Ω stands for the basis of an infinite cylinder, and the field u is interpreted as the third component of an anti-plane deformation.

Our first main result is the following theorem.

Theorem 1.1. Let W 1 and W 2 ∈ F(α, β, p) be two uniformly convex functions of class C 1 such that W 1 ≤ W 2 , and let g ∈ W 1,1 ([0, T ]; W 1,p (Ω)). Then, for every t ∈ [0, T ], there exist u(t) ∈ A(t), Θ(t) ∈ L ∞ (Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 ) for a.e.

x ∈ Ω, and (i) Irreversibility: the maps t → Θ(t) and t → W (t) are decreasing;

(ii) Unilateral minimality: for any v ∈ A(t), any θ ∈ L ∞ (Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that W (x, •) ∈ G θ(x) (W 1 , W (t)(x, •)) for a.e. x ∈ Ω, then

Ω W (t)(x, ∇u(t)) dx ≤ Ω W (x, ∇v) dx + κ Ω Θ(t)θ dx;
(iii) Energy balance: the total energy

E(t) := Ω W (t)(x, ∇u(t)) dx + κ Ω (1 -Θ(t)) dx
is absolutely continuous with respect to t and

E(t) = E(0) + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ.
We will also consider a model where the body can undergo both fracture and damage. A first attempt to this problem has been initiated in [START_REF] Fonseca | Relaxation in BV versus quasiconvexification in W 1,p ; a model for the interaction between fracture and damage[END_REF]. We also refer to [START_REF] Maso | Quasistatic crack growth in elasto-plastic materials: the two-dimensional case[END_REF] where the authors study a quasistatic evolution model for the interplay between fracture and plasticity. The presence of cracks inside the structure implies that the deformation u can exhibit discontinuities. Thus u cannot live anymore in a Sobolev space but in a suitable subspace SBV p (Ω) of functions of bounded variation. Thus in this case, the space of all kinematically admissible deformation fields is A(t) := {v ∈ SBV p (Ω) : v = g(t) H N -1 -a.e. on ∂ D Ω}, and we have the following existence result. Theorem 1.2. Let W 1 and W 2 ∈ F(α, β, p) be two uniformly convex functions of class C 1 such that

W 1 ≤ W 2 , and let g ∈ W 1,1 ([0, T ]; W 1,p (R N )) ∩ L ∞ (R N × [0, T ]). Then, for every t ∈ [0, T ] there exist u(t) ∈ A(t), Θ(t) ∈ L ∞ (Ω; [0, 1]), W (t) ∈ F(Ω, α, β, p) such that W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 ) for a.e.
x ∈ Ω, and a countably H N -1 -rectifiable set Γ(t) ⊂ Ω satisfying (i) Irreversibility: the maps t → Θ(t) and t → W (t) are decreasing, and t → Γ(t) is increasing;

(ii) Unilateral minimality: for any countably

H N -1 -rectifiable set K ⊂ Ω such that Γ(t) ⊂ K, any v ∈ A(t) such that J v ⊂ K, any θ ∈ L ∞ (Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that W (x, •) ∈ G θ(x) (W 1 , W (t)(x, •)) for a.e. x ∈ Ω, then Ω W (t)(x, ∇u(t)) dx + H N -1 (Γ(t) \ ∂ N Ω) ≤ Ω W (x, ∇v) dx + H N -1 (K \ ∂ N Ω) + κ Ω Θ(t)θ dx;
(iii) Energy balance: the total energy

E(t) := Ω W (t)(x, ∇u(t)) dx + κ Ω (1 -Θ(t)) dx + H N -1 (Γ(t) \ ∂ N Ω)
is absolutely continuous with respect to t and

E(t) = E(0) + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ.
Let us now briefly comment our assumptions. Indeed, in this study, we make to main hypothesis. The first one is that the densities W 1 and W 2 are restricted to be convex functions. The reason is that the local character of G-closure proved in [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF], and used many times here, has only been proved in the convex case. To our knowledge, it is not known yet whether it holds or not in the general quasiconvex case. Moreover, we not only assumed convexity but uniform convexity (defined in (2.4)). This is mainly due to the results of [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF] concerning the stability of quasistatic evolution through Γ-convergence which require some technical assumptions on the elastic energy density (see Lemmas 3.1 and 3.2 and Theorem 3.5). We also choose to consider scalar valued functions instead of vector valued ones (which would have been relevant if one wants to consider three-dimensional elasticity). This assumption is due to two facts: first of all, since we are restricted by the convexity of the elastic energy, we think that it is more relevant to consider scalar valued functions for which convexity is a natural notion, in contrast with the vectorial case where the natural notion is rather quasiconvexity. As explained before, since we are unable to consider the quasiconvex case, we think it is more appropriate to deal with scalar valued functions. Moreover, in the study of the damage-fracture evolution problem, the scalar nature of the problem is used through the application of the maximum principle which helps to get compactness for the sequence of deformations in the space SBV p (Ω). In the general vectorial case, the maximum principle would not hold anymore, and it would have been necessary to consider a larger space of generalized special functions of bounded variation as in [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]. Note however that our results (Theorems 1.1 and 1.2) could have been proved exactly in the same way in the vectorial case, but still with the same uniform convexity assumption, and upon imposing the deformation to live inside a fixed "box" for the fracture problem in order to avoid a lack of compactness in SBV p (Ω).

The paper is organized as follows: in section 2, we introduce some notations about the functional spaces used in the sequel. In section 3, we recall well known facts about Γ-convergence of integral functionals in Sobolev and special functions of bounded variation spaces. We further prove new Helly type results for sequences of functionals depending monotonically on the time variable. Then, section 4 is dedicated to the homogenization of integral functionals with special emphasis on mixtures. In particular, we prove a finer continuity result on the G-closure set with respect to some Hausdorff metric. Section 5 is devoted to the proof of the existence result (Theorem 1.1) for a relaxed model of quasistatic damage evolution. Finally, in section 6 we prove the second existence result (Theorem 1.2) for another relaxed model of quasistatic evolution involving both fracture and damage.

Preliminaries

2.1. Function spaces. In the sequel, Ω will always stand for a bounded open subset of R N . We will also denote by Q := (0, 1) N the open unit square of R N , and by B ρ (x) the ball of R N of center x ∈ R N and radius ρ > 0. If x = 0, we simply write B ρ instead of B ρ (0).

If p ≥ 1, we use standard notations for Lebesgue spaces L p (Ω) and Sobolev spaces W 1,p (Ω). The Lebesgue measure in R N will be denoted by L N , while H N -1 will stand for the (N -1)-dimensional Hausdorff measure. The symbol -E is used for the average L N (E) -1 E . We will use the notation ⊂ for the inclusion of sets, up to a set of zero H N -1 measure. The set of all countably H N -1 -rectifiable subsets of Ω is denoted by R(Ω). It is known (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]) that for any K ∈ R(Ω), it is possible to define a generalized normal ν K (x) for H N -1 -a.e. x ∈ K.

We define the space SBV (Ω) of special functions of bounded variation as the space of all functions u ∈ L 1 (Ω) such that the distributional derivative Du of u can be represented as a vector valued bounded Radon measure of the form

Du = ∇uL N + (u + -u -)ν u H N -1 J u .
Here ∇u ∈ L 1 (Ω; R N ) is the approximate gradient of u (the absolutely continuous part of Du with respect to the Lebesque measure L N ), J u is the jump set of u which is a countably H N -1 -rectifiable set on which one can define H N -1 -a.e. a generalized normal denoted ν u , as well as traces u ± . We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for a detailed description of that space (see also [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). The space SBV p (Ω), for p > 1, is a subset of SBV (Ω) made of all functions u ∈ SBV (Ω) such that ∇u ∈ L p (Ω; R N ) and H N -1 (J u ∩ Ω) < +∞. One of the main interests of the space SBV p (Ω) is that Mumford-Shah like functionals are coercive in that space according to Ambrosio's compactness Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 4.8]).

Theorem 2.1. Let (u n ) ⊂ SBV p (Ω) be a sequence such that sup n∈N u n L ∞ (Ω) + ∇u n L p (Ω;R N ) + H N -1 (J un ) < +∞.
Then, there exist a subsequence (u n k ) and a function u

∈ SBV p (Ω) such that u n k → u in L 1 (Ω), ∇u n k ⇀ ∇u in L p (Ω; R N ), and H N -1 (J u ) ≤ lim inf k→+∞ H N -1 (J un k ).
The previous result suggests to define a notion of "weak convergence" in SBV p (Ω). Definition 2.1. Let (u n ) ⊂ SBV p (Ω) and u ∈ SBV p (Ω). We say that u n converges weakly to u in SBV p (Ω), and we write

u n ⇀ u in SBV p (Ω), if u n → u in L 1 (Ω), ∇u n ⇀ ∇u in L p (Ω; R N ), and sup n∈N H N -1 (J un ) < +∞.
In the sequel we will also consider the family P (Ω) := {u ∈ SBV (Ω) : u(x) ∈ {0, 1} for a.e. x ∈ Ω} of all characteristic functions of sets of finite perimeter in Ω.

2.2.

Integrands. Let p > 1 and 0 < α ≤ β < +∞, then we define F(α, β, p) as the set of all continuous functions f : R N → [0, +∞) satisfying the following growth and coercivity conditions:

α|ξ| p ≤ f (ξ) ≤ β(1 + |ξ| p ) for all ξ ∈ R N . (2.1)
When f is convex, it also satisfies the following p-Lipschitz property (see e.g. [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF] or [START_REF] Fonseca | Modern methods in the calculus of variations: L p spaces[END_REF]): there exists γ > 0 (depending only on β and p) such that

|f (ξ 1 ) -f (ξ 2 )| ≤ γ(1 + |ξ 1 | p-1 + |ξ 2 | p-1 )|ξ 1 -ξ 2 | for all ξ 1 , ξ 2 ∈ R N , (2.2) 
and if f is further of class C 1 , then it differential Df : R N → R N satisfies the following (p -1)-growth condition |Df (ξ)| ≤ γ(1 + |ξ| p-1 ) for all ξ ∈ R N . (2.3)
We also define F(Ω, α, β, p) as the set of all Carathéodory functions f :

Ω × R N → [0, +∞) such that f (x, •) ∈ F(α, β, p) for a.e. x ∈ Ω.
We now define a notion of convexity which will be instrumental in the quasistatic evolution models studied in sections 5 and 6. We say that a function f : R N → [0, +∞) is uniformly convex if there exists ν > 0 such that 

f ξ 1 + ξ 2 2 ≤ 1 2 f (ξ 1 ) + 1 2 f (ξ 2 ) -ν|ξ 1 -ξ 2 | 2 (1 + |ξ 1 | 2 + |ξ 2 | 2 ) (p-
(Df (ξ 2 ) -Df (ξ 1 )) • (ξ 2 -ξ 1 ) ≥ ν ′ |ξ 1 -ξ 2 | 2 (1 + |ξ 1 | 2 + |ξ 2 | 2 ) (p-2)/2 (2.5)
for every ξ 1 and ξ 2 ∈ R N , and for some ν ′ > 0. As an example, the function ξ → (1 + |ξ| 2 ) p/2 is uniformly convex. Another important example is the function f (ξ) := |ξ| p (for p > 1) which, unfortunately, fails to be uniformly convex. However, it enjoys good properties as strict convexity and

(Df (ξ 2 ) -Df (ξ 1 )) • (ξ 2 -ξ 1 ) ≥ ν ′ |ξ 1 -ξ 2 | 2 (|ξ 1 | 2 + |ξ 2 | 2 ) (p-2)/2 if p > 1. (2.6) Moreover, if p ≥ 2, one has (Df (ξ 2 ) -Df (ξ 1 )) • (ξ 2 -ξ 1 ) ≥ ν ′ |ξ 1 -ξ 2 | p . (2.7)
These properties are actually enough for the study of the quasistatic evolution models in sections 5 and 6 (see Lemma 5.6).

Γ-convergence

In this section, we recall the definition and standard properties of Γ-convergence. We refer to [START_REF] Braides | Homogenization of multiple integrals[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF] for a detailed description.

3.1. Definition and topology of Γ-convergence. We say that a sequence of functionals F n : L p (Ω) → [0, +∞] (with p > 1) Γ-converges for the strong L p (Ω)-topology to F : L p (Ω) → [0, +∞] if the following properties hold:

(i) for every u ∈ L p (Ω) and every sequence (u n ) ⊂ L p (Ω) such that u n → u in L p (Ω), then

F (u) ≤ lim inf n→+∞ F n (u n );
(ii) for every u ∈ L p (Ω), there exists a sequence (ū n ) ⊂ L p (Ω) such that ūn → u in L p (Ω), and

F (u) = lim n→+∞ F n (ū n ).
We now recall several facts about the metrizability of Γ-convergence for lower semicontinuous and equi-coercive functionals. For every u ∈ L p (Ω), we denote by

Ψ(u) :=    α Ω |∇u| p dx if u ∈ W 1,p (Ω), +∞ otherwise,
and by S Ψ the set of all lower semicontinuous functionals F : L p (Ω) → [0, +∞] such that F ≥ Ψ on L p (Ω). For every F ∈ S Ψ and λ > 0, we denote by F λ the Moreau-Yosida transform of F defined by

F λ (u) := inf v∈L p (Ω) F (v) + λ u -v p L p (Ω)
for every u ∈ L p (Ω).

Let Φ be an increasing homeomorphism between [0, +∞] and [0, 1], (u j ) be a dense sequence in L p (Ω), and (λ j ) be a sequence of positive real numbers. For every F and G ∈ S Ψ , we define

d Γ (F, G) := +∞ i,j=1 1 2 i+j Φ(F λj (u i )) -Φ(G λj (u i )) .
From [START_REF] Maso | An introduction to Γ-convergence[END_REF]Proposition 10.21], it is known that d Γ defines a distance over S Ψ . Moreover, by [START_REF] Maso | An introduction to Γ-convergence[END_REF]Theorem 10.22], the metric space (S Ψ , d Γ ) is compact, and a sequence (F n ) in S Ψ Γ-converges to a functional F ∈ S Ψ if and only if d Γ (F n , F ) → 0.

Time dependent functionals.

In the sequel we will be interested in time-dependent sequences of functionals F n (t) : L p (Ω) → [0, +∞] which are monotone with respect to the time parameter t. We will need a version of Helly's Theorem as stated below.

Theorem 3.1. Let F n : [0, T ] → S Ψ be a sequence of functionals which is decreasing with respect to t, i.e., for all u ∈ L p (Ω) and n ∈ N,

F n (t)(u) ≤ F n (s)(u) for every 0 ≤ s ≤ t ≤ T.
Then there exist a subsequence (n k ) and a functional F : [0, T ] → S Ψ , still decreasing with respect to t, such that F n k (t) Γ-converges to F (t) for every t ∈ [0, T ].

Proof. We define the total variation of the map

F n : [0, T ] → S Ψ by Var Γ (F n ; [0, T ]) := sup h-1 k=1 d Γ (F n (t k ), F n (t k+1 )) : 0 = t 1 < t 2 < . . . < t h = T, h ∈ N . We claim that sup n∈N Var Γ (F n ; [0, T ]) < +∞. (3.1)
Indeed, if k ∈ {1, . . . , h -1}, by the monotonicity of t → F n (t) and Φ, we infer that

d Γ (F n (t k ), F n (t k+1 )) := +∞ i,j=1 1 2 i+j Φ((F n (t k )) λj (u i )) -Φ((F n (t k+1 )) λj (u i )).
Consequently, summing up for k = 1, . . . , h -1 we deduce that

h-1 k=1 d Γ (F n (t k ), F n (t k+1 )) = +∞ i,j=1 1 2 i+j Φ((F n (0)) λj (u i )) -Φ((F n (T )) λj (u i )) ≤ +∞ i,j=1 Φ((F n (0)) λj (u i )) 2 i+j ≤ +∞ i,j=1 1 2 i+j = 1.
Then taking the supremum over all partitions in the left hand side of the previous inequality leads to the desired bound (3.1) on the total variation. Since the space (S Ψ , d Γ ) is compact, it suffices to apply the general result [START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF]Theorem 3.2] stated below (Theorem 3.2) in a simpler form. 

[0, T ] → Y such that Y n k (t) → Y (t) in (Y, d) for every t ∈ [0, T ].
When F n (t) is an integral functional of the form

F n (t)(u) :=    Ω f n (t)(x, ∇u) dx if u ∈ W 1,p (Ω), +∞ otherwise, (3.2) 
we get a localized version of Theorem 3.1 which can be obtained by standard localization techniques and integral representation results (see e.g. [START_REF] Braides | Homogenization of multiple integrals[END_REF][START_REF] Buttazzo | Integral representation and relaxation of local functionals[END_REF]).

Theorem 3.3. Let f n : [0, T ] → F(Ω, α, β, p) be a sequence of functions which are decreasing with respect to t, i.e., for all n ∈ N, all ξ ∈ R N , and a.e. x ∈ Ω,

f n (t)(x, ξ) ≤ f n (s)(x, ξ) for every 0 ≤ s ≤ t ≤ T.
Assume further that the functions f n (t)(x, •) are convex. Then there exist a subsequence (n k ) and a function f : [0, T ] → F(Ω, α, β, p), still decreasing with respect to t, such that F n k (t) : L p (Ω) → [0, +∞] defined by (3.2) Γ-converges to F (t) : L p (Ω) → [0, +∞] given by

F (t)(u) :=    Ω f (t)(x, ∇u) dx if u ∈ W 1,p (Ω), +∞ otherwise,
for every t ∈ [0, T ].

3.3. Some technical results. We recall some results proved in [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]. The following lemma stated in [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]Lemma 3.4] is a slight generalization of [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]Lemma 4.9] for varying sequences of functionals. It will be instrumental for deriving energy inequalities in sections 5 and 6.

Lemma 3.1. Let (X, A, µ) be a finite measure space, and let H n : X × R N → R N be a sequence of Carathéodory functions which satisfy the following properties: (i) there exists a constant γ > 0 such that

|H n (x, ξ)| ≤ γ(1 + |ξ| p-1 )
for every ξ ∈ R N and µ-a.e. x ∈ X; (ii) for all M > 0 and all sequences (ξ n ) and

(ξ ′ n ) in R N such that |ξ n | ≤ M , |ξ ′ n | ≤ M and |ξ n -ξ ′ n | → 0, then |H n (x, ξ n ) -H n (x, ξ ′ n )| → 0 for µ-a.e. x ∈ X. Assume that (Φ n ) is bounded in L p µ (X; R N ) and that (Ψ n ) converges strongly to 0 in L p µ (X; R N ). Then for every Φ ∈ L p µ (X; R N ), X [H n (x, Φ n (x) + Ψ n (x)) -H n (x, Φ n (x))] • Φ(x) dµ(x) → 0.
Using Lemma 3.1, the next result has been proved in [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF] pp. 442-443 and generalizes in turn [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]Lemma 4.11]. Under technical assumptions, it ensures the weak convergence of the stresses associated to a sequence of weakly converging deformations (in a suitable topology) for which there holds the convergence of the corresponding elastic energies. Lemma 3.2. Let f n and f ∈ F(Ω, α, β, p) be Carathéodory functions satisfying (i) f n (x, •) and f (x, •) are convex and of class C 1 for a.e. x ∈ Ω;

(ii) for all M > 0 and all sequences (ξ n ) and

(ξ ′ n ) in R N such that |ξ n | ≤ M , |ξ ′ n | ≤ M and |ξ n -ξ ′ n | → 0, then |Df n (x, ξ n ) -Df n (x, ξ ′ n )| → 0 for a.e. x ∈ Ω; (iii) the sequence of functionals W 1,p (Ω) ∋ v → Ω f n (x, ∇v) dx Γ-converges in L p (Ω) to W 1,p (Ω) ∋ v → Ω f (x, ∇v) dx.
Assume that (u n ) ⊂ SBV p (Ω) is a sequence weakly converging to some u in SBV p (Ω), and that

Ω f n (x, ∇u n ) dx → Ω f (x, ∇u) dx. Then Df n (•, ∇u n (•)) ⇀ Df (•, ∇u(•)) weakly in L p ′ (Ω; R N ) where 1/p + 1/p ′ = 1.
3.4. Γ-convergence in SBV and σ-convergence. We now recall several facts about Γ-convergence of functionals involving bulk and surface energies defined on the space SBV p (Ω). The following result is a particular case of [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]Theorem 5.1] (see also [START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF]).

Theorem 3.4. Let f n and f ∈ F(Ω, α, β, p) be Carathéodory functions, and let E be a Borel set satisfying H N -1 (E) < +∞. Then the sequence of functionals

W 1,p (Ω) ∋ v → Ω f n (x, ∇v) dx Γ-converges in L 1 (Ω) to W 1,p (Ω) ∋ v → Ω f (x, ∇v) dx
if and only if the sequence of functionals

SBV p (Ω) ∋ v → Ω f n (x, ∇v) dx + H N -1 (J v \ E) Γ-converges in L 1 (Ω) to SBV p (Ω) ∋ v → Ω f (x, ∇v) dx + H N -1 (J v \ E).
It is also possible to account for boundary conditions (see [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]Lemma 8.1]). In the sequel, Ω ′ is an open set containing Ω and such that Ω ′ \ Ω = ∅. Lemma 3.3. Under the same assumptions than in Theorem 3.4, if (g n ) ⊂ W 1,p (Ω ′ ) is such that g n → g strongly in W 1,p (Ω ′ ), then the sequence of functionals F n : L 1 (Ω) → [0, +∞] defined by

F n (v) :=    Ω f n (x, ∇v) + H N -1 (J v \ E) if v ∈ SBV p (Ω), +∞ otherwise, Γ-converges in L 1 (Ω) to the functional F : L 1 (Ω) → [0, +∞] defined by F (v) :=    Ω f (x, ∇v) + H N -1 (J v \ E) if v ∈ SBV p (Ω), +∞ otherwise,
if and only if the sequence of functionals

G n : L 1 (Ω ′ ) → [0, +∞] defined by G n (v) :=    Ω f n (x, ∇v) + H N -1 (J v \ E) if v ∈ SBV p (Ω ′ ), v = g n a.e. in Ω ′ \ Ω, +∞ otherwise, Γ-converges in L 1 (Ω ′ ) to the functional G : L 1 (Ω ′ ) → [0, +∞] defined by G(v) :=    Ω f (x, ∇v) + H N -1 (J v \ E) if v ∈ SBV p (Ω ′ ), v = g a.e. in Ω ′ \ Ω, +∞ otherwise.
We next recall a notion of convergence for countably H N -1 -rectifiable sets introduced in [32] called σ-convergence which is related to the Γ-convergence of interfacial energies (see also [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] for another notion of convergence called σ p -convergence related to the weak convergence in SBV p (Ω)). Indeed consider a sequence (K n ) in R(Ω), and define for any u ∈ L 1 (Ω ′ )

H n (u) := H N -1 (J u \ K n ) if u ∈ P (Ω ′ ), +∞ otherwise.
Assume that

H n Γ-converges in L 1 (Ω ′ ) to H : L 1 (Ω ′ ) → [0, +∞] defined by H(u) :=    Ju h(x, ν u ) dH N -1 if u ∈ SBV p (Ω ′ ), +∞ otherwise, for some function h : Ω ′ × S N -1 → [0, +∞).
Definition 3.1. We say that the sequence

(K n ) σ-converges in Ω to some K ∈ R(Ω) if the functional H n Γ-converges in L 1 (Ω ′ ) to H, and if K is the (unique) set in R(Ω) such that h(x, ν K (x)) = 0 for H N -1 -a.e. x ∈ K,
and such that for any

K ′ ∈ R(Ω) we have h(x, ν K ′ (x)) = 0 for H N -1 -a.e. x ∈ K ′ ⇒ K ′ ⊂ K.
The σ-convergence enjoys good compactness and lower semicontinuity properties as the next result shows (see Propositions 6.3 and 6.7 in [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]).

Proposition 3.1. Let (K n ) be a sequence in R(Ω) such that sup n∈N H N -1 (K n ) < +∞.
Then, there exist a subsequence (K n k ) and K ∈ R(Ω) such that K n k σ-converges to K in Ω, and

H N -1 (K \ E) ≤ lim inf n→+∞ H N -1 (K n \ E) for any Borel set E ⊂ Ω with H N -1 (E) < +∞.
The notion of σ-convergence is relevant to study the stability of unilateral minimizers through Γ-convergence of the energies (see [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]Theorem 7.2]). Indeed, let f n ∈ F(Ω, α, β, p) be a sequence of Carathéodory integrands. We suppose that Ω has a Lipschitz boundary which can be split into the union of two disjoint sets

∂Ω = ∂ D Ω ∪ ∂ N Ω, where ∂ D Ω is open in the relative topology of ∂Ω. In particular, there exists an open subset Ω ′ of R N such that Ω ⊂ Ω ′ and ∂ D Ω = Ω ′ ∩ ∂ D Ω. Then consider three sequences (g n ) ⊂ W 1,p (Ω ′ ), (u n ) ⊂ SBV p (Ω ′ ) and (K n ) ⊂ R(Ω) such that J un ⊂ K n and u n = g n a.
e. in Ω ′ \ Ω for each n ∈ N. We further assume that the pair (u n , K n ) is a unilateral minimizer with respect to the integrand f n , i.e.,

Ω f n (x, ∇u n ) dx + H N -1 (K n \ ∂ N Ω) ≤ Ω f n (x, ∇v) dx + H N -1 (K ′ \ ∂ N Ω), for any K ′ ∈ R(Ω) such that K n ⊂ K ′ , and any v ∈ SBV p (Ω ′ ) satisfying v = g n a.e. in Ω ′ \ Ω and J v ⊂ K ′ . Theorem 3.5. Suppose that g n → g in W 1,p (Ω), u n ⇀ u in SBV p (Ω ′ ) and K n σ-converges to K in Ω. Assume further that f n and f ∈ F(Ω, α, β, p) are Carathéodory functions satisfying (i) f n (x, •) and f (x, •) are convex and of class C 1 for a.e. x ∈ Ω; (ii) for all M > 0 and all sequences (ξ n ) and (ξ ′ n ) in R N such that |ξ n | ≤ M , |ξ ′ n | ≤ M and |ξ n -ξ ′ n | → 0, then |Df n (x, ξ n ) -Df n (x, ξ ′ n )| → 0 for a.e. x ∈ Ω; (iii) the sequence of functionals W 1,p (Ω) ∋ v → Ω f n (x, ∇v) dx Γ-converges in L p (Ω) to W 1,p (Ω) ∋ v → Ω f (x, ∇v) dx.
Then (u, K) is a unilateral minimizer with respect to the integrand f , i.e.,

Ω f (x, ∇u) dx + H N -1 (K \ ∂ N Ω) ≤ Ω f (x, ∇v) dx + H N -1 (K ′ \ ∂ N Ω), for any K ′ ∈ R(Ω) such that K ⊂ K ′ , and any v ∈ SBV p (Ω ′ ) satisfying v = g a.e. in Ω ′ \ Ω and J v ⊂ K ′ . Moreover, Ω f n (x, ∇u n ) dx → Ω f (x, ∇u) dx.
We conclude this section by stating a transfer of jump set result which was initialy proved in [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] and further extended in [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]. The version below is taken from [START_REF] Giacomini | A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF]Theorem 7.4].

Theorem 3.6. Let f and f n be as in Theorem 3.5, and consider a sequence

(K n ) ⊂ R(Ω) such that sup n∈N H N -1 (K n ) < +∞, which σ-converges in Ω to some K ∈ R(Ω). For every v ∈ SBV p (Ω), there exists a sequence (v n ) ⊂ SBV p (Ω) with v n ⇀ v in SBV p (Ω) such that Ω f n (x, ∇v n ) dx → Ω f (x, ∇v) dx, and lim sup n→+∞ H N -1 (J vn \ (∂ N Ω ∪ K n )) ≤ H N -1 (J v \ (∂ N Ω ∪ K)). Moreover, if v ∈ SBV p (Ω ′ ) and if there is a sequence (g n ) ⊂ W 1,p (Ω ′ ) which converges strongly in W 1,p (Ω ′ ) to some w ∈ W 1,p (Ω ′ ) such that v = g a.e. in Ω ′ \ Ω, then one can assume that the sequence (v n ) ⊂ SBV p (Ω ′ ) satisfies v n = g n a.e. in Ω ′ \ Ω for each n ∈ N.

Homogenization and G-closure

In this section we recall well known facts about the homogenization of (convex) integral functionals, and then we will specialize our study to the case of mixtures for which local properties of effective materials can be obtained (see [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF]). Given f ∈ F(Q, α, β, p), we denote by f hom (ξ) its homogenized energy density defined by

f hom (ξ) := lim T →+∞ inf - (0,T ) N f ( y , ξ + ∇ϕ(y)) dy : ϕ ∈ W 1,p per ((0, T ) N ) = inf k∈N inf - (0,k) N f ( y , ξ + ∇ϕ(y)) dy : ϕ ∈ W 1,p per ((0, k) N ) , (4.1) 
where y denotes the fractional part of the vector y ∈ R N . It is known (see [START_REF] Braides | Homogenization of some almost periodic coercive functionals[END_REF][START_REF] Müller | Homogenization of nonconvex integral functionals and cellular elastic materials[END_REF]) that the functional

F hom : L p (Ω) → [0, +∞] defined by F hom (v) :=    Ω f hom (∇v) dx if v ∈ W 1,p (Ω), +∞ otherwise, is the Γ-limit in L p (Ω) of the family F ε : L p (Ω) → [0, +∞] given by F ε (v) :=    Ω f x ε , ∇v dx if v ∈ W 1,p (Ω), +∞ otherwise.
Moreover, since the functions v are scalar valued, the asymptotic formula (4.1) reduces to the following single cell formula

f hom (ξ) = inf ϕ∈W 1,p per (Q) Q f (y, ξ + ∇ϕ(y)) dy. (4.2) 
We now deal with a particular case of composite materials which are mixtures. Given a characteristic function χ ∈ L ∞ (Ω; {0, 1}) and two convex functions W 1 and W 2 ∈ F(α, β, p), we define the Carathéodory integrand W χ ∈ F(Ω, α, β, p) by

W χ (x, ξ) := χ(x)W 1 (ξ) + (1 -χ(x))W 2 (ξ).
For any θ ∈ [0, 1], define the following set

P θ (W 1 , W 2 ) := f ∈ F(α, β, p) such that there exists χ ∈ L ∞ (Q; {0, 1}) satisfying Q χ dx = θ and f = (W χ ) hom ,
made of all energy densities obtained by a periodic mixture of W 1 and W 2 in proportions θ and 1θ.

We denote by

G θ (W 1 , W 2 ) := P θ (W 1 , W 2 ) the closure of P θ (W 1 , W 2 ) for the pointwise convergence. For any θ ∈ L ∞ (Ω; [0, 1]), let us further introduce G θ (W 1 , W 2 ) as the set of all possible densities f ∈ F(Ω, α, β, p) such that there exists a sequence of characteristic functions (χ k ) ⊂ L ∞ (Ω; {0, 1}) satisfying χ k * -⇀ θ in L ∞ (Ω; [0, 1]), and Ω f (x, ∇v) dx = Γ-lim k→+∞ Ω W χ k (x, ∇v) dx.
A localization result proved in [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF] states that

G θ (W 1 , W 2 ) = f ∈ F(Ω, α, β, p) : f (x, •) ∈ G θ(x) (W 1 , W 2 ) for a.e. x ∈ Ω . (4.3)
In other words, in the case of mixtures, periodic homogenization captures locally any kind of homogenization phenomena. Hence mixtures are completely characterized by periodic geometries.

4.1. Some technical results. We now state several technical results about mixtures that will be of use in the sequel. The first result is a generalization of [START_REF] Babadjian | A variational approach to the local character of G-closure: the convex case[END_REF]Theorem 3.5] which can be proved exactly in the same way by using the Scorza-Dragoni Theorem (see [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF][START_REF] Fonseca | Modern methods in the calculus of variations: L p spaces[END_REF]).

Proposition 4.1. Let f and g ∈ F(Ω, α, β, p) be convex functions in the second variable, and

θ ∈ L ∞ (Ω; [0, 1]). Given W ∈ F(Ω, α, β, p) such that W (x, •) ∈ G θ(x) (f (x, •), g(x, •)) for a.e. x ∈ Ω, then there exists a sequence (χ n ) in L ∞ (Ω; {0, 1}) such that χ n * -⇀ θ in L ∞ (Ω; [0, 1]),
and

Ω W (x, ∇v) dx = Γ-lim n→+∞ Ω χ n f (x, ∇v) + (1 -χ n )g(x, ∇v) dx.
The second result will also be useful. Its proof is very standard and relies on the Decomposition Lemma [START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF], and the approximation of Lebesgue measurable sets by open or closed sets. Lemma 4.1. Let f n and f ∈ F(Ω, α, β, p) be convex functions in the second variable such that

Ω f (x, ∇v) dx = Γ-lim n→+∞ Ω f n (x, ∇v) dx.
Then, for every convex function g ∈ F(α, β, p) and every χ ∈ L ∞ (Ω; {0, 1}), one has

Ω χg(∇v) + (1 -χ)f (x, ∇v) dx = Γ-lim n→+∞ Ω χg(∇v) + (1 -χ)f n (x, ∇v) dx.
The last result states that C 1 regularity of the integrand is preserved by homogenization. Lemma 4.2. Let W 1 and W 2 ∈ F(α, β, p) be convex and C 1 functions, and

θ ∈ [0, 1]. If f ∈ G θ (W 1 , W 2 ), then f is also of class C 1 . Proof. If f ∈ G θ (W 1 , W 2 ), then there exists a sequence of characteristic functions (χ n ) ⊂ L ∞ (Q; {0, 1}) such that χ n * -⇀ θ in L ∞ (Q; [0, 1]), and Q f (∇v) dx = Γ-lim n→+∞ Q χ n W 1 (∇v) + (1 -χ n )W 2 (∇v) dx. Set W χn (x, ξ) := χ n (x)W 1 (ξ)+(1-χ n (x))W 2 (ξ) for every (x, ξ) ∈ Q×R N . Then W χn ∈ F(Q, α, β, p)
is convex and of class C 1 in the second variable, and for every ξ and ξ ′ ∈ R N , one has

|DW χn (x, ξ) -DW χn (x, ξ ′ )| ≤ |DW 1 (ξ) -DW 1 (ξ ′ )| + |DW 2 (ξ) -DW 2 (ξ ′ )|. (4.4)
In particular, if ξ n and ξ

′ n ∈ R N are two sequences in R N such that |ξ n -ξ ′ n | → 0 and |ξ n | ≤ M and |ξ ′ n | ≤ M for some M > 0, then |DW χn (x, ξ n ) -DW χn (x, ξ ′ n )| → 0 for a.e. x ∈ Ω. According to [32, Proposition 3.5], we infer that f is of class C 1 .

Regularity results.

We next address more precise information on the G-closure set G θ (W 1 , W 2 ). We will prove that the map θ → G θ (W 1 , W 2 ) is continuous with respect to the Hausdorff distance in a suitable metric space. This property will be used in sections 5 and 6 to prove an alternative formula for the lower semicontinuous envelope of the elastic energy in terms of the G-closure set. To do that, we need to prove a regularity result of Meyers type for the solutions of the minimization problem defining the cell formula (4.2). Proposition 4.2. Let f ∈ F(Q, α, β, p) be a convex function in its second variable. There exist a constant C > 0 and an exponent r > p (both depending only on N , p, α and β) such that for any

ξ ∈ R N , if ϕ ξ ∈ W 1,p per (Q) is a solution of the cell problem (4.2), then Q |∇ϕ ξ | r dx 1/r ≤ C(1 + |ξ|).
Proof. The proof is very closed to that of Theorem 3.1, Chapter V in [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF] (see also [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 6.7]). It is clear from the growth and coercivity conditions (2.1) that there exists a constant c > 0 depending only on p, α and β such that

Q |∇ϕ ξ | p dx 1/p ≤ c(1 + |ξ|). (4.5) 
Extend ϕ ξ by Q-periodicity to R N , and for all 1 < s < t < 2 consider a cut-off function η ∈ C ∞ c ((0, 2) N ; [0, 1]) such that η = 1 on (0, s) N , η = 0 outside (0, t) N and |∇η| ≤ 2/(ts). Let

ϕ ξ := - (0,2) N ϕ ξ dx = Q ϕ ξ dx
be the average of ϕ ξ over (0, 2) N and define v := η ϕ ξ + (1η) ϕ ξ ∈ W 1,p per ((0, 2) N ). In particular, extending f (•, ξ) by Q-periodicity to R N and using (4.1), we infer that

- (0,2) N f (x, ξ + ∇ϕ ξ ) dx = f hom (ξ) ≤ - (0,2) N f (x, ξ + ∇v) dx,
and since v = ϕ ξ outside (0, t) N , it follows that (0,t) N f (x, ξ + ∇ϕ ξ ) dx ≤ (0,t) N f (x, ξ + ∇v) dx.
Using the growth and coercivity conditions (2.1) and the fact that s < t we obtain that

α (0,s) N |ξ + ∇ϕ ξ | p dx ≤ β (0,t) N 1 + |ξ + ∇v| p dx.
Hence there exists a constant

c 1 = c 1 (α, β, p, N ) > 0 such that (0,s) N |∇ϕ ξ | p dx ≤ c 1 (0,t) N \(0,s) N |∇ϕ ξ | p dx + 1 (t -s) p (0,2) N |ϕ ξ -ϕ ξ | p dx + (1 + |ξ| p ) . (4.6)
Applying the "hole filling" method, we eliminate the first term in the right hand side by summing to (4.6) c 1 times the left hand side of the previous inequality. We obtain

(0,s) N |∇ϕ ξ | p dx ≤ c 1 1 + c 1 (0,t) N |∇ϕ ξ | p dx + 1 (t -s) p (0,2) N |ϕ ξ -ϕ ξ | p dx + (1 + |ξ| p ).
From Lemma 3.1, Chapter V in [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF] (see also [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Lemma 6.1]), we get that

Q |∇ϕ ξ | p dx ≤ c 2 (0,2) N |ϕ ξ -ϕ ξ | p dx + (1 + |ξ| p )
where c 2 = c 2 (α, β, p, N ) > 0. Using the Sobolev-Poincaré inequality (see e.g. [21, Theorem 4.5-2]), there exists a constant

c 3 = c 3 (α, β, p, N ) > 0 such that Q |∇ϕ ξ | p dx ≤ c 3   - (0,2) N |∇ϕ ξ | q dx p/q + (1 + |ξ| p )  
where q * = p, i.e. q = N p/(N + p) < p. In view of Proposition 1.1, Chapter V in [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF] (see also [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 6.6]), we obtain the existence of a constant C > 0 and an exponent r > p depending only on α, β, p and N such that

Q |∇ϕ ξ | r dx 1/r ≤ C   - (0,2) N |∇ϕ ξ | p dx 1/p + (1 + |ξ|)   .
The result follows from (4.5) and the Q-periodicity of ϕ ξ .

We now use the previous result to prove several properties of functions of the type (W χ ) hom .

Lemma 4.3. For every ξ ∈ R N and every χ, χ ′ ∈ L ∞ (Q; {0, 1}), one has

|(W χ ) hom (ξ) -(W χ ′ ) hom (ξ)| ≤ c (1 + |ξ| p ) Q |χ -χ ′ | r/(r-p) dx (r-p)/r , (4.7) 
where r > p is the same exponent as in Proposition 4.2.

Proof. Let ϕ ∈ W 1,p per (Q) such that Q W χ (x, ξ + ∇ϕ) dx = (W χ ) hom (ξ).
By Proposition 4.2, there exist a constant C > 0 and an exponent r > p, depending only on α, β, p and N , such that

Q |∇ϕ| r dx 1/r ≤ C(1 + |ξ|).
Hence Hölder's inequality and the p-growth condition (2.1) imply that

(W χ ′ ) hom (ξ) -(W χ ) hom (ξ) ≤ Q W χ ′ (x, ξ + ∇ϕ) dx - Q W χ (x, ξ + ∇ϕ) dx ≤ β Q |χ ′ -χ| 1 + |ξ + ∇ϕ| p dx ≤ β Q |χ ′ -χ| r/(r-p) dx (r-p)/r 1 + Q |ξ + ∇ϕ| r dx p/r ≤ c (1 + |ξ| p ) Q |χ -χ ′ | r/(r-p) dx (r-p)/r
. Relation (4.7) follows from the symmetric roles played by χ and χ ′ .

We define the space E p of all continuous functions f : R N → R such that there exists the limit

lim |ξ|→+∞ f (ξ) 1 + |ξ| p+1 = 0.
This space is isomorphic to the space C 0 (R N ) of all continuous functions on R N vanishing at infinity, hence it is a separable Banach space for the norm

f := sup ξ∈R N |f (ξ)| 1 + |ξ| p+1 .
We recall the definition of the Hausdorff distance between two closed sets A and B in E p :

d H (A, B) := max sup g∈B inf f ∈A f -g , sup f ∈A inf g∈B f -g .
We want to measure the Hausdorff distance between sets of the type

G θ (W 1 , W 2 ) for varying θ ∈ [0, 1].
To do that we first need to prove that these sets are actually bounded and closed in E p .

Lemma 4.4.

For any θ ∈ [0, 1] the set G θ (W 1 , W 2 ) is a bounded and closed subset of E p . Proof. That G θ (W 1 , W 2 ) is a bounded subset of E p is a direct consequence of the fact that every functions f ∈ G θ (W 1 , W 2 ) satisfy the uniform p-growth and p-coercivity condition (2.1). Let us show that G θ (W 1 , W 2 ) is closed. Since E p is a metric space it is enough to check that f ∈ G θ (W 1 , W 2 ) whenever f j → f in E p and f j ∈ G θ (W 1 , W 2 ) for each j ∈ N. Let (χ j k ) k∈N ⊂ L ∞ (Q; {0, 1}) be such that Q χ j k (y) dy = θ (4.8) and (W χ j k ) hom → f j pointwise as k → +∞. Since (W χ j k
) hom ∈ F(α, β, p), by (2.1) and (2.2), the sequence ((W χ j k ) hom ) k∈N is locally bounded and uniformly equi-continuous. Hence by the Ascoli Theorem, (W χ j k ) hom → f j locally uniformly as k → +∞, and consequently, for every M > 1,

lim j→+∞ lim k→+∞ sup |ξ|≤M W χ j k hom (ξ) -f (ξ) 1 + |ξ| p+1 = 0.
On the other hand, from the p-growth condition (2.1) we have that

sup |ξ|>M W χ j k hom (ξ) -f (ξ) 1 + |ξ| p+1 ≤ 2β sup |ξ|>M 1 + |ξ| p 1 + |ξ| p+1 ≤ c 1 + M -----→ M →+∞ 0
uniformly with respect to j and k. As a consequence lim j→+∞ lim k→+∞ W χ j k homf = 0, and by a diagonalization argument, it is possible to find an increasing sequence k j → +∞ as j → +∞ such that W χ j k j hom → f in E p (and also pointwise). Together with (4.8

) it ensures that f ∈ G θ (W 1 , W 2 ).
The following result is an adaptation of [START_REF] Raitums | On the local representation of G-closure[END_REF]Lemma 4.1] (see also [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]Lemma 2.1.7]) which states that the map θ → G θ is continuous with respect to the Hausdorff convergence in E p . Proposition 4.3. There exist a constant c > 0 and an exponent r > p (depending only on α, β, p and N ) such that for every

θ 1 , θ 2 ∈ [0, 1] d H (G θ1 (W 1 , W 2 ), G θ2 (W 1 , W 2 )) ≤ c|θ 1 -θ 2 | (r-p)/r . Proof. Assume without loss of generality that θ 1 < θ 2 . Let f ∈ G θ2 (W 1 , W 2 ), there exists a sequence (χ k ) ⊂ L ∞ (Q; {0, 1}) such that Q χ k dx = θ 2 (4.9) and (W χ k ) hom (ξ) → f (ξ). Define E k := {χ k = 1} and set ℓ k (ρ) := L N (B ρ ∩ E k ).
The function ℓ k is continuous and increasing, and it satisfies ℓ k (0) = 0 and

ℓ k ( √ N ) = θ 2 . As a consequence there exists ρ k ∈ (0, √ N ) such that ℓ k (ρ k ) = θ 1 .
We define now Ẽk := B ρ k ∩ E k and χk := χ Ẽk . By the Ascoli Theorem, one may extract a subsequence (not relabeled) such that (W χk ) hom converges locally uniformly (hence also pointwise) to some continuous fonction g ∈ F(α, β, p). Moreover, since

Q χk dx = θ 1 , (4.10) 
we deduce that g ∈ G θ1 (W 1 , W 2 ). By construction, we have Ẽk ⊂ E k , and thus χk ≤ χ k . Consequently by (4.7), (4.9) and (4.10) we obtain that

|g(ξ) -f (ξ)| = lim k→+∞ (W χk ) hom (ξ) -(W χ k ) hom (ξ) ≤ lim k→+∞ c (1 + |ξ| p ) Q (χ k -χk ) r/(r-p) dx (r-p)/r ≤ c (1 + |ξ| p )(θ 2 -θ 1 ) (r-p)/r , and then f -g ≤ c |θ 1 -θ 2 | (r-p)/r
. Since this estimate holds for a particular g ∈ G θ1 (W 1 , W 2 ) and for any arbitrary

f ∈ G θ2 (W 1 , W 2 ) we deduce that sup f ∈G θ 2 inf g∈G θ 1 f -g ≤ c |θ 1 -θ 2 | (r-p)/r .
Similarly one can show that sup

g∈G θ 1 inf f ∈G θ 2 f -g ≤ c |θ 1 -θ 2 | (r-p)/r ,
which concludes the proof of the Proposition in view of the definition of the Hausdorff distance.

Quasistatic damage evolution

This section is devoted to the investigation of a model of quasistatic evolution for a continuum that undergoes damage. Specifically, we prove Theorem 1.1.

Description of the damage evolution model.

Let Ω ⊂ R N be a bounded open set with Lipschitz boundary which represents the reference configuration of a nonlinearly elastic material. We assume that at each point of Ω, the stored energy density of this body can take only two values W 1 or W 2 ∈ F(α, β, p) which are supposed to be uniformly convex functions (see (2.4)) of class C 1 . The density W 1 is that of the damaged material while W 2 is that of the undamaged one so that

W 1 ≤ W 2 .
Denoting by χ : Ω → {0, 1} the characteristic function of the damaged part of Ω, the stored energy density of the material is

W χ (x, ξ) := χ(x)W 1 (ξ) + (1 -χ(x))W 2 (ξ).
We now describe the boundary conditions. To do that, we split the boundary of Ω into the union of two sets ∂Ω = ∂ N Ω ∪ ∂ D Ω, where ∂ D Ω is open in the relative topology of ∂Ω. We suppose that the Neumann part ∂ N Ω is free, while on the Dirichlet part ∂ D Ω, a time dependent boundary deformation g(t) is imposed. We assume that g

∈ W 1,1 ([0, T ]; W 1-1/p,p (∂ D Ω)) is the trace on ∂ D Ω of a function still denoted g ∈ W 1,1 ([0, T ]; W 1,p (Ω)).
In view of the growth and coercivity properties of the stored energy density, the natural space of all kinematically admissible deformation fields at time t is given by

A(t) := {v ∈ W 1,p (Ω) : v = g(t) H N -1 -a.e. on ∂ D Ω}.
Note that the Dirichlet boundary condition is the only driving mechanism which will make evolve the damage process. Here the internal variable which will describe this evolution is the characteristic function χ of the damaged zone. Following [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] we adopt the yield criterion that the deformation gradient ∇u must stay inside the set

R := {ξ ∈ R N : W 2 (ξ) -W 1 (ξ) < κ},
where κ > 0 is a constant of the material. Hence at a discrete time level, if u i ∈ A(t i ) denotes the current deformation field, and χ i is the characteristic function of the damaged part of the material at time t i , the evolution law for χ i to pass from time t i to time t i+1 is

χ i+1 (x) = 0 if χ i (x) = 0 and ∇u i (x) ∈ R, 1 if χ i (x) = 1 or ∇u i (x) ∈ R,
taking into account the irreversibility of the damage process. Hence the globally dissipated energy from the initial time up to time t i is given by

κ Ω χ i (x) dx.
The evolution of damage as previously described may be formulated by a two fields partial minimization problem upon introducing the functional L i defined by

L i (u, χ) := Ω [χ(x)W 1 (∇u(x)) + (1 -χ(x))W 2 (∇u(x))] dx + κ Ω χ(x) dx for u ∈ A(t i ) and χ ∈ X i := {χ ∈ L ∞ (Ω; {0, 1}) : χ ≥ χ i-1 }.
Then one looks for (u i , χ i ) as a global minimizer of L i over A(t i ) × X i . Unfortunately, even at the first time step, this minimization may fail to have solutions and it is necessary to relax the original problem. The mechanical reason for this phenomenon is that, for energetic convenience, the material prefers to create microstructures. Thus the brittle character of the damage process is loosed for a progressive evolution where the characteristic function of the damaged part is replaced by the volume fraction which takes its values in the full interval [0, 1] (instead of {0, 1}). Hence, at a given point x of Ω, the effective material will not be exclusively either healthy or damaged anymore, but it can also result from a mixture between the weak and strong materials leading to a composite material.

Time discretization

. Let 0 = t k 0 < t k 1 < . . . < t k n(k) = T be a discretization of the time interval [0, T ] such that max 1≤i≤n(k) (t k i -t k i-1 ) → 0, (5.1) 
as k → +∞. We define g k i := g(t k i ) ∈ W 1,p (Ω).

First time step.

At the initial time, g k 0 = g(0), and one wants to minimize

(v, χ) → Ω χW 1 (∇v) + (1 -χ)W 2 (∇v) + κχ dx, among all (v, χ) ∈ A(0) × L ∞ (Ω; {0, 1}).
Minimizing first with respect to χ leads to the following nonconvex integrand ψ 0 (ξ) := min{W 1 (ξ) + κ, W 2 (ξ)}, and the previous minimization problem is equivalent to

I 0 := inf v∈A(0) Ω ψ 0 (∇v) dx.
(5.

2)

The lack of convexity of the integrand ψ 0 may prevent (5.2) to have solutions, so that it is necessary to compute the relaxed problem. It is well known (see [START_REF] Fonseca | Modern methods in the calculus of variations: L p spaces[END_REF]) that it suffices to replace ψ 0 by its convexification. In the scalar case, it also coincides with its quasiconvexification Qψ 0 defined by

Qψ 0 (ξ) := inf ϕ∈W 1,p per (Q) Q ψ 0 (ξ + ∇ϕ) dx,
and

I 0 = min v∈A(0) Ω Qψ 0 (∇v) dx. (5.3)
There is another way to express Qψ 0 in terms of G-closure. In [START_REF] Fonseca | Relaxation in BV versus quasiconvexification in W 1,p ; a model for the interaction between fracture and damage[END_REF] (see [START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF] in the case of linearized elasticity and [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF]), it is stated that the quasiconvexification of ψ 0 can be expressed in terms of the sets

P θ (W 1 , W 2 ) or G θ (W 1 , W 2 ). Namely, Lemma 5.1. For every ξ ∈ R N , Qψ 0 (ξ) = inf θ∈[0,1] inf W * ∈P θ (W1,W2) W * (ξ) + κθ = min θ∈[0,1] min W * ∈G θ (W1,W2) W * (ξ) + κθ .
Proof. To prove the first equality, we remark that for any θ ∈ [0, 1],

inf

W * ∈P θ (W1,W2) W * (ξ) + κθ = inf {χ∈L ∞ (Q;{0,1}): R Q χ dy=θ} inf ϕ∈W 1,p per (Q) Q
W χ (y, ξ + ∇ϕ(y)) + κχ(y) dy so that, inverting the orders of infimum, inf

θ∈[0,1] inf W * ∈P θ (W1,W2) W * (ξ) + κθ = inf ϕ∈W 1,p per (Q) inf χ∈L ∞ (Q;{0,1}) Q W χ (y, ξ + ∇ϕ(y)) + κχ(y) dy = inf ϕ∈W 1,p per (Q) Q ψ 0 (ξ + ∇φ(y)) dy = Qψ 0 (ξ).
To prove the second equality, let θ k ∈ [0, 1] and

f k ∈ P θ k (W 1 , W 2 ) be minimizing sequences such that f k (ξ) + κθ k → Qψ 0 (ξ) as k → +∞.
Up to a subsequence, there is no loss of generality to assume that θ k → θ. Moreover, since f k ∈ F(α, β, p), using an argument similar to that of the proof of Lemma 4.4 based on the Ascoli Theorem, one can assume that f k converges to some W * in E p . Moreover, by Proposition 4.3, we deduce that G θ k (W 1 , W 2 ) converges in the sense of Hausdorff to G θ (W 1 , W 2 ), and thus

W * ∈ G θ (W 1 , W 2 ) and W * (ξ) + κθ = Qψ 0 (ξ).
Let u 0 ∈ A(0) be a minimizer of (5.3), and let θ 0 (x) ∈ [0, 1] and

W 0 (x, •) ∈ G θ0(x) (W 1 , W 2 ) be such that
Qψ 0 (∇u 0 (x)) = W 0 (x, ∇u 0 (x)) + κθ 0 (x) for a.e. x ∈ Ω. The next result asserts that it is possible to select θ 0 and W 0 as measurable functions of x.

Lemma 5.2. The functions θ 0 and W 0 can be chosen to be respectively measurable and Carathéodory. Consequently θ 0 ∈ L ∞ (Ω; [0, 1]), W 0 ∈ F(Ω, α, β, p) and W 0 (x, •) is uniformly convex and of class C 1 for a.e. x ∈ Ω.

Proof. Since W 0 (x, •) ∈ G θ0(x) (W 1 , W 2 )
, it follows that it is a convex function, and according to Lemma 4.2 it is also of class C 1 .

We now prove the measurability properties of θ 0 and W 0 (•, ξ). Assume first that ∇u 0 is a simple measurable function, then θ 0 and W 0 (•, ξ) are simple measurable functions as well. In the general case, there exists a sequence of simple measurable functions ξ n which pointwise a.e. converges to ∇u 0 . Let θ n (x) and f n (x, ξ) be simple measurable functions of x such that for each n ∈ N,

f n (x, •) ∈ G θn(x) (W 1 , W 2 ) and Qψ 0 (ξ n (x)) = f n (x, ξ n (x)) + κθ n (x)
for a.e. x ∈ Ω. Define Arguing exactly as in the proof of Lemma 4.4, we can show that

f nj (x, •) → W 0 (x, •) in E p . On the other hand, since f nj (x, •) ∈ G θn j (x) (W 1 , W 2 ) and θ nj (x) → θ 0 (x), we infer thanks to Proposition 4.3 that W 0 (x, •) ∈ G θ0(x) (W 1 , W 2 )
. Then, by the continuity of Qψ 0 we get that

Qψ 0 (∇u 0 (x)) = lim j→+∞ Qψ 0 (ξ nj (x)) = lim j→+∞ f nj (x, ξ nj (x)) + κθ nj (x) = W 0 (x, ∇u 0 (x)) + κθ 0 (x).
To show that it is uniformly convex, we first note that thanks to the local character of G-closure (4.3), then W 0 (x, •) ∈ G θ0(x) (W 1 , W 1 ) for a.e. x ∈ Ω. Now fix such a point x ∈ Ω, and consider ξ 1 and ξ 2 ∈ R N . There exist a sequence of characteristic functions

(χ n ) ⊂ L ∞ (Q; {0, 1}) such that χ n * -⇀ θ 0 (x) in L ∞ (Q; [0, 1]), and sequences (ϕ n ), (φ n ) ⊂ W 1,p (Q) weakly converging to 0 in W 1,p (Q) satisfying W 0 (x, ξ 1 ) = lim n→+∞ Q χ n (y)W 1 (ξ 1 + ∇ϕ n (y)) + (1 -χ n (y))W 2 (ξ 1 + ∇ϕ n (y)) dy, and 
W 0 (x, ξ 2 ) = lim n→+∞ Q χ n (y)W 1 (ξ 2 + ∇φ n (y)) + (1 -χ n (y))W 2 (ξ 2 + ∇φ n (y)) dy.
Note that from the p-growth and p-coercivity conditions (2.1), we have that lim sup

n→+∞ ∇ϕ n p L p (Q;R N ) ≤ C(1 + |ξ 1 | p ), lim sup n→+∞ ∇φ n p L p (Q;R N ) ≤ C(1 + |ξ 2 | p ), (5.4) 
for some constant C > 0 depending only on α, β and p. Define

ψ n = (ϕ n + φ n )/2 ∈ W 1,p (Q) with ψ n ⇀ 0 in W 1,p (Q) so that W 0 x, ξ 1 + ξ 2 2 ≤ lim inf n→+∞ Q χ n (y)W 1 ξ 1 + ξ 2 2 + ∇ψ n (y) +(1 -χ n (y))W 2 ξ 1 + ξ 2 2 + ∇ψ n (y) dy.
Then using the uniform convexity (2.4) of W 1 and W 2 , we deduce that

W 0 x, ξ 1 + ξ 2 2 ≤ 1 2 W 0 (x, ξ 1 ) + 1 2 W 0 (x, ξ 2 ) -2ν lim inf n→+∞ Q |ξ 1 + ∇ϕ n -ξ 2 -∇φ n | 2 1 + |ξ 1 + ∇ϕ n | 2 + |ξ 2 + ∇φ n | 2 (p-2)/2 dy.
We now distinguish two cases. First if p ≥ 2, then by the convexity of the map

R N × R N ∋ (ξ 1 , ξ 2 ) → |ξ 1 -ξ 2 | 2 (1 + |ξ 1 | 2 + |ξ 2 | 2 ) (p-2)/2 ,
and by lower semicontinuity we deduce that

W 0 x, ξ 1 + ξ 2 2 ≤ 1 2 W 0 (x, ξ 1 ) + 1 2 W 0 (x, ξ 2 ) -2ν|ξ 1 -ξ 2 | 2 1 + |ξ 1 | 2 + |ξ 2 | 2 (p-2)/2 .
If on the other hand 1 < p < 2, then p/2 < 1 and by the reverse Hölder's inequality, we have

Q |ξ 1 + ∇ϕ n -ξ 2 -∇φ n | 2 1 + 1 2 |ξ 1 + ∇ϕ n -ξ 2 -∇φ n | 2 (p-2)/2 dy ≥ Q |ξ 1 + ∇ϕ n -ξ 2 -∇φ n | p dy 2/p Q 1 + |ξ 1 + ∇ϕ n | 2 + |ξ 2 + ∇φ n | 2 p/2 dy (p-2)/p .
Then by lower semicontinuity, we have that

lim inf n→+∞ Q |ξ 1 + ∇ϕ n -ξ 2 -∇φ n | p dy 2/p ≥ |ξ 1 -ξ 2 | 2 ,
and according to (5.4), together with the fact that (p -2)/2 < 0, we infer that

lim inf n→+∞ Q 1 + |ξ 1 + ∇ϕ n | 2 + |ξ 2 + ∇φ n | 2 p/2 dy (p-2)/p ≥ c 1 + |ξ 1 | 2 + |ξ 2 | 2 (p-2)/2 ,
for some constant c > 0 depending only on α, β and p. Hence,

W 0 x, ξ 1 + ξ 2 2 ≤ 1 2 W 0 (x, ξ 1 ) + 1 2 W 0 (x, ξ 2 ) -c|ξ 1 -ξ 2 | 2 1 + |ξ 1 | 2 + |ξ 2 | 2 (p-2)/2 ,
which completes the proof of the lemma.

We now define the total energy at the initial time by

E 0 := Ω Qψ 0 (∇u 0 ) dx = Ω W 0 (x, ∇u 0 ) dx + κ Ω (1 -Θ 0 ) dx = I 0 ,
where Θ 0 := 1θ 0 is the local volume fraction of the undamaged material.

Subsequent time steps.

Let i ≥ 1, and assume that there exist a Carathéodory function

W k i-1 ∈ F(Ω, α, β, p) and Θ k i-1 ∈ L ∞ (Ω; [0, 1]) such that W k i-1 (x, •) ∈ G 1-Θ k i-1 (x) (W 1 , W 2 )
for a.e. x ∈ Ω. Following [START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF], at time t k i and at every points x ∈ Ω of the material, we look for all possible rearrangements between the damaged material W 1 and the one obtained at the previous time step W k i-1 (x, •). The latter has a volume fraction Θ k i-1 (x) corresponding to the undamaged material W 2 , and thus the quantity of dissipated energy paid up to time

t k i-1 is 1 -Θ k i-1 (x)
. Consequently, if the material remains in the same state, the cost of dissipated energy in 0, while if the material becomes damaged, the cost is Θ k i-1 (x). By irreversibility, there is no other choice, and thus, at time t k i one wants to minimize

(v, χ) → Ω χW 1 (∇v) + (1 -χ)W k i-1 (x, ∇v) + κχ dx + κ Ω Θ k i-1 χ dx, among all (v, χ) ∈ A(t k i ) × L ∞ (Ω; {0, 1}
). We first minimize with respect to χ which leads to the following nonconvex integrand

ψ k i (x, ξ) := min{W 1 (ξ) + κΘ k i-1 (x), W k i-1 (
x, ξ)}, and the previous minimization problem is equivalent to

I k i := inf v∈A(t k i ) Ω ψ k i (x, ∇v) dx. (5.5)
Once again, the integrand ψ k i is not convex, and thus (5.5) may fail to have solutions. We need then to consider the relaxed problem, and as before it suffices to replace ψ k i by its (quasi)convexification defined by

Qψ k i (x, ξ) := inf ϕ∈W 1,p per (Q) Q ψ k i (x, ξ + ∇ϕ(y)) dy,
or by Lemma 5.1,

Qψ k i (x, ξ) = min θ∈[0,1] min W * ∈G θ (W1,W k i-1 (x,•)) W * (ξ) + κΘ k i-1 (x)θ , (5.6) 
with

I k i = min v∈A(t k i ) Ω
Qψ k i (x, ∇v) dx.

(5.7)

Let u k i ∈ A(t k i ) be a solution of (5.7), then

I k i = Ω Qψ k i (x, ∇u k i ) dx,
and there exists

θ k i (x) ∈ [0, 1] and W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)) such that Qψ k i (x, ∇u k i (x)) = W k i (x, ∇u k i (x)) + κΘ k i-1 (x)θ k i (x) for a.e. x ∈ Ω. Let us denote by Θ k i := Θ k i-1 (1 -θ k i ) (5.8) 
the volume fraction of the strong (undamaged) material.

Lemma 5.3. The functions θ k i and W k i can be chosen to be respectively measurable and Carathéodory. Moreover,

θ k i ∈ L ∞ (Ω; [0, 1]), W k i ∈ F(Ω, α, β, p) and W k i (x, •) ∈ G 1-Θ k i (x) (W 1 , W 2 )
is uniformly convex and of class C 1 for a.e. x ∈ Ω.

Proof. We first show that

W k i (x, •) ∈ G 1-Θ k i (x) (W 1 , W 2 )
for a.e. x ∈ Ω.

(5.9) Indeed, since

W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)) and W k i-1 (x, •) ∈ G 1-Θ k i-1 (x) (W 1 , W 2 )
, then one can find sequences of characteristic functions (χ n i ) and (

χ n i-1 ) in L ∞ (Q; {0, 1}) satisfying χ n i * -⇀ θ k i (x) and χ n i-1 * -⇀ 1 -Θ k i-1 (x) in L ∞ (Q; [0, 1]
), and such that

Γ-lim n→+∞ Ω χ n i (y)W 1 (∇v(y)) + (1 -χ n i (y))W k i-1 (x, ∇v(y)) dy = Ω W k i (x, ∇v(y)) dy, and 
Γ-lim n→+∞ Ω χ n i-1 (y)W 1 (∇v(y)) + (1 -χ n i-1 (y))W 2 (∇v(y)) dy = Ω W k i-1 (x, ∇v(y)) dy.
As a consequence of Lemma 4.1, we derive that

Γ-lim n→+∞ Γ-lim m→+∞ Ω χ n i (y) + (1 -χ n i (y))χ m i-1 (y) W 1 (∇v(y) +(1 -χ n i (y))(1 -χ m i-1 (y))W 2 (∇v(y)) dy = Ω W k i (x, ∇v(y)) dy,
and for every ϕ ∈ L 1 (Ω),

lim n→+∞ lim m→+∞ Ω χ n i (y) + (1 -χ n i (y))χ m i-1 (y) ϕ(y) dy = θ k i (x) + (1 -θ k i (x))(1 -Θ k i-1 (x)) Ω ϕ(y) dy.
Using a diagonalization argument together with the metrizability of both L ∞ (Ω; [0, 1]) and S Ψ , we obtain the existence of a sequence m(n) → +∞ as n → +∞ such that, setting χn :=

χ n i +(1-χ n i )χ m(n) i-1 , then χn * -⇀ θ k i (x) + (1 -θ k i (x))(1 -Θ k i-1 (x)) in L ∞ (Ω; [0, 1]) and Γ-lim n→+∞ Ω χn (y)W 1 (∇v(y)) + (1 -χn (y))W 2 (∇v(y)) dy = Ω W k i (x, ∇v(y)) dy. Consequently, W k i (x, •) ∈ G θ k i (x)+(1-θ k i (x))(1-Θ k i-1 (x)) (W 1 , W 2 )
, and by the localization property (4.3) of the G-closure set, we conclude that

W k i (x, •) ∈ G θ k i (x)+(1-θ k i (x))(1-Θ k i-1 (x)) (W 1 , W 2 ). Then by definition (5.8) of Θ k i we deduce that W k i (x, •) ∈ G 1-Θ k i (x) (W 1 , W 2
). Now thanks to (5.9) and Lemma 4.2, it follows that the function W k i (x, •) is of class C 1 and convex. Then a similar argument than that used in the proof of Lemma 5.2 implies that W k i (x, •) is actually uniformly convex, and the functions θ k i and W k i (•, ξ) can be chosen to be measurable. We deduce from Lemma 5.3 that

I k i = Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx, (5.10) 
and we define the total energy at time t k i by

E k i := I k i + κ Ω (1 -Θ k i-1 ) dx = Ω W k i (x, ∇u k i ) dx + κ Ω (1 -Θ k i ) dx.
(5.11)

5.3.

A few properties of the discrete evolution. We now establish some minimality, monotonicity and energy inequality properties of the discrete evolution, that will used to pass to the limit as the time step tends to zero.

Minimality. Since u k

i is a solution of (5.7) and

W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)), it follows immediately that u k i is also a solution of inf v∈A(t k i ) Ω W k i (x, ∇v) dx.
(5.12) 5.3.2. Monotonicity. We now show that the stored energy of the damaged material decreases as the time increases. This is in agreement with the fact that the irreversible damage process decreases the rigidity of the body.

Lemma 5.4. For each i ≥ 1, one has

W k i (x, ξ) ≤ W k i-1 (x, ξ) (5.13)
for all ξ ∈ R N and a.e. x ∈ Ω.

Proof. We first establish that W 1 (ξ) ≤ W k i (x, ξ). From Lemma 5.3 we know that

W k i (x, •) ∈ G 1-Θ k i (x) (W 1 , W 2 )
, and thus there exists a sequence (χ n ) ⊂ L ∞ (Q; {0, 1}) with Q χ n (y) dy = 1 -Θ k i (x) for every n ∈ N, and

W k i (x, ξ) = lim n→+∞ inf ϕ∈W 1,p per (Q) Q χ n (y)W 1 (ξ + ∇ϕ(y)) + (1 -χ n (y))W 2 (ξ + ∇ϕ(y)) dy ≥ inf ϕ∈W 1,p per (Q) Q W 1 (ξ + ∇ϕ(y)) dy ≥ W 1 (ξ),
where we used the fact that W 2 ≥ W 1 in the first inequality, and the convexity of W 1 in the second one.

We are now in position to establish the claimed monotonicity property. Indeed, since

W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)), then one can find a sequence (χ n ) ⊂ L ∞ (Q; {0, 1}) with Q χ n (y) dy = θ k i (x)
for every n ∈ N, and

W k i (x, ξ) = lim n→+∞ inf ϕ∈W 1,p per (Q) Q χ n (y)W 1 (ξ + ∇ϕ(y)) + (1 -χ n (y))W k i-1 (x, ξ + ∇ϕ(y)) dy ≤ Q (χ n (y)W 1 (ξ) + (1 -χ n (y))W k i-1 (x, ξ)) dy ≤ W k i-1 (x, ξ),
where we used the fact that W 1 (ξ) ≤ W k i-1 (x, ξ) in the last inequality.

The next result will be of use to derive the lower bound on the total energy in Proposition 5.3. It is based on a diagonalization argument similar to that of Lemma 5.3. Lemma 5.5. For every j ≥ i, one has

W k j (x, •) ∈ G 1- Θ k j (x) Θ k i (x) (W 1 , W k i (x, •))
for a.e. x ∈ Ω.

Proof. For every i ≥ 2, one has

W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)) and W k i-1 (x, •) ∈ G θ k i-1 (x) (W 1 , W k i-2 (x, •)).
Using a diagonalization argument exactly as in the proof of Lemma 5.3, we can prove that

W k i (x, •) ∈ G 1- Θ k i (x) Θ k i-2 (x) (W 1 , W k i-2 (x, •)),
and the conclusion follows from an induction argument.

5.3.3.

Upper bound on the total energy. We now derive an energy inequality for discrete times which will be used in passing to the time-continuous limit. For every i ≥ 0, since

W k i (x, •) ∈ G 0 (W 1 , W k i (x, •)), by definition (5.6) of Qψ k i+1 , we derive that Qψ k i+1 (x, ξ) ≤ W k i (x, ξ) for a.e.
x ∈ Ω and every ξ ∈ R N . Consequently, by (5.7), we deduce that

I k i+1 ≤ Ω W k i (x, ∇u k i + ∇g k i+1 -∇g k i ) dx.
Using the fact that the map

t → Ω W k i (x, ∇u k i + t(∇g k i+1 -∇g k i )) dx is of class C 1 from R to R with derivative given by t → Ω DW k i (x, ∇u k i + t(∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx,
then by the Mean Value Theorem one can find

s k i ∈ [0, 1] such that Ω W k i (x, ∇u k i + ∇g k i+1 -∇g k i ) dx = Ω W k i (x, ∇u k i ) dx + Ω DW k i (x, ∇u k i + s k i (∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx.
Consequently,

I k i+1 ≤ I k i -κ Ω (Θ k i-1 -Θ k i ) dx + Ω DW k i (x, ∇u k i + s k i (∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx,
and from the definition (5.11) of the total energy, we get that

E k i+1 ≤ E k i + Ω DW k i (x, ∇u k i + s k i (∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx.
Hence summing up for i = 0 to j -1 leads to

E k j ≤ E 0 + j-1 i=0 Ω DW k i (x, ∇u k i + s k i (∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx.
(5.14) 5.4. Piecewise constant interpolation. Before taking the limit as the time step tends to zero, we need to define piecewise constant interpolations for all the discrete time functions considered before. For each t ∈ [t k i , t k i+1 ), we set

g k (t) := g k i , u k (t) := u k i , Θ k (t) := Θ k i , W k (t) := W k i , and we define A k (t) := A(t k i ) and E k (t) := E k i .
In particular, (5.12) implies that

u k (t) ∈ A k (t) is a solution of min v∈A k (t) Ω W k (t)(x, ∇v) dx,
the monotonicity property (5.13) and the definition (5.8) 

of Θ k i yield W k (t) ∈ F(Ω, α, β, p), Θ k (t) ∈ L ∞ (Ω; [0, 1]) for every k ∈ N and t ∈ [0, T ],
and

W k (t)(x, ξ) ≤ W k (s)(x, ξ) and Θ k (t)(x) ≤ Θ k (s)(x)
for every 0 ≤ s ≤ t ≤ T , every ξ ∈ R N and a.e. x ∈ Ω.

Let us define the function

Φ k : [0, T ] → L p (Ω; R N ) by Φ k (t) := s k i (∇g k i+1 -∇g k i ) = s k i t k i+1 t k i ∇ ġ(τ ) dτ for t ∈ [t k i , t k i+1 )
. Then Φ k is Bochner integrable, and from (5.1) together with the fact that ∇ ġ ∈ L 1 (0, T ; L p (Ω; R N )), we deduce that Φ k (t) L p (Ω;R N ) → 0 uniformly with respect to t ∈ [0, T ]. From the energy estimate (5.14), we infer that

E k (t) ≤ E 0 + t 0 Ω DW k (τ )(x, ∇u k (τ ) + Φ k (τ )) • ∇ ġ(τ ) dx dτ.
(5.15) 5.5. The time continuous limit. We now pass to the limit as the time step tends to zero. We first establish a compactness result on (u k (t), Θ k (t), W k (t)).

Proposition 5.1. There exist a subsequence (not relabeled) and functions u(t) ∈ A(t), Θ(t) ∈ L ∞ (Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that for every t ∈ [0, T ],

             u k (t) ⇀ u(t) in W 1,p (Ω), Θ k (t) * -⇀ Θ(t) in L ∞ (Ω; [0, 1]), Ω W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω W k (t)(x, ∇v) dx.
Moreover the map u : [0, T ] → W 1,p (Ω) is strongly measurable and u ∈ L ∞ ([0, T ]; W 1,p (Ω)), the maps t → Θ(t) and t → W (t) are decreasing, and

W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 )
is uniformly convex and of class C 1 for a.e. x ∈ Ω and every t ∈ [0, T ].

Proof. According to [START_REF] Francfort | Garroni A variational view of partial brittle damage evolution[END_REF]Remark 4] and Theorem 3.3 (see also Theorem 3.2 with L ∞ (Ω; [0, 1]) endowed with the weak* topology which is a compact metric space), there exist a subsequence (still denoted

k) independent of t, Θ(t) ∈ L ∞ (Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that for every t ∈ [0, T ]      Θ k (t) * -⇀ Θ(t) in L ∞ (Ω; [0, 1]), Ω W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω W k (t)(x, ∇v) dx, (5.16) 
where Θ(t) and W (t) are still decreasing with respect to t.

Since W k (t)(x, •) ∈ G 1-Θ k (t)(x) (W 1 , W 2 ), by the local character of G-closure (4.3) we deduce that W k (t) ∈ G 1-Θ k (t) (W 1 , W 2 )
, and using a diagonalization argument together with (5.16) and the metrizability of Γ-convergence and L ∞ (Ω; [0, 1]) (endowed with the weak* convergence), we infer that W (t) ∈ G 1-Θ(t) (W 1 , W 2 ). Hence, using again (4.3) we obtain that

W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 )
. Moreover, as in the proof of Lemma 5.2, one can show that W (t)(x, •) is uniformly convex.

From the minimality property satisfied by u k (t), the fact that the sequence (g k ) is bounded in L ∞ (0, T ; W 1,p (Ω)) and Poincaré's inequality, we infer that sup

t∈[0,T ] sup k∈N u k (t) W 1,p (Ω) < +∞.
(5.17)

For each t ∈ [0, T ], there exist a t-dependent subsequence (k j ) and u(t) ∈ W 1,p (Ω) such that

u kj (t) ⇀ u(t) in W 1,p (Ω).
Moreover, the continuity of the trace and the fact that g k (t) → g(t) strongly in W 

u(t) W 1,p (Ω) < +∞, and thus u ∈ L ∞ ([0, T ]; W 1,p (Ω)).
We define the total energy at time t ∈ [0, T ] by

E(t) := Ω W (t)(x, ∇u(t)) dx + κ Ω (1 -Θ(t)) dx.
Our next goal is to prove the energy balance. We first prove a technical lemma which will allow us to apply Lemmas 3.1 and 3.2 to get a first energy inequality. Note that this is the only part of the proof where the uniform convexity is really essential. Indeed, this hypothesis ensures the strong continuity of the map R N ∋ ξ → ϕ ξ ∈ W 1,p per (Q), where ϕ ξ is the (unique) solution of the cell problem (4.2).

Lemma 5.6. The following properties hold:

(i) There exists a constant γ > 0 such that for every k ∈ N, ξ ∈ R N , t ∈ [0, T ] and a.e. x ∈ Ω, then |DW k (t)(x, ξ)| ≤ γ(1 + |ξ| p-1 ); (ii) For any sequences (ξ k ) and (ξ ′ k ) ⊂ R N such that |ξ k | ≤ M , |ξ ′ k | ≤ M and |ξ k -ξ ′ k | → 0 as k → +∞, for some M > 0, then |DW k (t)(x, ξ k ) -DW k (t)(x, ξ ′ k )| → 0, for every t ∈ [0, T ] and a.e. x ∈ Ω.
Proof. The first item is a consequence of the fact that W k (t)(x, •) ∈ F(α, β, p) is a convex function of class C 1 together with (2.3).

We now investigate the proof of (ii). By a diagonalization argument, there is no loss of generality to assume that W k (t)(x, •) ∈ P 1-Θ k (t)(x) (W 1 , W 2 ). From Lemmas 5.2 and 5.3 we know that for each k ∈ N, t ∈ [0, T ] and a.e. x ∈ Ω, the function W k (t)(x, •) is uniformly convex and of class C 1 . Thus by (2.5), there exists ν ′ > 0 such that

(DW k (t)(x, ξ 2 ) -DW k (t)(x, ξ 1 )) • (ξ 2 -ξ 1 ) ≥ ν ′ |ξ 1 -ξ 2 | 2 (1 + |ξ 1 | 2 + |ξ 2 | 2 ) (p-2)/2
(5. [START_REF] Maso | Quasistatic crack growth in elasto-plastic materials: the two-dimensional case[END_REF] for every ξ 1 and

ξ 2 ∈ R N . Let M > 0 and ξ k , ξ ′ k ∈ R N such that |ξ k | ≤ M , |ξ ′ k | ≤ M and |ξ k -ξ ′ k | → 0 as k → +∞. Consider χ k ∈ L ∞ (Q; {0, 1}) such that Q χ k (y) dy = 1 -Θ k (t)(x) and W k (t)(x, •) = (W χ k ) hom . Let ϕ ξ k and ϕ ξ ′ k ∈ W 1,p per (Q) satisfying W k (t)(x, ξ k ) = Q W χ k (y, ξ k + ∇ϕ ξ k ) dy and W k (t)(x, ξ ′ k ) = Q W χ k (y, ξ ′ k + ∇ϕ ξ ′ k ) dy.
By the p-growth and p-coercivity conditions (2.1), we have that

∇ϕ ξ k L p (Q;R N ) ≤ C(1 + |ξ k |) and ∇ϕ ξ ′ k L p (Q;R N ) ≤ C(1 + |ξ ′ k |), (5.20) 
for some constant C > 0 independent of k. Note that since W 1 and W 2 are uniformly convex, then W χ k (y, •) is in particular strictly convex, and thus the solutions ϕ ξ k and ϕ ξ ′ k of the cell problem (4.2) are actually unique. Moreover, the weak formulation of the Euler-Lagrange equation gives

Q DW χ k (y, ξ k + ∇ϕ ξ k ) • ∇φ dy = 0 and Q DW χ k (y, ξ ′ k + ∇ϕ ξ ′ k ) • ∇φ dy = 0, (5.21)
for every φ ∈ W 1,p per (Q). For any v ∈ S N -1 and any t ∈ R, one has

W k (t)(x, ξ k + tv) -W k (t)(x, ξ k ) t ≤ Q W χ k (y, ξ k + tv + ϕ ξ k ) -W χ k (y, ξ k + ∇ϕ ξ k ) t dy.
Since W χ k ∈ F(Q, α, β, p) by the p-growth condition (2.1), (5.20) and Fatou's Lemma, we get letting t → 0,

DW k (t)(x, ξ k ) • v ≤ Q DW χ k (y, ξ k + ∇ϕ ξ k ) dy • v,
and thus changing v in -v, we infer that

DW k (t)(x, ξ k ) • v = Q DW χ k (y, ξ k + ∇ϕ ξ k ) dy • v.
Consequently, we proved that

DW k (t)(x, ξ k ) = Q DW χ k (y, ξ k + ∇ϕ ξ k ) dy (5.22) 
and similarly

DW k (t)(x, ξ ′ k ) = Q DW χ k (y, ξ ′ k + ∇ϕ ξ ′ k ) dy. (5.23) 
By (5.19) and (5.21), we get that

ν ′ Q |(ξ k -ξ ′ k ) + (∇ϕ ξ k -∇ϕ ξ ′ k )| 2 1 + |ξ k + ∇ϕ ξ k | 2 + |ξ ′ k + ∇ϕ ξ ′ k | 2 (p-2)/2 dy ≤ Q DW χ k (y, ξ k + ∇ϕ ξ k ) -DW χ k (y, ξ ′ k + ∇ϕ ξ ′ k ) • (ξ k + ∇ϕ ξ k ) -(ξ ′ k + ∇ϕ ξ ′ k ) dy = Q DW χ k (y, ξ k + ∇ϕ ξ k ) -DW χ k (y, ξ ′ k + ∇ϕ ξ ′ k ) • (ξ k -ξ ′ k ) dy.
Therefore, since DW χ k satisfies the (p -1)-growth condition (2.3), we deduce that

Q |(ξ k -ξ ′ k ) + (∇ϕ ξ k -∇ϕ ξ ′ k )| 2 1 + |ξ k + ∇ϕ ξ k | 2 + |ξ ′ k + ∇ϕ ξ ′ k | 2 (p-2)/2 dy ≤ C 1 (1 + |ξ k | p-1 + |ξ ′ k | p-1 )|ξ k -ξ ′ k |, (5.24) for some constant C 1 > 0 independent of k. We claim that ∇ϕ ξ k -∇ϕ ξ ′ k → 0 in L 1 (Q; R N ).
To show this property, we first consider exponents p ≥ 2. Then from (5.24), since (p -2)/p ≥ 0, we immediately get that

Q |∇ϕ ξ k -∇ϕ ξ ′ k | 2 dy ≤ C 2 |ξ k -ξ ′ k |,
where C 2 > 0 is a constant depending only on p, N , M and ν ′ . On the other hand, if 1 < p < 2, then p/2 < 1, and by the reverse Hölder's Inequality (see e.g. [1, Theorem 2.6]), we have

Q |(ξ k -ξ ′ k ) + (∇ϕ ξ k -∇ϕ ξ ′ k )| 2 1 + |ξ k + ∇ϕ ξ k | 2 + |ξ ′ k + ∇ϕ ξ ′ k | 2 (p-2)/2 dy ≥ Q |(ξ k -ξ ′ k ) + (∇ϕ ξ k -∇ϕ ξ ′ k )| p dy 2/p Q 1 + |ξ k + ∇ϕ ξ k | 2 + |ξ ′ k + ∇ϕ ξ ′ k | 2 p/2 dy (p-2)/p ≥ C 3 (1 + M p ) (p-2)/p Q |(ξ k -ξ ′ k ) + (∇ϕ ξ k -∇ϕ ξ ′ k )| p dy 2/p
, for some constant C 3 > 0 (independent of k), where we used (5.20) and the fact that (p -2)/p < 0. Then using again (5.24), we deduce that

Q |∇ϕ ξ k -∇ϕ ξ ′ k | p dy ≤ C 4 |ξ k -ξ ′ k |,
where C 4 > 0 is a constant which only depends on p, N , M and ν ′ . Gathering both cases, it turns out that indeed

∇ϕ ξ k -∇ϕ ξ ′ k → 0 in L 1 (Q; R N
) and also a.e. (up to a subsequence). From (4.4) (with χ k instead of χ n ) together with (5.22) and (5.23), we get that

|DW k (t)(x, ξ k ) -DW k (t)(x, ξ ′ k )| ≤ Q |DW χ k (y, ξ k + ∇ϕ ξ k ) -DW χ k (y, ξ ′ k + ∇ϕ ξ ′ k )| dy ≤ Q |DW 1 (ξ k + ∇ϕ ξ k ) -DW 1 (ξ ′ k + ∇ϕ ξ ′ k )| dy + Q |DW 2 (ξ k + ∇ϕ ξ k ) -DW 2 (ξ ′ k + ∇ϕ ξ ′ k )| dy. (5.25) 
It remains to show that the right hand side of (5.25) is infinitesimal. To do that, we split the above integrals as a first integral over the set

A k R := {x ∈ Q : |ξ k + ∇ϕ ξ k (x)| ≤ R and |ξ ′ k + ∇ϕ ξ ′ k (x)| ≤ R}
, where R > 1, and a second one over the complementary Q \ A k R , and we estimate separately both terms. Concerning the integral over A k R , we denote by ω 1,R (resp. ω 2,R ) the modulus of continuity of DW 1 (resp. DW 2 ) in B R . Since DW 1 and DW 2 are uniformly continuous on B R , then ω 1,R (t) → 0 and ω 2,R (t) → 0 as t → 0. Then for i = 1 and 2, we get from the Dominated Convergence Theorem that

A k R |DW i (ξ k + ∇ϕ ξ k ) -DW i (ξ ′ k + ∇ϕ ξ ′ k )| dy ≤ A k R ω i,R (|ξ k -ξ ′ k | + |∇ϕ ξ k -∇ϕ ξ ′ k |) dy → 0 (5.26)
as k → 0 for fixed R > 1. We now deal with the integral over Q \ A k R . We first remark that thanks to (5.20), there exists a constant C > 0 (independent of k and R) such that L N (Q \ A k R ) ≤ C/R p . Therefore, using the (p -1)-growth condition (2.3) satisfied by W i , Hölder's inequality and (5.20), we get that

Q\A k R |DW i (ξ k + ∇ϕ ξ k ) -DW i (ξ ′ k + ∇ϕ ξ ′ k )| dy ≤ γ Q\A k R (2 + |ξ k + ∇ϕ ξ k | p-1 + |ξ ′ k + ∇ϕ ξ ′ k | p-1 ) dy ≤ C 1 + ξ k + ∇ϕ ξ k p-1 L p (Q;R N ) + ξ ′ k + ∇ϕ ξ ′ k p-1 L p (Q;R N ) L N (Q \ A k R ) 1/p ≤ C(1 + M p-1 ) R → 0 (5.27)
as R → +∞, uniformly with respect to k. Now gathering (5.26) and (5.27), and passing to the limit first as k → +∞ and then as R → +∞, we obtain that

lim k→+∞ Q |DW i (ξ k + ∇ϕ ξ k ) -DW i (ξ ′ k + ∇ϕ ξ ′ k )| dy = 0, which implies, in view of (5.25), that |DW k (t)(x, ξ k ) -DW k (t)(x, ξ ′ k )| → 0. Remark 5.1.
As noticed in section 2.2, the functions W 1 (ξ) = α|ξ| p and W 2 (ξ) = β|ξ| p (with p > 1 and 0 < α ≤ β < +∞) do not fulfill the assumption of uniform convexity, although they are very important examples. However, the proof of Lemma 5.6 still works in that case since the differentials DW 1 and DW 2 (and thus also DW k (t)(x, •)) are strongly monotone by (2.6) and (2.7).

We are now in position to state a first energy inequality. Proposition 5.2. For any t ∈ [0, T ], one has E k (t) → E(t), and

E(t) ≤ E 0 + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ.
(5.28)

Proof. By the Γ-convergence result (5.16), we have that

E(t) ≤ lim inf k→+∞ Ω W k (t)(x, ∇u k (t)) dx + κ Ω (1 -Θ k (t)) dx ,
hence from the upper bound estimate (5.15), we get that

E(t) ≤ E 0 + lim sup k→+∞ t 0 Ω DW k (τ )(x, ∇u k (τ ) + Φ k (τ )) • ∇ ġ(τ ) dx dτ.
As a consequence of Lemma 3.1 (with

µ = L N +1 (Ω × [0, T ]) and A = L(Ω) ⊗ B([0, T ]), where L(Ω)
is the σ-algebra of all Lebesgue measurable subsets of Ω, and B([0, T ]) is the σ-algebra of all Borel subsets of [0, T ]) and Lemma 5.6, since Φ k → 0 in L p (Ω × (0, T ); R N ), we infer that

E(t) ≤ E 0 + lim sup k→+∞ t 0 Ω DW k (τ )(x, ∇u k (τ )) • ∇ ġ(τ ) dx dτ. (5.29) 
Next we would like to apply Lemma 3.2 to deduce (5.28) from (5.29). To do that, we need to show the convergence of the elastic energy. First, by the Γ-lower bound, we have

Ω W (t)(x, ∇u(t)) dx ≤ lim inf k→+∞ Ω W k (t)(x, ∇u k (t)) dx. (5.30) 
We now prove that this inequality is actually an equality. Consider a recovery sequence (u

* k ) ⊂ W 1,p (Ω) such that u * k ⇀ u(t) in W 1,p (Ω) and Ω W (t)(x, ∇u(t)) dx = lim k→+∞ Ω W k (t)(x, ∇u * k ) dx.
Since g k (t) → g(t) strongly in W 1,p (Ω) and u(t) = g(t) on ∂ D Ω, by a standard truncation argument which uses a suitable cut-off function, there is no loss of generality to assume that u

* k = g k (t) on ∂ D Ω so that u * k (t) ∈ A k (t).
Hence by minimality of u k (t) we obtain that for each k ∈ N,

Ω W k (t)(x, ∇u k (t)) dx ≤ Ω W k (t)(x, ∇u * k ) dx,
and thus, taking the limsup as k → +∞, we deduce that lim sup

k→+∞ Ω W k (t)(x, ∇u k (t)) dx ≤ Ω W (t)(x, ∇u(t)) dx. (5.31) 
Hence gathering (5.30) and (5.31), we get that

lim k→+∞ Ω W k (t)(x, ∇u k (t)) dx = Ω W (t)(x, ∇u(t)) dx,
and consequently E k (t) → E(t). We are now in position to apply Lemma 3.2 from which we obtain that for every t ∈ [0, T ],

lim k→+∞ Ω DW k (t)(x, ∇u k (t)) • ∇ ġ(t) dx = Ω DW (t)(x, ∇u(t)) • ∇ ġ(t) dx,
and using (5.29) together with the Dominated Convergence Theorem, we get the desired energy inequality (5.28).

We next prove that the energy inequality (5.28) is actually an equality. Following [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] the argument rests on the approximation of the Bochner integral by suitable Riemann sums (see [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]Lemma 4.12]) that we recall here. Lemma 5.7. Let X be a Banach space and f : [0, T ] → X be a Bochner integrable function. Then there exists a sequence of subdivisions

(s k i ) 0≤i≤i k of the interval [0, T ], with 0 = s k 0 < s k 1 < . . . < s k i k -1 < s k i k = T and lim k→+∞ max 1≤i≤i k (s k i -s k i-1 ) = 0, such that lim k→+∞ i k i=1 s k i s k i-1 f (s k i ) -f (t) X dt = 0.
Now thanks to Lemma 5.7 we are in position to show the following lower bound inequality on the total energy. Proposition 5.3. For any t ∈ [0, T ], then

E(t) ≥ E 0 + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ. Proof. Let s < t. Since u(t) + g(s) -g(t) ∈ A(s), by Γ-convergence, one can find a sequence (v k ) such that v k ∈ A k (s) for each k ∈ N, v k ⇀ u(t) + g(s) -g(t) in W 1,p (Ω), and 
lim k→+∞ Ω W k (t)(x, ∇v k ) dx = Ω W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx. (5.32) Let i ≤ j be such that s ∈ [t k i , t k i+1 ) and t ∈ [t k j , t k j+1 ). Since by Lemma 5.5 W k j (x, •) ∈ G 1- Θ k j (x) Θ k i-1 (x) (W 1 , W k i-1 (x, •))
for a.e. x ∈ Ω, then from (5.6), (5.7) and (5.10) we have that

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx ≤ Ω W k j (x, ∇v k ) dx + κ Ω Θ k i-1 1 - Θ k j (x) Θ k i-1 (x) dx,
and thus

Ω W k (s)(x, ∇u k (s)) dx + κ Ω (1 -Θ k (s))dx ≤ Ω W k (t)(x, ∇v k ) dx + κ Ω (1 -Θ k (t))dx.
Hence taking the limit as k → +∞, (5.32) leads to

Ω W (s)(x, ∇u(s)) dx + κ Ω (1 -Θ(s))dx ≤ Ω W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx + κ Ω (1 -Θ(t))dx,
and consequently,

E(s) ≤ E(t) + Ω W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx - Ω W (t)(x, ∇u(t)) dx.
By the Mean Value Theorem, there exists ρ(s, t) ∈ [0, 1] such that

E(t) -E(s) ≥ Ω DW (t) x, ∇u(t) -ρ(s, t) t s ∇ ġ(τ ) dτ • t s ∇ ġ(τ ) dτ dx. (5.33) 
By Lemma 5.7, consider a sequence of subdivisions (

s k i ) 0≤i≤i k of the interval [0, t], with 0 = s k 0 < s k 1 < . . . < s k i k -1 < s k i k = t and lim k→+∞ max 1≤i≤i k (s k i -s k i-1 ) = 0, such that lim k→+∞ i k i=1 (s k i -s k i-1 )∇ ġ(s k i ) - s k i s k i-1 ∇ ġ(t) dt L p (Ω;R N ) = 0 (5.34)
and

lim k→+∞ i k i=1 (s k i -s k i-1 )ϑ(s k i ) - s k i s k i-1 ϑ(t) dt = 0, (5.35) 
where

ϑ(t) = Ω DW (t)(x, ∇u(t)) • ∇ ġ(t) dx. (5.36) 
For all s ∈ [s k i , s k i+1 ), we define

W k (s) := W (s k i+1 ), ūk (s) := u(s k i+1 ) and Ψ k (s) := -ρ(s k i , s k i+1 ) s k i+1 s k i ∇ ġ(τ ) dτ.
As ∇ ġ ∈ L 1 (0, T ; L p (Ω; R N )), we have that

Ψ k (s) L p (Ω;R N ) → 0
uniformly with respect to s ∈ [0, t]. In (5.33) we replace s by s k i and t by s k i+1 , then summing up for i = 0 to i k -1 yields

E(t) -E(0) ≥ t 0 Ω DW k (τ )(x, ∇ū k (τ ) + Ψ k (τ )) • ∇ ġ(τ ) dx dτ.
Note that DW k (t) obviously satisfies the (p -1)-growth condition (2.3). Moreover, since for t ∈

[s k i , s k i+1 ), one has W k (t)(x, •) = W (s k i+1 )(x, •) ∈ G 1-Θ(s k i+1 )(x) (W 1 , W 2 ) for a.e.
x ∈ Ω, we deduce from similar arguments than those used in the proof of Lemma 5.6 that for all M > 0 and all sequences (ξ k ) and

(ξ ′ k ) in R N satisfying |ξ k | ≤ M , |ξ ′ k | ≤ M and |ξ k -ξ ′ k | → 0, then |DW k (t)(x, ξ k ) -DW k (t)(x, ξ ′ k )| → 0 for a.e.
x ∈ Ω. As a consequence, applying Lemma 3.1 and remembering that Ψ k → 0 in L p (Ω × (0, T ); R N ), we get that

E(t) -E(0) ≥ lim sup k→+∞ t 0 Ω DW k (τ )(x, ∇ū k (τ )) • ∇ ġ(τ ) dx dτ.
(5.37)

By the (p -1)-growth condition (2.3) satisfied by DW (s k i+1 ) together with Hölder's inequality and (5.34), we have

i k -1 i=0 Ω DW (s k i+1 )(x, ∇u(s k i+1 )) • (s k i+1 -s k i )∇ ġ(s k i+1 ) - s k i+1 s k i ∇ ġ(τ ) dτ ) dx ≤ C 1 + ∇u p-1 L ∞ (0,T ;L p (Ω;R N )) i k -1 i=0 (s k i+1 -s k i )∇ ġ(s k i+1 ) - s k i+1 s k i ∇ ġ(t) dt L p (Ω;R N ) → 0,
and thus from (5.35), (5.36) and (5.37) we deduce that

E(t) -E(0) ≥ lim sup k→+∞ i k -1 i=0 (s k i+1 -s k i ) Ω DW (s k i+1 )(x, ∇u(s k i+1 )) • ∇ ġ(s k i+1 ) dx = t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ,
which completes the proof of the proposition.

Next, we prove a unilateral minimality property satisfied by the triple (u(t), Θ(t), W (t)) which is stronger than (5.18).

Proposition 5.4. Let t ∈ [0, T ]. For any v ∈ A(t), any θ ∈ L ∞ (Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that W (x, •) ∈ G θ(x) (W 1 , W (t)(x, •)) for a.e. x ∈ Ω, then Ω W (t)(x, ∇u(t)) dx ≤ Ω W (x, ∇v) dx + κ Ω Θ(t)θ dx. Proof. Let t ∈ [0, T ], v ∈ A(t), θ ∈ L ∞ (Ω; [0, 1]) and W ∈ F(Ω, α, β, p) such that W (x, •) ∈ G θ(x) (W 1 , W (t)(x, •
)) for a.e. x ∈ Ω. By Proposition 4.1, there exists a sequence of characteristic functions (χ n ) ⊂ L ∞ (Ω; {0, 1}) such that χ n * -⇀ θ in L ∞ (Ω; [0, 1]), and

Ω W (x, ∇v) dx = Γ-lim n→+∞ Ω χ n W 1 (∇v) + (1 -χ n )W (t)(x, ∇v) dx. Moreover, since Ω W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω W k (t)(x, ∇v) dx,
we deduce from Lemma 4.1 that for each n ∈ N,

Ω χ n W 1 (∇v) + (1 -χ n )W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω χ n W 1 (∇v) + (1 -χ n )W k (t)(x, ∇v) dx. Let (v n ) ⊂ W 1,p (Ω) be a recovery sequence weakly converging to v in W 1,p (Ω) such that Ω W (x, ∇v) dx = lim n→+∞ Ω χ n W 1 (∇v n ) + (1 -χ n )W (t)(x, ∇v n ) dx.
(5.38)

Without loss of generality, one can assume that for each n ∈ N, v n = v on a neighborhood of ∂Ω, and in particular v n ∈ A(t) for each n ∈ N. Consider now (v n,k ) k ⊂ W 1,p (Ω) such that v n,k ⇀ v n in W 1,p (Ω) as k → +∞, and satisfying

Ω χ n W 1 (∇v n ) + (1 -χ n )W (t)(x, ∇v n ) dx = lim k→+∞ Ω χ n W 1 (∇v n,k ) + (1 -χ n )W k (t)(x, ∇v n,k ) dx. (5.39)
Once again, since for every t ∈ [0, T ], g k (t) converges strongly to g(t) in W 1,p (Ω) as k → +∞, it is not restrictive to assume that

v n,k = g k (t) on ∂ D Ω so that v n,k ∈ A k (t).
Fix k ∈ N and let i be such that t ∈ [t k i , t k i+1 ), by (5.7) and (5.10), we have that

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx ≤ Ω Qψ k i (x, ∇v n,k ) dx.
On the other hand, since

χ n (x)W 1 + (1 -χ n (x))W k i (x, •) ∈ G χn(x)+(1-χn(x))θ k i (x) (W 1 , W k i-1 (x, •))
, where

θ k i = Θ k i-1 -Θ k i Θ k i-1
, we deduce from the expression (5.6) of Qψ k i that

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx ≤ Ω χ n W 1 (∇v n,k ) + (1 -χ n )W k i (x, ∇v n,k ) dx +κ Ω Θ k i-1 χ n + (1 -χ n )θ k i = Ω χ n W 1 (∇v n,k ) + (1 -χ n )W k i (x, ∇v n,k ) dx +κ Ω Θ k i-1 χ n + (1 -χ n )(Θ k i-1 -Θ k i ) . Define Ξ k (t) = Θ k i-1 if t ∈ [t k i , t k i+1
) and Ξ(t) its weak* limit in L ∞ (Ω; [0, 1]). Thanks to (5.39) we get by passing to the limit as k → +∞ that

Ω W (t)(x, ∇u(t)) dx + κ Ω (Ξ(t) -Θ(t)) dx ≤ Ω χ n W 1 (∇v n ) + (1 -χ n )W (t)(x, ∇v n ) dx +κ Ω Ξ(t)χ n + (1 -χ n )(Ξ(t) -Θ(t)) dx.
Sending then n → +∞ yields, according to (5.38),

Ω W (t)(x, ∇u(t)) dx + κ Ω (Ξ(t) -Θ(t)) dx ≤ Ω W (x, ∇v) dx + κ Ω Ξ(t)θ + (1 -θ)(Ξ(t) -Θ(t)) dx,
and thus

Ω W (t)(x, ∇u(t)) dx ≤ Ω W (x, ∇v) dx + κ Ω Θ(t)θ dx,
which is exactly the desired unilateral minimality property.

Finally, as a consequence of the fact that W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 ) for a.e. x ∈ Ω and all t ∈ [0, T ], together with the local character of G-closure (4.3), we deduce that the quasistatic evolution obtained in Theorem 1.1 is not too low in the sense that the total energy is as close as we want from the one associated to the original model. Proposition 5.5. Let (u(t), Θ(t), W (t)) be any quasistatic evolution given by Theorem 1.1. Then there exists a time dependent sequence of characteristic functions (χ n (t)) ⊂ L ∞ (Ω; {0, 1}) which is increasing with respect to t, such that for any t ∈ [0, T ], 

   χ n (t) * -⇀ 1 -Θ(t) in L ∞ (Ω; [0, 1]), Ω W χn(t) (x, ∇v) dx Γ -→ Ω W ( 

Fracture versus damage

This section is devoted to the proof of Theorem 1.2 which is an existence result of a model of quasistatic evolution for a continuum that undergoes both damage and fracture. This study was initiated in [START_REF] Fonseca | Relaxation in BV versus quasiconvexification in W 1,p ; a model for the interaction between fracture and damage[END_REF].

Since the arguments will be very close to those employed in the previous section, we will not prove all the statements postponing to section 5 for more details.

In addition to the damage process, we assume that the material under consideration can experience fractures. The modeling of the fracture process is conceptually similar to that of damage (we refer to [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF] for detailed description of the model). At a discrete time level, and for a given time t i , the created crack Γ i will be assimilate to the union of the crack at the previous time step Γ i-1 and the jump set J ui of the current deformation field u i which is solution of a minimization problem involving a surface energy which penalizes the presence of cracks. According to Griffith's theory we assume that the energy spent to produce a crack is proportional to its area so that the dissipative energy from the initial time up to time

t i is G c H N -1 (Γ i \ ∂ N Ω)
, where G c > 0 is the toughness of the material that we assume to be equal to 1 for simplicity. Note that there is no energy associated to the part of the crack that lies on ∂ N Ω. On the other hand, it possible for the crack to reach the Dirichlet boundary ∂ D Ω, and Γ i ∩ ∂ D Ω will be interpreted as those points of ∂ D Ω where the deformation u i do not match the boundary datum g(t i ).

For technical reasons, we assume now that the boundary datum

g ∈ W 1,1 ([0, T ]; W 1,p (R N )) ∩ L ∞ (R N × [0, T ]).
The reason why we further impose an L ∞ bound is that it will enable us to apply the maximum principle in the following minimization problems, ensuring their wellposedness.

Since ∂ D Ω is open in the relative topology of ∂Ω, there exists an open set Ω ′ ⊂ R N such that Ω ⊂ Ω ′ and Ω ′ ∩ ∂Ω = ∂ D Ω. Then the space of all kinematically admissible deformation fields is given by A(t) := {v ∈ SBV p (Ω ′ ) : v = g(t) a.e. on Ω ′ \ Ω}.

Note that if v ∈ A(t), then v = g(t) H N -1 -a.e. on ∂ D Ω \ J v , where we still denote by v the inner trace of v on ∂ D Ω.

6.1. Time discretization.

6.1.1. First time step. At the initial time, g k 0 = g(0), and one wants to minimize

(v, χ) → Ω χW 1 (∇v) + (1 -χ)W 2 (∇v) + κχ dx + H N -1 (J v \ ∂ N Ω),
among all (v, χ) ∈ A(0) × L ∞ (Ω; {0, 1}). Minimizing first with respect to χ leads to the following nonconvex integrand ψ 0 (ξ) := min{W 1 (ξ) + κ, W 2 (ξ)}, and the previous minimization problem is equivalent to

I 0 := inf v∈A(0) Ω ψ 0 (∇v) dx + H N -1 (J v \ ∂ N Ω) . (6.1)
The lack of convexity of the integrand ψ 0 may prevent (6.1) to have solutions, so that it is necessary to compute the relaxed problem. Since the boundary datum g(0) ∈ L ∞ (Ω ′ ), then by the maximum principle there is no loss of generality to assume that the minimizing sequences are uniformly bounded in L ∞ (Ω ′ ). Hence by Ambrosio's compactness Theorem (Theorem 2.1), the limit functional space remains SBV p (Ω ′ ) and to get the relaxed functional, it suffices to replace ψ 0 by its convexification (see Theorem 3.4), which coincides in the scalar case of its quasiconvexification Qψ 0 defined by

Qψ 0 (ξ) := inf ϕ∈W 1,p per (Q) Q ψ 0 (ξ + ∇ϕ) dx,
or by Lemma 5.1

Qψ 0 (ξ) = min θ∈[0,1] min W * ∈G θ (W1,W2) W * (ξ) + κθ .
Then by Theorem 3.4

I 0 = min v∈A(0) Ω Qψ 0 (∇v) dx + H N -1 (J v \ ∂ N Ω) . (6.2) 
Let u 0 ∈ A(0) be a minimizer of (6.2). By Lemmas 5.1 and 5.2, there exist θ 0 ∈ L ∞ (Ω; [0, 1]) and a Carathéodory function W 0 ∈ F(Ω, α, β, p) such that for a.e. x ∈ Ω, W 0 (x, •) ∈ G θ0(x) (W 1 , W 2 ) is uniformly convex and of class C 1 , and Qψ 0 (∇u 0 (x)) = W 0 (x, ∇u 0 (x)) + κθ 0 (x).

We now define the total energy at the initial time by

E 0 := Ω Qψ 0 (∇u 0 ) dx + H N -1 (J u0 \ ∂ N Ω) = Ω W 0 (x, ∇u 0 ) dx + κ Ω (1 -Θ 0 ) dx + H N -1 (Γ 0 \ ∂ N Ω) = I 0 ,
where Θ 0 := 1θ 0 is the local volume fraction of the undamaged material, and Γ 0 := J u0 is the crack created at the initial time.

6.1.2. Subsequent time steps. Let i ≥ 1, and assume that there exist a Carathéodory function

W k i-1 ∈ F(Ω, α, β, p), Θ k i-1 ∈ L ∞ (Ω; [0, 1]) such that W k i-1 (x, •) ∈ G 1-Θ k i-1 (x) (W 1 , W 2 ) for a.e. x ∈ Ω, and Γ k i-1 ∈ R(Ω). At time t k i one wants to minimize (v, χ) → Ω χW 1 (∇v) + (1 -χ)W k i-1 (x, ∇v) + κχ dx + κ Ω Θ k i-1 χ dx + H N -1 (J v \ (Γ k i-1 ∪ ∂ N Ω)), among all (v, χ) ∈ A(t k i ) × L ∞ (Ω; {0, 1}
). We first minimize with respect to χ which leads to the following nonconvex Carathéodory integrand

ψ k i (x, ξ) := min{W 1 (ξ) + κΘ k i-1 (x), W k i-1 (x, ξ)},
and the previous minimization problem is equivalent to

I k i := inf v∈A(t k i ) Ω ψ k i (x, ∇v) dx + H N -1 (J v \ (Γ k i-1 ∪ ∂ N Ω)) . (6.3)
Once again, the lack of convexity of the integrand ψ k i may prevent (6.3) to have solutions, and it is necessary to compute the relaxed problem. As before it suffices to replace ψ k i by its (quasi)convexification defined by

Qψ k i (x, ξ) := inf ϕ∈W 1,p per (Q) Q ψ k i (x, ξ + ∇ϕ(y)) dy,
or still, by Lemma 5.1,

Qψ k i (x, ξ) = min θ∈[0,1] min W * ∈G θ (W1,W k i-1 (x,•)) W * (ξ) + κΘ k i-1 (x)θ . (6.4) 
Then, by Theorem 3.4

I k i = min v∈A(t k i ) Ω Qψ k i (x, ∇v) dx + H N -1 (J v \ (Γ k i-1 ∪ ∂ N Ω)) . (6.5) 
Let u k i ∈ A(t k i ) be a solution of (6.5), i.e.,

I k i = Ω Qψ k i (x, ∇u k i ) dx + H N -1 (J u k i \ (Γ k i-1 ∪ ∂ N Ω)).
By Lemma 5.3, there exist θ k i ∈ L ∞ (Ω; [0, 1]) and a Carathéodory function

W k i ∈ F(Ω, α, β, p) such that for a.e. x ∈ Ω, W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •))
is uniformly convex and of class C 1 , and

Qψ k i (x, ∇u k i (x)) = W k i (x, ∇u k i (x)) + κΘ k i-1 (x)θ k i (x)
. We define the volume fraction of the undamaged material and the crack at time

t k i by Θ k i := Θ k i-1 (1 -θ k i ) and Γ k i := Γ k i-1 ∪ J u k i . Then, as in the proof of Lemma 5.3 one has W k i (x, •) ∈ G 1-Θ k i (x) (W 1 , W 2 
) for a.e. x ∈ Ω, and

I k i = Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx + H N -1 (J u k i \ (Γ k i-1 ∪ ∂ N Ω)). (6.6)
We also define the total energy at time t k i by

E k i := I k i + κ Ω (1 -Θ k i-1 ) dx + H N -1 (Γ k i-1 \ ∂ N Ω) = Ω W k i (x, ∇u k i ) dx + κ Ω (1 -Θ k i ) dx + H N -1 (Γ k i \ ∂ N Ω).

6.2.

A few properties of the discrete evolution. Since u k i is a solution of (6.5) and

W k i (x, •) ∈ G θ k i (x) (W 1 , W k i-1 (x, •)) for a.e. x ∈ Ω, it follows that u k i is also a solution of inf v∈A(t k i ) Ω W k i (x, ∇v) dx + H N -1 (J v \ (Γ k i-1 ∪ ∂ N Ω)) , (6.7) 
and the pair (u k i , Γ k i ) satisfies the following unilateral minimality property:

Ω W k i (x, ∇u k i ) dx + H N -1 (Γ k i \ ∂ N Ω) ≤ Ω W k i (x, ∇v) dx + H N -1 (K \ ∂ N Ω), (6.8) 
for any K ∈ R(Ω) satisfying Γ k i ⊂ K, and any v ∈ A(t k i ) with J v ⊂ K. Moreover, W k i satisfies the same monotonicity properties than in Lemmas 5.4 and 5.5, and arguing exactly as in section 5.3.3, we derive the following upper bound on the total energy:

E k j ≤ E 0 + j-1 i=0 Ω DW k i (x, ∇u k i + s k i (∇g k i+1 -∇g k i )) • (∇g k i+1 -∇g k i ) dx. (6.9) 6.3. Piecewise constant interpolation. For each t ∈ [t k i , t k i+1 ), we set g k (t) := g k i , u k (t) := u k i , Θ k (t) := Θ k i , Γ k (t) := Γ k i , W k (t) := W k i , and we define A k (t) := A(t k i ) and E k (t) := E k i .
In particular u k (t) ∈ A k (t), and by (6.8) the pair (u k (t), Γ k (t)) satisfies the following unilateral minimality property: for every t ∈ [0, T ],

Ω W k (t)(x, ∇u k (t)) dx + H N -1 (Γ k (t) \ ∂ N Ω) ≤ Ω W k (t)(x, ∇v) dx + H N -1 (K \ ∂ N Ω), (6.10) 
for any K ∈ R(Ω) satisfying Γ k (t) ⊂ K, and any v ∈ A k (t) with J v ⊂ K. Moreover, the mappings t → W k (t) ∈ F(Ω, α, β, p) and t → Θ k (t) ∈ L ∞ (Ω; [0, 1]) are decreasing, and t → Γ k (t) is increasing for every k ∈ N.

As in the previous section, there exists a Bochner integrable function Φ k : [0, T ] → L p (Ω; R N ) satisfying Φ k (t) L p (Ω;R N ) → 0 uniformly with respect to t ∈ [0, T ], such that the energy estimate (6.9) can be rewritten as 

E k (t) ≤ E 0 + t 0 Ω DW k (τ )(x, ∇u k (τ ) + Φ k (τ )) • ∇ ġ(τ ) dx dτ. ( 6 
A(t), Θ(t) ∈ L ∞ (Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that                    Γ k (t) σ-converges to Γ(t), u k (t) ⇀ u(t) in SBV p (Ω), Θ k (t) * -⇀ Θ(t) in L ∞ (Ω; [0, 1]), Ω W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω W k (t)(x, ∇v) dx.
Moreover the map (u, ∇u) : [0, T ] → L p (Ω) × L p (Ω; R N ) is strongly measurable, the maps t → Θ(t) and t → W (t) are decreasing and t → Γ(t) is increasing, and Proof. The compactness of the pair (Θ k (t), W k (t)) and the properties of the limit (Θ(t), W (t)) can be obtained exactly as in the proof of Proposition 5.1. We now deal with the compactness of (Γ k (t)) and (u k (t)) by first deriving a priori estimates. From the maximum principle, we have that According to (6.15), Proposition 3.1 and a variant of Helly's Theorem for increasing set functions (see e.g. [START_REF] Maso | A model for the quasistatic growth of brittle fractures: existence and approximation results[END_REF]Theorem 6.3] for the case of Hausdorff converging compact sets), one can assume that for the same subsequence, Γ k (t) σ-converges to some Γ(t) ∈ R(Ω) which is still increasing with respect to t.

W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 )
u k i L ∞ (Ω ′ ) ≤ g k i L ∞ (Ω ′ ) and thus sup t∈[0,T ] sup k∈N u k (t) L ∞ (Ω ′ ) < +∞. ( 6 
Moreover, according to (6.13), (6.14), (6.15) and the fact that (by construction)

J u k (t) ⊂ Γ k (t), we deduce that sup t∈[0,T ] sup k∈N u k (t) L ∞ (Ω ′ ) + ∇u k (t) L p (Ω ′ ;R N ) + H N -1 (J u k (t) ) < +∞. ( 6.16) 
Hence by (6.16) and Ambrosio's compactness Theorem (Theorem 2.1), for each t ∈ [0, T ], there exist a t-dependent subsequence (k j ) and u(t) ∈ SBV p (Ω ′ ) such that u kj (t) ⇀ u(t) in SBV p (Ω ′ ). Moreover, the fact that g k (t) → g(t) strongly in W 1,p (Ω ′ ) for every t ∈ [0, T ] ensures that u(t) = g(t) a.e. on Ω ′ \ Ω, so that u(t) ∈ A(t). By (6.10), Lemma 5.6 and Theorem 3.5, we deduce that the pair (u(t), Γ(t)) is a unilateral minimizer with respect to the integrand W (t), i.e., Ω W (t)(x, ∇u(t)) dx

+ H N -1 (Γ(t) \ ∂ N Ω) ≤ Ω W (t)(x, ∇v) dx + H N -1 (K \ ∂ N Ω),
for any K ∈ R(Ω) satisfying Γ(t) ⊂ K, and any v ∈ A(t) satisfying J v ⊂ K. In particular, if we fix K = Γ(t), since W (t)(x, •) is in particular strictly convex (see the proof of Proposition 5.1), then the minimization problem min Ω W (t)(x, ∇v) dx : v ∈ A(t), J v ⊂ Γ(t) admits a unique solution which must be u(t). Hence by uniqueness the whole sequence u k (t) weakly converges to u(t) in SBV p (Ω) and using again Theorem 3.5, we infer that the convergence of the bulk energy (6.12) holds. Finally, one can show exactly as in the proof of Proposition 5.1 that the map (u, ∇u) : [0, T ] → L p (Ω) × L p (Ω; R N ) is strongly measurable.

We define the total energy at time t ∈ [0, T ] by

E(t) := Ω W (t)(x, ∇u(t)) dx + κ Ω (1 -Θ(t)) dx + H N -1 (Γ(t) \ ∂ N Ω).
Our next goal is to prove the energy balance. We start by proving the upper bound inequality on the total energy. which, together with (6.19) completes the proof of (6.17).

We next prove that the energy inequality (6.17) is actually an equality. Following [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] the argument rests on the approximation of the Bochner integral by suitable Riemann sums (see Lemma 5.7). Moreover, for every t ∈ [0, T ], there is convergence of the surface energy

H N -1 (Γ k (t) \ ∂ N Ω) → H N -1 (Γ(t) \ ∂ N Ω)
as well as the total energy E k (t) → E(t). ). Since by Lemma 5.5

Proof

W k j (x, •) ∈ G 1- Θ k j (x) Θ k i-1 (x) (W 1 , W k i-1 (x, •))
for a.e. x ∈ Ω, then from (6.4), (6.5) and (6.6) we have that The rest of the proof of the energy inequality is exactly the same than that of Proposition 5.3 by choosing a suitable subdivision (s k i ) 0≤i≤i k of the interval [0, t] thanks to Lemma 5.7. To prove the convergence of the total energy, for t ∈ [0, T ], we have thanks to (6.18) and (6.20) Then the convergence of the surface energy follows as a consequence of (6.12).

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx + H N -1 (J u k i \ (Γ k i-1 ∪ ∂ N Ω)) ≤ Ω W k j (x, ∇v k ) dx + κ Ω Θ k i-1 1 - Θ k j (x) Θ k i-1 (x) dx + H N -1 (J v k \ (Γ k i-1 ∪ ∂ N Ω)),

E(t) ≤ lim inf

We next prove that (u(t), Θ(t), Γ(t), W (t)) satisfies a unilateral minimality property. Fix k ∈ N and let i be such that t ∈ [t k i , t k i+1 ), by (6.5) and (6.6), we have that

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx + H N -1 (J u k i \ (Γ k i-1 ∪ ∂ N Ω)) ≤ Ω Qψ k i (x, ∇v n,k ) dx + H N -1 (J v n,k \ (Γ k i-1 ∪ ∂ N Ω)).
On the other hand, since χ n (x)

W 1 + (1 -χ n (x))W k i (x, •) ∈ G χn(x)+(1-χn(x))θ k i (x) (W 1 , W k i-1 (x, •))
, where

θ k i = Θ k i-1 -Θ k i Θ k i-1
, we deduce from the expression (6.4) of Qψ k i that 

Ω W k i (x, ∇u k i ) dx + κ Ω (Θ k i-1 -Θ k i ) dx ≤ Ω χ n W 1 (∇v n,k ) + (1 -χ n )W k i (x, ∇v n,k ) dx + κ Ω Θ k i-1 χ n + (1 -χ n )θ k i ) dx + H N -1 (J v n,k \ (Γ k i ∪ ∂ N Ω)) = Ω χ n W 1 (∇v n,k ) + (1 -χ n )W k i (x, ∇v n,k ) dx + κ Ω Θ k i-1 χ n + (1 -χ n )(Θ k i-1 -Θ k i ) dx + H N -1 (J v n,k \ (Γ k i ∪ ∂ N Ω)). Define Ξ k (t) = Θ k i-1 if t ∈ [t k i ,
+ H N -1 (Γ(t) \ ∂ N Ω) ≤ Ω W (x, ∇v) dx + κ Ω Θ(t)θ dx + H N -1 (K \ ∂ N Ω),
which is exactly the desired unilateral minimality property.

Finally, using the fact that W (t)(x, •) ∈ G 1-Θ(t)(x) (W 1 , W 2 ) for a.e. x ∈ Ω and all t ∈ [0, T ] together with the local character of G-closure (4.3) and the Jump Transfer Theorem (Theorem 3.6), we deduce that the obtained quasistatic evolution is not too low in the sense that the elastic energy is as close as we want from the one associated to the original model. Proposition 6.5. Let (u(t), Θ(t), Γ(t), W (t)) be any quasistatic evolution given by Theorem 1.2. Then there exists a time dependent sequence of characteristic functions (χ n (t)) ⊂ L ∞ (Ω; {0, 1}) which is increasing with respect to t, such that for any t ∈ [0, T ],

 

Theorem 3 . 2 .

 32 Let (Y, d) be a compact metric space, and let Y n : [0, T ] → Y be a sequence with equibounded total variation Var d (Y n ; [0, T ]) with respect to the distance d. Then, there exist a subsequence (n k ) and a function Y :

W 0

 0 (x, ξ) := lim sup n→+∞ f n (x, ξ) and θ 0 (x) := lim sup n→+∞ θ n (x) which are consequently measurable functions of x as well. For fixed x ∈ Ω, extract a suitable subsequence (possibly depending on x) such that W 0 (x, ξ) := lim j→+∞ f nj (x, ξ) and θ 0 (x) := lim j→+∞ θ nj (x).

0 Ω 0 Ω

 00 DW k (τ )(x, ∇u k (τ ) + Φ k (τ )) • ∇ ġ(τ ) dx dτ. (6.19)Thanks to (6.12) and arguing exactly as in the proof of Proposition 5.2 we conclude thatlim k→+∞ t DW k (τ )(x, ∇u k (τ ) + Φ k (τ )) • ∇ ġ(τ ) dx dτ DW k (τ )(x, ∇u k (τ )) • ∇ ġ(τ ) dx dτ = t DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ,(6.20) 
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 63 For any t ∈ [0, T ], thenE(t) ≥ E 0 + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ.

Ω( 1 -( 1 -( 1 -( 1 -

 1111 W k (s)(x, ∇u k (s)) dx + κ Ω Θ k (s)) dx ≤ Ω W k (t)(x, ∇v k ) dx + κ Ω Θ k (t)) dx + H N -1 (J v k \ (Γ k (s) ∪ ∂ N Ω)).Hence taking the limit as k → +∞, (6.21) and (6.22) lead toΩ W (s)(x, ∇u(s)) dx + κ Ω Θ(s))dx ≤ Ω W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx + κ Ω Θ(t))dx + H N -1 (J u(t) \ (Γ(s) ∪ ∂ N Ω)),and consequently, since J u(t) ⊂ Γ(t),E(s) ≤ E(t) + Ω W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx -Ω W (t)(x, ∇u(t)) dx.

  DW k (τ )(x, ∇u k (τ )) • ∇ ġ(τ ) dx dτ = E 0 + t 0 Ω DW (τ )(x, ∇u(τ )) • ∇ ġ(τ ) dx dτ ≤ E(t).
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 64 Let t ∈ [0, T ]. For any K ∈ R(Ω) such that Γ(t) ⊂ K, any v ∈ A(t) such that J v ⊂ K, any θ ∈ L ∞ (Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that W (x,•) ∈ G θ(x) (W 1 , W (t)(x, •)) for a.e. x ∈ Ω, then Ω W (t)(x, ∇u(t)) dx + H N -1 (Γ(t) \ ∂ N Ω) ≤ Ω W (x, ∇v) dx + H N -1 (K \ ∂ N Ω) + κ Ω Θ(t)θ dx.Proof. Let t ∈ [0, T ] and take v, K, W and θ as above. By Proposition 4.1 there exists a sequence of characteristic functions(χ n ) ⊂ L ∞ (Ω; {0, 1}) such that χ n * -⇀ θ in L ∞ (Ω; [0, 1]), and Ω W (x, ∇v) dx = Γ-lim n→+∞ Ω χ n W 1 (∇v) + (1χ n )W (t)(x, ∇v) dx. Moreover, since Ω W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω W k (t)(x, ∇v) dx,we deduce from Lemma 4.1 that for each n ∈ N,Ω χ n W 1 (∇v) + (1χ n )W (t)(x, ∇v) dx = Γ-lim k→+∞ Ω χ n W 1 (∇v) + (1χ n )W k (t)(x, ∇v) dx.According to Theorem 3.4 and Lemma 3.3, there exists a recovery sequence (v n ) ⊂ SBV p (Ω) weakly converging to v in SBV p (Ω) such that v n ∈ A(t) for each n ∈ N andΩ W (x, ∇v) dx + H N -1 (J v \ (Γ(t) ∪ ∂ N Ω)) = lim n→+∞ Ω χ n W 1 (∇v n ) + (1χ n )W (t)(x, ∇v n ) dx + H N -1 (J vn \ (Γ(t) ∪ ∂ N Ω)) .(6.23)By the Jump Transfer Theorem (Theorem 3.6), we can consider a sequence (v n,k) k ⊂ SBV p (Ω ′ ) such that v n,k ⇀ v n in SBV p (Ω ′ ) as k → +∞, v n,k ∈ A k (t) for each k ∈ N, Ω χ n W 1 (∇v n ) + (1χ n )W (t)(x, ∇v n ) dx = lim k→+∞ Ω χ n W 1 (∇v n,k ) + (1χ n )W k (t)(x,∇v n,k ) dx, (6.24) and lim sup k→+∞ H N -1 (J v n,k \ (Γ k (t) ∪ ∂ N Ω)) ≤ H N -1 (J vn \ (Γ(t) ∪ ∂ N Ω)). (6.25)

  Note that since W (t)(x, •) is in particular strictly convex, then the previous minimization problem admits a unique solution which must be u(t). Hence by uniqueness the whole sequence u

			1,p (Ω) ensure that
	u(t) = g(t) H N -1 -a.e. on ∂ D Ω, so that u(t) ∈ A(t). From standard properties of Γ-convergence we get that u(t) is a solution of
	min v∈A(t) Ω	W (t)(x, ∇v) dx.	(5.18)

k (t) weakly converges to u(t) in W 1,p (Ω). If L ∈ [W 1,p (Ω)] ′ , then t → L, u k (t) is a simple scalar valued measurable function, and since u k (t) ⇀ u(t) in W 1,p (Ω) for each t ∈ [0, T ], then L, u k (t) → T, u(t)

for every t ∈ [0, T ] which proves that the map t → L, u(t) is measurable. Consequently, t → u(t) is weakly measurable from [0, T ] to W 1,p (Ω), and according to the Pettis Theorem (see

[START_REF] Fonseca | Modern methods in the calculus of variations: L p spaces[END_REF] Theorem 2

.104]) together with the separability of W 1,p (Ω), we deduce that t → u(t) is actually strongly measurable from [0, T ] to W 1,p (Ω). Thanks to (5.17), we get that sup t∈[0,T ]

  .11) 6.4. The time continuous limit. We now pass to the limit as the time step tends to zero. We first state a compactness result on (u k (t), Θ

k (t), Γ k (t), W k (t)).

Proposition 6.1. There exist a subsequence (not relabeled), a set Γ(t) ∈ R(Ω), and functions u(t) ∈

  . Let s < t. By the Jump Transfer Theorem (Theorem 3.6), since u(t) + g(s)g(t) ∈ A(s), one can find a sequence(v k ) such that v k ∈ A k (s) for each k ∈ N, v k ⇀ u(t) + g(s)g(t) in SBV p (Ω ′ ), N -1 (J v k \ (Γ k (s) ∪ ∂ N Ω)) ≤ H N -1 (J u(t) \ (Γ(s) ∪ ∂ N Ω)). (6.22) Let i ≤ j be such that s ∈ [t k i , t k i+1 ) and t ∈ [t k j , t k j+1

	lim k→+∞ Ω	W k (t)(x, ∇v k ) dx =	Ω	W (t)(x, ∇u(t) + ∇g(s) -∇g(t)) dx,	(6.21)
	and				
	lim sup				

k→+∞ H

  t k i+1 ) and Ξ(t) its weak* limit inL ∞ (Ω; [0, 1]). Then W 1 (∇v n,k ) + (1χ n )W k (t)(x, ∇v n,k ) dx (t)χ n + (1χ n )(Ξ k (t) -Θ k (t)) dx + H N -1 (J v n,k \ (Γ k (t) ∪ ∂ N Ω)),and thanks to (6.24) and (6.25) we get by passing to the limit as k→ +∞ that W 1 (∇v n ) + (1χ n )W (t)(x, ∇v n ) dx t)χ n + (1χ n )(Ξ(t) -Θ(t)) dx + H N -1 (J vn \ (Γ(t) ∪ ∂ N Ω)).Sending then n → +∞ yields, according to (6.23),

	+ κ
	+ κ

Ω W k (t)(x, ∇u k (t)) dx + κ Ω (Ξ k (t) -Θ k (t)) dx ≤ Ω χ n Ω Ξ k Ω W (t)(x, ∇u(t)) dx + κ Ω (Ξ(t) -Θ(t)) dx ≤ Ω χ n Ω Ξ(Ω W (t)(x, ∇u(t)) dx + κ Ω (Ξ(t) -Θ(t)) dx ≤ Ω W (x, ∇v) dx + κ Ω Ξ(t)θ + (1θ)(Ξ(t) -Θ(t)) dx + H N -1 (J v \ (Γ(t) ∪ ∂ N Ω)),

and thus since J v ⊂ K, Ω W (t)(x, ∇u(t)) dx

Acknowledgement: I wish to thank François Murat for having pointed out the correct definition of uniformly convex functions (2.4), and for interesting discussions.

This work has been supported by the Chair "Mathematical Modelling and Numerical Simulation, F-EADS -Ecole Polytechnique -INRIA -F-X".