Jean B Lasserre 
  
Tung Phan 
  
A "joint+marginal" algorithm for polynomial optimization

We present a new algorithm for solving a polynomial program P based on the recent "joint + marginal" approach of the first author for parametric polynomial optimization. The idea is to first consider the variable x1 as a parameter and solve the associated (n -1)-variable (x2, . . . , xn) problem P(x1) where the parameter x1 is fixed and takes values in some interval Y1 ⊂ R, with some probability ϕ1 uniformly distributed on Y1. Then one considers the hierarchy of what we call "joint+marginal" semidefinite relaxations, whose duals provide a sequence of univariate polynomial approximations x1 → p k (x1) that converges to the optimal value function x1 → J(x1) of problem P(x1), as k increases. Then with k fixed à priori, one computes x * 1 ∈ Y1 which minimizes the univariate polynomial p k (x1) on the interval Y1, a convex optimization problem that can be solved via a single semidefinite program.

The quality of the approximation depends on how large k can be chosen (in general for significant size problems k = 1 is the only choice). One iterates the procedure with now an (n -2)variable problem P(x2) with parameter x2 in some new interval Y2 ⊂ R, etc. so as to finally obtain a vector x ∈ R n . Preliminary numerical results are provided.

I. INTRODUCTION Consider the general polynomial program

P : f * := min x {f (x) : x ∈ K } ( 1 
)
where f is a polynomial, K ⊂ R n is a basic semi-algebraic set, and f * is the global minimum of P (as opposed to a local minimum). One way to approximate the global optimum f * of P is to solve a hierarchy of either LP-relaxations or semidefinite relaxations as proposed in e.g. Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], [START_REF] Lasserre | Polynomial programming: LP-relaxations also converge[END_REF].

Despite practice with the semidefinite relaxations seems to reveals that convergence is fast, the matrix size in the i-th semidefinite relaxation of the hierarchy grows up as fast as O(n i ). Hence, for large size (and sometimes even medium size) problems, only a few relaxations of the hierarchy can be implemented (the first, second or third relaxation). In that case, one only obtains a lower bound on f * , and no feasible solution in general. So an important issue is: How can we use the result of the i-th semidefinite relaxation to find an approximate feasible solution of the original problem?

For some well-known special cases of 0/1 optimization like e.g. the celebrated MAXCUT problem, one may generate a feasible solution with guaranteed performance, from a randomized rounding procedure that uses an optimal solution of the first semidefinite relaxation (i.e. with i = 1); see J.B. Lasserre is with LAAS-CNRS and the Institute of Mathematics, University of Toulouse, France. lasserre@laas.fr Tung Phan Thanh is with LAAS-CNRS, University of Toulouse, France. tphanta@laas.fr Goemans and Williamson [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF]. But in general there is no such procedure.

Our contribution is to provide two relatively simple algorithms for polynomial programs which builds up upon the so-called "joint+marginal" approach (in short (J+M)) developed in [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF] for parametric polynomial optimization. The (J+M)-approach for variables x ∈ R n and parameters y in a simple set Y, consists of the standard hierarchy of semidefinite relaxations in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] where one treats the parameters y also as variables. But now the moment-approach implemented in the semidefinite relaxations, considers a joint probability distribution on the pair (x, y), with the additional constraint that the marginal distribution on Y is fixed (e.g. the uniform probability distribution on Y); whence the name "joint+marginal".

For every k = 1, . . . , n, let the compact interval Y k := [x k , x k ] ⊂ R be contained in the projection of K into the x k -coordinate axis. In the context of the (non-parametric) polynomial optimization (1), the above (J+M)-approach can be used as follows in what we call the (J+M)-algorithm:

• (a) Treat x 1 as a parameter in the compact interval

Y 1 = [x 1 , x 1 ] with associated probability distribution ϕ 1 uniformly distributed on Y 1 .
• (b) with i ∈ N fixed, solve the i-th semidefinite relaxation of the (J+M)-hierarchy [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF] applied to problem P(x 1 ) with n -1 variables (x 2 , . . . , x n ) and parameter x 1 , which is problem P with the additional constraint that the variable x 1 ∈ Y 1 is fixed. The dual provides a univariate polynomial x 1 → J 1 i (x 1 ) which, if i would increase, would converge to J 1 (x 1 ) in the L 1 (ϕ 1 )-norm. (The map v → J 1 (v) denotes the optimal value function of P(v), i.e. the optimal value of P given that the variable x 1 is fixed at the value v.) Next, compute x1 ∈ Y 1 , a global minimizer of the univariate polynomial J 1 i on Y 1 (e.g. this can be done by solving a single semidefinite program). Ideally, when i is large enough, x1 should be close to the first coordinate x * 1 of a global minimizer would converge in the L 1 (ϕ 2 )-norm to the optimal value function v → J 2 (v) of P(x 2 ) (i.e. the optimal value of P given that the variable x 2 is fixed at the value v.) Iterate until one has obtained xn ∈ Y n ⊂ R.

x * = x * 1 , . . . , x * n ) of P. • (c) go back to step (b) with now x 2 ∈ Y 2 ⊂ R instead of x 1 ,
One ends up wih a point x ∈ n k=1 Y k and in general x ∈ K. One may then use x as initial guess of a local optimization procedure to find a local minimum x ∈ K.

The rational behind the (J+M)-algorithm is that if i is large enough and P has a unique global minimizer x * ∈ K, then x as well as x should be close to x * . The computational complexity before the local optimization procedure is less than solving n times the i-th semidefinite relaxation in the (J+M)-hierarchy (which is itself of same order as the i-th semidefinite relaxation in the hierarchy defined in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]), i.e., a polynomial in the input size of P.

When the feasible set K is convex, one may define the following variant to obtain a feasible point x ∈ K. Again, let Y 1 be the projection of K 1 into the x 1 -coordinate axis. Once x1 ∈ Y 1 is obtained in step (b), consider the new optimization problem P(x 1 ) in the n -1 variables (x 2 , . . . , x n ), obtained from P by fixing the variable x 1 ∈ Y 1 at the value x1 . Its feasible set is the convex set K 1 := K ∩ {x : 

x 1 = x1 }. Let Y 2 be the projection of K 1 into

II. THE "JOINT+MARGINAL APPROACH TO PARAMETRIC

OPTIMIZATION

Most of the material of this section is taken from [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF]. Let R[x, y] denote the ring of polynomials in the variables x = (x 1 , . . . , x n ), and the variables y = (y 1 , . . . , y p ), whereas R[x, y] d denotes its subspace of polynomials of degree at most d. Let Σ[x, y] ⊂ R[x, y] denote the subset of polynomials that are sums of squares (in short s.o.s.). For a real symmetric matrix A the notation A 0 stands for A is positive semidefinite.

The parametric optimization problem

Let Y ⊂ R p be a compact set, called the parameter set, and let f, h j ∈ R[x], j = 1, . . . , m. Let K ⊂ R n × R p be the basic closed semi-algberaic set:

K := {(x, y) : y ∈ Y ; h j (x, y) ≥ 0, j = 1, . . . , m} (2) 
and for each y ∈ Y, let

K y := { x ∈ R n : (x, y) ∈ K }. (3) 
For each y ∈ Y, fixed, consider the optimization problem:

J(y) := inf x { f (x, y) : (x, y) ∈ K }. ( 4 
)
The interpretation is as follows: Y is a set of parameters and for each instance y ∈ Y of the parameter, one wishes to compute an optimal decision vector x * (y) that solves problem (4). Let ϕ be a Borel probability measure on Y, with a positive density with respect to the Lebesgue measure on R p (or with respect to the counting measure if Y is discrete). For instance

ϕ(B) := Y dy -1 Y∩B dy, ∀B ∈ B(R p ),
is uniformly distributed on Y. Sometimes, e.g. in the context of optimization with data uncertainty, ϕ is already specified. The idea is to use ϕ (or more precisely, its moments) to get information on the distribution of optimal solutions x * (y) of P y , viewed as random vectors. In this section we assume that for every y ∈ Y, the set K y in (3) is nonempty.

A. A related infinite-dimensional linear program

Let M(K) be the set of finite Borel probability measures on K, and consider the following infinite-dimensional linear program P:

ρ := inf µ∈M(K) K f dµ : πµ = ϕ , (5) 
where πµ denotes the marginal of µ on R p , that is, πµ is a probability measure on R p defined by πµ(B)

:= µ(R n × B)
for all B ∈ B(R p ). Notice that µ(K) = 1 for any feasible solution µ of P. Indeed, as ϕ is a probability measure and

πµ = ϕ one has 1 = ϕ(Y) = µ(R n × R p ) = µ(K).
The dual of P is the the following infinite-dimensional linear program:

ρ * := sup p∈R[y] Y p(y) dϕ(y) f (x) -p(y) ≥ 0 ∀(x, y) ∈ K. (6) 
Recall that a sequence of measurable functions (g n ) on a measure space (Y, B(Y), ϕ) converges to g, ϕ-almost uniformly, if and only if for every ǫ > 0, there is a set

A ∈ B(Y) such that ϕ(A) < ǫ and g n → g, uniformly on Y \ A.
Theorem 1 ( [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF]): Let both Y ⊂ R p and K in (2) be compact and assume that for every y ∈ Y, the set K y ⊂ R n in (3) is nonempty. Let P be the optimization problem [START_REF] Lasserre | Polynomial programming: LP-relaxations also converge[END_REF] and let X * y := {x ∈ R n : f (x, y) = J(y)}, y ∈ Y. Then: (a) ρ = Y J(y) dϕ(y) and P has an optimal solution.

(b) Assume that for ϕ-almost y ∈ Y, the set of minimizers of X * y is the singleton {x * (y)} for some x * (y) ∈ K y . Then there is a measurable mapping g : Y → K y such that

g(y) = x * (y) for every y ∈ Y ρ = Y f (g(y), y) dϕ(y), (7) 
and for every α ∈ N n , and β ∈ N p :

K x α y β dµ * (x, y) = Y y β g(y) α dϕ(y). (8) 
(c) There is no duality gap between ( 5) and ( 6), i.e. ρ = ρ * , and if

(p i ) i∈N ⊂ R[y] is a maximizing sequence of (6) then: Y | J(y) -p i (y) | dϕ(y) → 0 as i → ∞. (9) 
Moreover, define the functions (p i ) as follows: p0 := p 0 , and

y → pi (y) := max [ pi-1 (y), p i (y) ], i = 1, 2, . . . Then pi → J(•), ϕ-almost uniformly.
An optimal solution µ * of P encodes all information on the optimal solutions x * (y) of P y . For instance, let B be a given Borel set of R n . Then from Theorem 1,

Prob (x * (y) ∈ B) = µ * (B × R p ) = ϕ(g -1 (B)),
with g as in Theorem 1(b).

Moreover from Theorem 1(c), any optimal or nearly optimal solution of P * provides us with some polynomial lower approximation of the optimal value function y → J(y) that converges to J(•) in the L 1 (ϕ) norm. Moreover, one may also obtain a piecewise polynomial approximation that converges to J(•), ϕ-almost uniformly.

In [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF] the first author has defined a (J+M)-hierarchy of semidefinite relaxations (Q i ) to approximate as closely as desired the optimal value ρ. In particular, the dual of each semidefinite relaxation Q i provides a polynomial q i ∈ R[y] bounded above by J(y), and y → qi (y) := max ℓ=1,...i q ℓ (y) converges ϕ-almost uniformly to the optimal value function J, as i → ∞. This last property is the rationale behind the heuristic developed below.

III. A "JOINT+MARGINAL" APPROACH Let N n i := {α ∈ N n : |α| ≤ i} with |α| = i α i . With a sequence z = (z α ) indexed in the canonical basis (x α ) of R[x], let L z : R[x] → R be the linear mapping: f (= α f α (x)) → L z (f ) := α f α z α , f ∈ R[x].
Moment matrix: The moment matrix M i (z) associated with a sequence z = (z α ), α ∈ N n 2i , has its rows and columns indexed in the canonical basis (x α ), and with entries.

M i (z)(α, β) = L z (x α+β ) = z α+β , ∀ α, β ∈ N n i .
Localizing matrix: Let q be the polynomial x → q(x) := u q u x u . The localizing matrix M i (q z) associated with q ∈ R[x] and a sequence z = (z α ), has its rows and columns indexed in the canonical basis (x α ), and with entries.

M i (q z)(α, β) = L z (q(x)x α+β ) = u∈N n q u z α+β+u , ∀ α, β ∈ N n i .
A sequence z = (z α ) ⊂ R is said to have a representing finite Borel measure supported on K if there exists a finite Borel measure µ such that

z α = K x α dµ, ∀ α ∈ N n . A. A "joint+marginal" approach With {f, (g j ) m j=1 } ⊂ R[x], let K ⊂ R n be the basic compact semi-algebraic set K := {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m}, (10) 
and consider the polynomial optimization problem [START_REF] Floudas | Handbook of Test Problems in Local and Global optimization[END_REF]. Let Y k ⊂ R be some interval [x k , x k ], assumed to be contained in the orthogonal projection of K into the x kccordinate axis.

For instance when the g j 's are affine (so that K is a convex polytope), x k (resp. x k ) solves the linear program min(resp max ) {x k : x ∈ K}. Similarly, when K is convex and defined by concave polynomials, one may obtain x k and x k , up to (arbitrary) fixed precision. In many cases, (upper and lower) bound constraints on the variables are already part of the problem definition.

Let ϕ k the probability measure uniformly distributed on Y k , hence with moments (β ℓ ) given by:

β ℓ = x1 x 1 x k dϕ k (x) = x ℓ+1 k -x ℓ+1 k (k + 1)(x k -x k ) (11) 
for every ℓ = 0, 1, . . .. Define the following parametric polynomial program in n -1 variables:

J k (y) = min x {f (x) : x ∈ K; x k = y}, (12) 
or, equivalently J k (y) = min {f (x) : x ∈ K y }, where for every y ∈ Y:

K y := {x ∈ K; x k = y}. ( 13 
)
Observe that by definition, f * = min

x {J k (x) : x ∈ Y k },
and K y = ∅ whenever y ∈ Y k , where Y k is the orthogonal projection of K into the x k -coordinate axis.

Semidefinite relaxations

To compute (or at least approximate) the optimal value ρ of problem P in (5) associated with the parametric optimization problem (12), we now provide a hierarchy of semidefinite relaxations in the spirit of those defined in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. Let v j := ⌈(deg g j )/2⌉, j = 1, . . . , m, and for i ≥ max j v j , consider the semidefinite program:

ρ ik = inf z L z (f ) (14) s.t. M i (z) 0, M i-vj (g j z) 0, j = 1, . . . , m L z (x ℓ k ) = β ℓ , ℓ = 0, 1, . . . 2i
, where (β ℓ ) is defined in (11). We call (14) the parametric semidefinite relaxation of P with parameter y = x k . Observe that without the "moment" constraints L z (x ℓ k ) = β ℓ , ℓ = 1, . . . 2i, the semidefinite program ( 14) is a relaxation of P and if K is compact, its corresponding optimal value f * i converges to f * as k → ∞; see Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF].

Letting g 0 ≡ 0, the dual of (14) reads:

ρ * ik = sup λ,(σj ) 2i ℓ=0 λ ℓ β ℓ s.t. f (x) - 2i ℓ=0 λ ℓ x ℓ k = σ 0 + m j=1 σ j g j σ j ∈ Σ[x], 0 ≤ j ≤ m; deg σ j g j ≤ 2i, 0 ≤ j ≤ m. (15) 
Equivalently, recall that R[x k ] 2i is the space of univariate polynomials of degree at most 2i, and observe that in (15), the criterion reads

2i ℓ=0 λ ℓ β ℓ = Y k p i (y)dϕ k (y),
where

p i ∈ R[x k ] 2i is the univariate polynomial x k → p i (x k ) := 2i ℓ=0 λ ℓ x ℓ k .
Then equivalently, the above dual may be rewritten as:

ρ * ik = sup pi,(σj ) Y k p i dϕ k s.t. f -p i = σ 0 + m j=1 σ j g j p i ∈ R[x k ] 2i ; σ j ∈ Σ[x], 0 ≤ j ≤ m; deg σ j g j ≤ 2i, 0 ≤ j ≤ m. (16) 
Assumption 1: The family of polynomials (g j ) ⊂ R[x] is such that for some M > 0,

x → M -x 2 = σ 0 + m j=1 σ j g j ,
for some M and some s.o.s. polynomials

(σ j ) ⊂ Σ[x].
Theorem 2: Let K be as (10) and Assumption 1 hold. Let the interval Y k ⊂ R be the orthognal projection of K into the x k -coordinate axis, and let ϕ k be the probability measure, uniformly distributed on Y k . Assume that K y in (13) is not empty, let y → J k (y) be as in (12) and consider the semidefinite relaxations ( 14)-( 16). Then as i → ∞:

(a) ρ ik ↑ Y k J k dϕ k and ρ * ik ↑ Y k J k dϕ k (b) Let (p i , (σ i j )
) be a nearly optimal solution of ( 16), e.g. such that Y k p i dϕ k ≥ ρ * ik -1/i. Then p i (y) ≤ J k (y) for all y ∈ Y k , and 

Y k |J k (y) -p i (y)| dϕ k (y) → 0, as i → ∞. (17) 

B. A "joint+marginal" algorithm for the general case

Theorem 2 provides a rationale for the following (J+M)algorithm in the general case. In what follows we use the primal and dual semidefinite relaxations ( 14)-(15) with index i fixed.

ALGO 1: (J+M)-algorithm: non convex K, relaxation i

Set k = 1;

Step k: Input: K, f , and the orthogonal projection

Y k = [x k , x k ] of K into the x k -coordinate axis, with associated probability measure ϕ k , uniformly distributed on Y k . Ouput: xk ∈ Y k .
Solve the semidefinite program (16) and from an optimal (or nearly optimal) solution (p i , (σ j )) of ( 16 Of course, in general the vector x ∈ R n does not belong to K. Therefore a final step consists of computing a local minimum x ∈ K, by using some local minimization algorithm starting with the (unfeasible) initial point x. Also note that when K is not convex, the determination of bounds x k and x k for the interval Y k may not be easy, and so one might be forced to use a subinterval Y ′ k ⊆ Y k with conservative (but computable) bounds x ′ k ≥ x k and x ′ k ≤ x k . Remark 1: Theorem 2 assumes that for every y ∈ Y k , the set K y in (13) is not empty, which is the case if K is connected. If K y = ∅ for y in some open subset of Y k , then the semidefinite relaxation (14) has no solution (ρ ik = +∞), in which case one proceeds by dichotomy on the interval Y k until ρ ik < ∞.

C. A "joint+marginal" algorithm when K is convex

In this section, we now assume that the feasible set K ⊂ R n of problem P is convex (and compact). The idea is to compute x1 as in ALGO 1 and then repeat the procedure but now for the (n -1)-variable problem P(x 1 ) which is problem P in which the variable x 1 is fixed at the value x1 . This alternative is guaranteed to work if K is convex (but not always if K is not convex).

For every j ≥ 2, denote by x j ∈ R n-j+1 the vector (x j , . . . , x n ), and by xj-1 ∈ R j-1 the vector (x 1 , . . . , xj-1 ) (and so x1 = x1 ).

Let the interval Y 1 ⊂ R be the orthogonal projection of K into the x 1 -coordinate axis. For every x1 ∈ Y 1 , let the interval Y 2 (x 1 ) ⊂ R be the orthogonal projection of the set K ∩ {x :

x 1 = x1 } into the x 2 -coordinate axis. Similarly, given x2 ∈ Y 1 ×Y 2 (x 1 )
, let the interval Y 3 (x 2 ) ⊂ R be the orthogonal projection of the set K∩{x : x 1 = x1 ; x 2 = x2 } into the x 3 -coordinate axis, and etc. in the obvious way.

For every k = 2, . . . , n, and

xk-1 ∈ Y 1 × Y 2 (x 1 ) • • • × Y k-1 (x k-2 ), let fk (x k ) := f ((x k-1 , x k ))
, and gk j (x k ) := g j ((x k-1 , x k )), j = 1, . . . , m. Similarly, let

K k (x k-1 ) := {x k : gk j (x k ) ≥ 0, j = 1, . . . , m}, = {x k : (x k-1 , x k ) ∈ K}, (18) 
and consider the problem:

P(x k-1 ) : min { fk (x x ) : x x ∈ K j (x k-1 )}, (19) 
i.e. the original problem P where the variable x ℓ is fixed at the value xℓ , for every ℓ = 1, . . . , k -1.

Write Y j (x k-1 ) = [x k , x k ],
and let ϕ k be the probability measure uniformly distributed on Y k (x k-1 ).

Let z be a sequence indexed in the monomial basis of R[x k ]. With index i, fixed, the parametric semidefinite relaxation (14) with parameter x k , associated with problem P(x k-1 ), reads:

ρ ik = inf z L z ( fk ) s.t. M i (z), M i-vj (g k j z) 0, j = 1, . . . , m L z (x ℓ k ) = β ℓ , ℓ = 0, 1, . . . , 2i, (20) 
where (β ℓ ) is defined in (11). Its dual is the semidefinite program (with gk 0 ≡ 1)):

ρ * ik = sup pi,(σj ) Y k (x k-1 ) p i dϕ k (21) s.t. fk -p i = σ 0 + m j=1 σ j gk j p i ∈ R[x k ] 2i , σ j ∈ Σ[x k ], j = 0, . . . , m
deg σ j gk j ≤ 2i, j = 0, . . . , m. The important difference between ( 14) and ( 20) is the size of the corresponding semidefinite programs, since z in (14

) (resp. in (20)) is indexed in the canonical basis of R[x] (resp. R[x k ]).

The (J+M)-algorithm for K convex

Recall that the order i of the semidefinite relaxation is fxed. The (J+M)-algorithm consists of n steps. At step k of the algorithm, the vector xk-1 = (x 1 , . . . , xk-1 ) (already computed) is such that x1 ∈ Y 1 and xℓ ∈ Y ℓ (x ℓ-1 ) for every ℓ = 2, . . . , k -1, and so the set

K k (x k-1 ) is a nonempty compact convex set. ALGO 2: (J+M)-algorithm: convex K, relaxation i Set k = 1; Step k ≥ 1: Input: For k = 1, x0 = ∅, Y 1 (x 0 ) = Y 1 ; P(x 0 ) = P, f 1 = f and g1 j = g j , j = 1, . . . , m. For k ≥ 2, xk-1 ∈ Y 1 × Y 2 (x 1 ) • • • × Y k-1 (x k-2 ). Output: xk = (x k-1 , xk ) with xk ∈ Y k (x k-1 ).
Consider the parametric semidefinite relaxations (20)-( 21) with parameter x k , associated with problem P(x k-1 ) in (19).

• From an optimal solution of (21), extract the univariate polynomial As K is convex, x ∈ K and one may stop. A refinement is to now use x as the initial guess of a local minimization algorithm to obtain a local minimizer x ∈ K of P. In view of Theorem 2, the larger the index i of the relaxations (20)-( 21), the better the values f (x) and f (x).

x k → p i (x k ) := 2i ℓ=0 λ * ℓ x ℓ k . • Get a global minimizer xk of p i on the interval Y k (x k-1 ) = [x k , x k ],
Of course, ALGO 2 can also be used when K is not convex. However, it may happen that at some stage k, the semidefinite relaxation (20) may be infeasible because J k (y) is infinite for some values of y ∈ Y k (x k-1 ). This is because the feasible set K(x k-1 ) in (18) may be disconnected.

IV. COMPUTATIONAL EXPERIMENTS

We report on preliminary computational experiments on some non convex NP-hard optimization problems. We have tested the algorithms on a set of difficult global optimization problems taken from Floudas et al. [START_REF] Floudas | Handbook of Test Problems in Local and Global optimization[END_REF]. To solve the semidefinite programs involved in ALGO 1 and in ALGO 2, we have used the GloptiPoly software [START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinite programming[END_REF] that implements the hierarchy of semidefinite relaxations defined in [4, (4.5)]. Those problems are taken from [1, §2]. The set K is a convex polytope and the function f is a nonconvex quadratic polynomial x → x ′ Qx+b ′ x for some real symmetric matrix Q and vector b. In Table I one displays the problem name, the number n of variables, the number m of constraints, the gobal optimum f * , the index i of the semidefinite relaxation in ALGO 2, the optimal value obtained using the output of ALGO 2 as initial guess in a local minimization algorithm of the MATLAB toolbox, and the associated relative error. As recommended in Gloptipoly [START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinite programming[END_REF] for numerical stability and precision, the problem data have been rescaled to obtain a polytope contained in the box [-1, 1] n . As one may see, and excepted for problem 2.8C5, the relative error is very small. For the last problem the relative error (about 11%) is relatively high despite enforcing some extra upper and lower bounds x i ≤ x i ≤ x i , after reading the optimal solution. However, using x ∈ K as initial guess of the local minimization algorithm in MATLAB, one still finds the optimal value f * . For the Haverly Pooling problem 5.2.2 in [1, §5] with three different data sets, one has n = 9 and m = 24 constraints, among which 3 nonconvex bilinear constraints and 18 linear bound constraints 0 ≤ x i ≤ 500, i = 1, . . . , 9. In the first run of ALGO 1 we obtained bad results because the bounds are very loose and in the hierarchy of lower bounds (f * k ) in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] that converge to f * , if on the one hand f * 2 = f * , on the other hand the lower bound f * 1 < f * is loose. In such a case, and in view of the rationale behind the "joint+marginal" approach, it is illusory to obtain good results with ALGO 1 or ALGO 2. Therefore, from the optimal solution x * in [START_REF] Floudas | Handbook of Test Problems in Local and Global optimization[END_REF], and when 0 < x * i < 500, we have generated stronger i , one uses the lifting u 2 i = x i , u i ≥ 0, i = 5, 6. Problem 7.2.6 has only 3 variables, 6 linear bound constraints, and one highly nonlinear constraint (and criterion). Here one uses the lifting u 2 x 2 = 1, u ≥ 0, to handle the term x -1 2 . Again one obtains the optimal value f * with ALGO 1 followed by a local optimization subroutine.

B. ALGO 1 for non convex set K

Again in

C. ALGO 2 for MAXCUT

Finally we have tested ALGO 2 on the famous NP-hard discrete optimization problem MAXCUT, which consists of minimizing a quadratic form x → x ′ Qx on {-1, 1} n , for some real symmetric matrix Q ∈ R n×n . In this case, Y k = {-1, 1} and the marginal constraint L z (x ℓ k ) = γ ℓ in (20) need only be imposed for ℓ = 1, because of the constraints x 2 k = 1 for every k = 1, . . . , n. Accordingly, in an optimal solution of the dual (21), p i ∈ R[x k ] is an affine polynomial x k → p i (x k ) = λ 0 +λ 1 x k for some scalars λ 0 , λ 1 . Therefore after solving (21) one decides xk = -1 if p i (-1) < p i (1) (i.e. if λ 1 > 0) and xk = 1 otherwise.

Recall that in ALGO 2 one first compute x1 , then with x 1 fixed at the value x1 , one computes x2 , etc. until one finally computes xn , and get x. In what we call the "max-gap" variant of ALGO 2, one first solves n programs ( 14)-(15) with parameter x 1 to obtain an optimal solution p i (x 1 ) = λ 1 0 + λ 1 1 x 1 of the dual (15), then with x 2 to obtain (λ 2 0 , λ etc. finally with x n to obtain (λ n 0 , λ n 1 ). One then select k such that |λ k 1 | = max ℓ |λ ℓ 1 |, and compute xk accordingly. This is because the larger |λ 1 |, (i.e. the larger |p i (-1)p i (1)|), the more likely the choice -1 or 1 is correct. After x k is fixed at the value xk , one repeats the procedure for the (n -1)problem P(x k ), etc.

We have tested the "max-gap" variant for MAXCUT problems on random graphs with n = 20, 30 and 40 nodes. For each value of n, we have solved 50 randomly generated problems and 100 for n = 40. The probability ϕ k on Y k = {-1, 1} is uniform (i.e., β 1 = 0 in (20)). Let f * 1 denote the optimal value of the Shor's relaxation with famous Goemans and Williamson's 0.878 performance guarantee. Let ρ denote the cost of the solution x ∈ {-1, 1} n generated by the ALGO 2. In Table III we have reported the average relative error (ρf * 1 )/|f * 1 |, which as one may see, is comparable with the Goemans and Williamson (GW) ratio.

V. CONCLUSION

First preliminary results are promising, even with small relaxation order i. When the feasible set is non convex, it may become difficult to obtain a feasible solution and an interesting issue for further investigation is how to proceed when K y = ∅ for y in some open subinterval of Y k (proceeding by dichotomy on Y k is one possiblity).

Moreover, if one

  defines p0 := p 0 , and y → pi (y) := max [ pi-1 (y), p i (y) ], i = 1, 2, . . . , then pi (y) ↑ J k (y), for ϕ k -almost all y ∈ Y k , and so pi → J k , ϕ k -almost uniformly on Y k . Theorem 2 is a direct consequence of [6, Corollary 2.6].

  ), get a global minimizer xk of the univariate polynomial p i on Y k . If k = n stop and output x = (x 1 , . . . , xn ), otherwise set k = k + 1 and repeat.

  and set xk := (x k-1 , xk ). If k = n stop and ouput x ∈ K, otherwise set k = k + 1 and repeat.

  and with ϕ 2 being the probability measure uniformly distributed on Y 2 . With the same method, compute a global minimizer x2 ∈ Y 2 , of the univariate polynomial x 2 → J 2 i (x 2 ) on the interval Y 2 . Again, if i would increase, J 2

	i

  the x 2coordinate axis. Then go back to step (b) with now x 2 ∈ Y 2 as parameter and (x 3 , . . . , x n ) as variables, to obtain a point x2 ∈ Y 2 , etc. until a point x ∈ n k=1 Y k is obtained. Notice that now x ∈ K because K is convex. Then proceed as before with x being the initial guess of a local minimization algorithm to obtain a local minimizer x ∈ K of P.

  Table II below, n (resp. m) stands for the number of variables (resp. constraints), and the value displayed in the "ALGO 1" column is obtained in running a local minimization algorithm of the MATLAB toolbox with the output x of ALGO 1 as initial guess. In Problems 3.2, 3.3 and 3.4 from Floudas et al. [1, §3], one has 2n linear bound constraints and additional linear and non convex quadratic constraints. As one may see, the results displayed in Table II are very good.

  and we obtain the global minimum f * with ALGO 1 followed by the local minimization subroutine; see TableII. Importantly, in ALGO 1, and before running the local optimization subroutine, one ends up with a non feasible point x. Moreover, we had to sometimes use the dichotomy procedure of Remark 1 because if Y k is large, one may have K y = ∅ for y in some open subintervals of Y k . Problem 7.2.2 has 13 linear constraints and 4 nonlinear constraints with bilinear terms. To handle the non-polynomial function x 0.5

	Prob	n	m	f *	i	ALGO 1	rel. error
	3.2	8	22	7049	1	7049	0%
	3.3	5	16	-30665	1	-30665	0%
	3.4	6	18	-310	1	-298	3.8%
	5.2.2 (1)	9	24	400	1	400	0%
	5.2.2 (2)	9	24	600	1	600	0%
	5.2.3 (3)	9	24	750	1	750	0%
	5.2.4	9	24	750	1	750	0%
	7.2.2	6	17	-0.3746	1	-0.3746	0%
	7.2.6	3	7	-83.254	1	-82.3775	1%
				TABLE II		
		ALGO 1 FOR NON CONVEX SET K	
	bounds 0.4x * i ≤ x i ≤ 1.6x * i . In this case, f * 1 is much closer to f

*