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A "Jjoint+marginal” algorithm for polynomial optimization

Jean B. Lasserre and Tung Phan Thanh

Abstract— We present a new algorithm for solving a poly-
nomial program P based on the recent "joint + marginal’
approach of the first author for parametric polynomial opti-
mization. The idea is to first consider the variablex; as a
parameterand solve the associatedn — 1)-variable (z2, ..., x»)
problem P(x1) where the parameterz; is fixed and takes values
in some interval Y, C R, with some probability ¢, uniformly
distributed on Y. Then one considers the hierarchy of what
we call "joint+marginal” semidefinite relaxations, whose dials
provide a sequence of univariate polynomial approximatios
x1 +— pi(x1) that converges to the optimal value function
x1 — J(x1) of problem P(z,), ask increases. Then withk fixed
a priori, one computesz] € Y1 which minimizes the univariate
polynomial pi(x1) on the interval Y, a convex optimization

problem that can be solved via a single semidefinite program.

The quality of the approximation depends on how largek can
be chosen (in general for significant size problemg = 1 is the
only choice). One iterates the procedure with now arn(n — 2)-
variable problem P (z2) with parameter x5 in some new interval
Y2 C R, etc. so as to finally obtain a vectok € R"™. Preliminary
numerical results are provided.

I. INTRODUCTION

Consider the general polynomial program

P: f*::mgn{f(x) :xeK} 1)

Goemans and Williamson [2]. But in general there is no
such procedure.

Our contribution is to provide two relatively simple al-
gorithms for polynomial programs which builds up upon
the so-called "joint+marginal” approach (in short (J+M))
developed in [6] forparametric polynomial optimization.
The (J+M)-approach for variables € R™ and parameters
y in a simple sefY, consists of the standard hierarchy of
semidefinite relaxations in [4] where one treats the param-
etersy also as variables. But now the moment-approach
implemented in the semidefinite relaxations, considgoé
probability distribution on the paiix, y), with the additional
constraint that thenarginal distribution onY is fixed (e.g.
the uniform probability distribution oiY); whence the name
“joint+marginal” .

For everyk = 1,...,n, let the compact interva¥ :=
[z, Tr] C R be contained in the projection & into the
xi-coordinate axis. In the context of the (non-parametric)
polynomial optimization|]1), the above (J+M)-approach can
be used as follows in what we call tt{g+M)-algorithm :

e (a) Treatr; as a parameter in the compact inter¥al =
[z,,71] with associated probability distributiasy, uniformly
distributed onY;.

e (b) with ¢ € N fixed, solve thei-th semidefinite

where f is a polynomial K C R" is a basic semi-algebraic relaxation of the (J+M)-hierarchy [6] applied to problem
set, andf* is theglobal minimum of P (as opposed to a local P(z1) with n — 1 variables(zs, ..., z,) and parameter;,
minimum). One way to approximate the global optimumwhich is problemP with the additional constraint that the
f* of P is to solve a hierarchy of either LP-relaxations owvariablez; € Y, is fixed. The dual provides a univariate
semidefinite relaxations as proposed in e.g. Lasserreq#], [ polynomialz; — J} (1) which, if < would increase, would
Despite practice with the semidefinite relaxations seems @®nverge toJ!(z;) in the Ly(¢1)-norm. (The mapv —
reveals that convergence is fast, the matrix size inittte J'(v) denotes the optimal value function ®(v), i.e. the
semidefinite relaxation of the hierarchy grows up as fast @ptimal value ofP given that the variable; is fixed at the
O(n'). Hence, for large size (and sometimes even mediut@lue v.) Next, computez; € Y, a global minimizer of
size) problems, only a few relaxations of the hierarchy cathe univariate polynomial} onY; (e.g. this can be done
be implemented (the first, second or third relaxation). &t th by solving a single semidefinite program). Ideally, wtiga
case, one only obtains a lower bound £ and no feasible large enoughg; should be close to the first coordinatgof
solution in general. So an important issue is: a global minimizerx* = z7,...,z;) of P.

How can we use the result of thigh semidefinite relax- e (c) go back to step (b) with now; € Y, C R instead
ation to find an approximate feasible solution of the originaof 1, and withy, being the probability measure uniformly
problem? distributed onY,. With the same method, compute a global

For some well-known special cases of 0/1 optimizatiominimizer z, € Y», of the univariate polynomiak, —
like e.g. the celebrated MAXCUT problem, one may gener/?(z2) on the intervalY,. Again, if i would increase,/?
ate a feasible solution with guaranteed performance, fromvgould converge in thel;(y2)-norm to the optimal value
randomized rounding procedure that uses an optimal salutiunction v — J?(v) of P(xz2) (i.e. the optimal value oP
of the first semidefinite relaxation (i.e. with = 1); see given that the variable; is fixed at the value.) Iterate until
one has obtained,, € Y,, C R.

One ends up wih a point € [];_, Y; and in general
x ¢ K. One may then us& as initial guess of a local
optimization procedure to find a local minimutn € K.
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The rational behind the (J+M)-algorithm is thatiifs large is uniformly distributed orlY. Sometimes, e.g. in the context
enough and® has a unique global minimizet* € K, then of optimization with data uncertainty, is already specified.
x as well ask should be close tec*. The idea is to use (or more precisely, its moments) to get
The computational complexity before the local optimizainformation on the distribution of optimal solutions(y)
tion procedure is less than solvingtimes thei-th semidef- of Py, viewed as random vectors. In this section we assume
inite relaxation in the (J+M)-hierarchy (which is itself of that for everyy € Y, the setK, in (B) is nonempty.
same order as thieth semidefinite relaxation in the hierarchy
defined in [4]), i.e., a polynomial in the input size Bf A. A related infinite-dimensional linear program
When the feasible seK is convex, one may define the Let M(K) be the set of finite Borel probability measures
following variant to obtain deasiblepoint x € K. Again, onK, and consider the following infinite-dimensional linear
let Y, be the projection oK, into the z;-coordinate axis. programP:
OnceZ; € Y is obtained in step (b), consider the new opti- i
mization problenP(z,) in then —1 variables(zs, . .., x,), p = inf {/ fdp : T = (p}, (5)
obtained fromP by fixing the variablex; € Y; at the HeM(K) K
value z;. lts feasible set is the convex skt := KN{x: whereru denotes the marginal of on R?, that is,ru is a
@1 = I1}. Let Y, be the projection ofK, into the z>-  probability measure oR? defined byru(B) := u(R™ x B)
coordinate axis. Then go back to step (b) with nowe Y2 for all B € B(R?). Notice thatu(K) = 1 for any feasible
as parameter an(s, ..., z,) as variables, to obtain a point so|ytion ;1 of P. Indeed, asp is a probability measure and
i € Y, etc. until a point € [],_, Y is obtained. Notice /, — , one hasl = (YY) = p(R" x RP) = pu(K).
that nowx < K becauseK is convex. Then proceed as The dual of P is the the following infinite-dimensional
before withx being the initial guess of a local minimization |inear program:
algorithm to obtain a local minimizex € K of P.

* . g d
[I. THE "JOINT+MARGINAL APPROACH TO PARAMETRIC P ng;] /YP(Y) #(y)

OPTIMIZATION fx)—ply) >0 V(x,y) € K.

Most of the material of this section is taken from [6]. racall that a sequence of measurable functiéps on

Let R[x,y| denote the ring of polynomials in the variables, o re spacéY,B(Y),y) converges tog, p-almost
x = (z1,...,2z5), and the variableyy = (y1,...,9p),

_ : uniformly, if and only if for everye > 0, there is a set
whereasR[x, y], denotes its subspace of polynomials of 4 € B(Y) such thatp(A) < e andg, — g, uniformly on
degree at most. Let ¥[x,y] C R[x,y] denote the subset of v\ 4

polynomials that are sums of squares (in short s.0.s.). For aTheorem 1 ([6]): Let both Y c R? and K in (E) be
_real syr_nmetric_ma_tri_xA the notationA > 0 stands forA compact and assume that for eveng Y, the seti,  R”
is positive semidefinite. in @) is nonempty. Lef be the optimization problen](5)
and letX; := {x € R" : f(x,y)=J(y)}, y € Y. Then:

(6)

The parametric optimization problem

Let Y C R” be a compact set, called thmrameterset, @p = /Y J(y)dp(y) andP has an optimal solution.
and letf,h; € R[x], j =1,...,m. Let K C R" x R? be (b) Assume that fop-almosty € Y, the set of minimizers
the basic closed semi-algberaic set: of X} is the singletor{x*(y)} for somex*(y) € K. Then

) there is a measurable mapping Y — K, such that
K:={(xy):yeY; hjix,y) >0,j=1,...,m} (2) PPIng Y

gly) = x*(y) foreveryyeY

and for eachy € Y, let
o= [ Fa).y)dety), @

K, ={xeR": (x,y) € K}. ?3)
For eachy € Y, fixed, consider the optimization problem: and for everya € N*, and 3 € N”:
J(y) = inf {f(x,y) : (x,y) € K}. (4) /K xy’ dp*(x,y) = /Y Y 9(y)*de(y).  (8)

The interpretation is as followsY is a set of parameters (c) There is no duality gap betwedh (5) afld (6), h.e= p*,
and for each instancg € Y of the parameter, one wishesand if (p;)ien C Rly] is a maximizing sequence df| (6) then:
to compute an optimatlecision vector x*(y) that solves
problem [}). Leto be a Borel probability measure &, with / | J(y) —pi(y) |de(y) — 0 asi—oco.  (9)
a positive density with respect to the Lebesgue measure on Y
RP (or with respect to the counting measuré&ifis discrete). Moreover, define the functior(g;) as follows:p, := pg, and
For instance

y = pi(y) = max[pi-1(y), pi(y)], i=12,...

-1 .
— P
¢(B) := (/Y dy> /YmB dy, VB € B(R?), Thenp; — J(-), p-almost uniformly.



An optimal solutiony* of P encodesall information on For instance when theg;’s are affine (so thal is a
the optimal solutionsc*(y) of P,,. For instance, leB be a convex polytope)z, (resp.T;) solves the linear program
given Borel set ofR™. Then from Theorenf] 1, min(resp max ) {xy : x € K}. Similarly, whenK is convex
. . B 1 and defined by concave polynomials, one may ohtgimand
Prob (x"(y) € B) = (B xR”) = ¢(g~ (B)), Tk, up to (arbitrary) fixed precision. In many cases, (upper
with ¢ as in Theoren]1(b). and lower) bound constraints on the variables are already
Moreover from Theoren{] 1(c), any optimal or nearlyPart of the problem definition. _ o
optimal solution ofP* provides us with some polynomial et ¢k the_probablllty measure uniformly distributed on
lower approximation of the optimal value functign— J(y) Y&, hence with moment§s,) given by:

that converges to/(-) in the Li(¢) norm. Moreover, one T =0+l 01
may also obtain a piecewise polynomial approximation that Be = / aFdoy(z) = m (11)
converges toJ(+), w-almost uniformly. & B

In [6] the first author has defined a (J+M)-hierarchy ofor every £ = 0,1,.... Define the following parametric
semidefinite relaxation$Q;) to approximate as closely as polynomial program im — 1 variables:
desired the optimal valuge. In particular, the dual of each JE(y) = m,in (f(x) : x€ K; x5, =y}, (12)

semidefinite relaxatio®; provides a polynomial; € R[y]

bounded above by(y), andy — ¢i(y) := max,—1,.:q(y) or, equivalently.J*(y) = min { f(x) : x € K,}, where for
convergesp-almost uniformly to the optimal value function everyy ¢ Y:

J, asi — oo. This last property is the rationale behind the

heuristic developed below. K, :={xe K;z, =y} (13)
Observe that by definitionf* = min{J*(z) : = € Yy},
andK, # () whenevery € Y;,, whereY;, is the orthogonal
projection of K into the x;-coordinate axis.

1. A" JOINT+MARGINAL " APPROACH
Let N? := {a € N : |a| < i} with |a| = >, a;. With
a sequence = (z,) indexed in the canonical basig®) of
R[x], let L, : R[x] — R be the linear mapping: Semidefinite relaxations

- o To compute (or at least approximate) the optimal value
f(*zf“(xw = La(f) = Zfo‘ Za f ER[x]. p of problem P in % associated with the parametric

. _ . optimization problem|(12), we now provide a hierarchy of
Moment matrix: The moment matrixVI;(z) associated semidefinite relaxations in the spirit of those defined in [4]

with a sequence = (z,), @ € NI;, has its rows and columns | gt v; := [(degg;)/2], j =1,...,m, and fori > max; v;,
indexed in the canonical basig®), and with entries. consider the semidefinite program:
Mi(z)(or, B) = La(x**") = zasp, Vo, €N pix = it Ly(f) (14)
Localizing matrix: Let ¢ be the polynomiak — ¢(x) := st Mi(z) =0, M;_,,(g;2) =0, j=1,....,m
> @ux". The localizing matri¥M; (¢ z) associated witly € Lo(xh) = Be, £=0,1,...2i,
R[x] and a sequence = (z,), has its rows and columns ) } ) )
indexed in the canonical basig®), and with entries. where (3;) is defined in [Al1). We call (}4) thparametric
semidefinite relaxationf P with parametey = x. Observe
Mi(qz)(e, B) = La(q(x)x**7) that without the "moment” constraints,(zf) = B¢, £ =
- Z QuZaspiu, Yo,B €N 1,...2i, the semidefinite prograrﬂl4_) is a relaxationfof
weNn and if K is compact, its corresponding optimal valyf¢

converges tof* ask — oo; see Lasserre [4].

A sequencez = (z,) C R is said to have aepresenting Letting go = 0, the dual of @4) reads:

finite Borel measure supported &€ if there exists a finite
Borel measure: such that 2
ph=sup > Aef
Zo = / x“ dpu, VaeN". A’(Uj)ézozi .
K
st f) =Y Naf=oo+ Y o (19
=0 j=1

A. A joint+marginal” approach

With {f,(g;)72,} C R[x], let K C R" be the basic oj € X[x], 0<j<m;
compact semi-algebraic set degojg; <2i, 0<j5<m.
K:={xcR":g;j(x)>0,j=1,...,m}, (10) Equivalently, recall thalR[zx]2; is the space of univariate

_ _ o polynomials of degree at most, and observe that iff (15),
and consider the polynomial optimization problefh (1).  the criterion reads

Let Y, C R be some intervalz,, 7], assumed to be

21
contained in the orthogonal projection & into the z;,- > NeBe =/ pi(y)der(y),
ccordinate axis. —o Yy,



where p; € Rlzg]z; is the univariate polynomiak; — Of course, in general the vectat € R™ does not

pixyg) = ?ZZO Mext. Then equivalently, the above dualbelong toK. Therefore a final step consists of computing
may be rewritten as: a local minimumx € K, by using some local minimization
algorithm starting with the (unfeasible) initial poigt Also
Pl = sup / Pidpr, note that wherK is not convex, the determination of bounds
pis(05) /Y, . x,, and 7, for the interval Y, may not be easy, and so
o o one might be forced to use a subinterdd] C Y with
St f=pi=oo+ ;J] 93 (16) conservative (but computable) boungs> g,}andf;c < T
pi € Rlzp)ai; 05 € B[x], 0<j<m; Remark 1: Theorem[P assumes that for eveyye Y,
degojg; <2, 0<j<m. the setK, in (@3) is not empty, which is the case K is

connected. K, = () for y in some open subset &, then
Assumption 1:The fam||y of po|yn0mia|5(gj) C R[X] is the semidefinite relaxatiorml‘]-) has no SOIUtip{k (: +OO),
such that for somé/ > 0, in which case one proceeds by dichotomy on the inté¥al
until p;, < oo.

m
x—= M—|x||? =00 + 09, . . . .
I 0 ; 193 C. A joint+marginal” algorithm whenK is convex
In this section, we now assume that the feasiblel§et
R™ of problemP is convex (and compact). The idea is to

computez; as inALGO 1 and then repeat the procedure

into the x;-coordinate axis, and lep; be the probability but now fo_r the.(" . 1)-var_iable p_rob_lemP(yZl) WhiCh~ s
measure, uniformly distributed oW y. Assume thatk,, in problemP in which the variabler; is fixedat the valuez;.
@) is n<;t empty, le — ‘]Iﬁ) be as in ) and co%sider This alternative is guaranteed to work ¥ is convex (but

the semidefinite relaxationg (14)-(16). Thenias oc: not always 'fK is not convex). L
For everyj > 2, denote byx; € R"/*! the vector

k * k .
(@) pik T/Y Jdpr, and pjy, 1 . S dpy, (j,...,2,), and byk;_; € RI~! the vector(iy, ..., % 1)

(b) Let (p;, (ka;?)) be a nearly optimal solution of (6), e.g. (@nd sox; = 1). o
such thatfy, pider, > pi, — 1/i. Thenpi(y) < J*(y) for Let the mtervaIYl_ CcR b(_a the orthogonal projection of
all y € Yy, and K into the z;-coordinate axis. For every, € Yy, let the
interval Y2(%x1) C R be the orthogonal projection of the set
/ |J*(y) — pi(y)| dor(y) — 0, asi—oo. (17) KN {x: z1 =1} into the z,-coordinate axis. Similarly,
Y5 givenxs € Y1 xYs(X1), let the intervalY'3(%X2) C R be the

for someM and some s.o.s. polynomigls;) C X[x].
Theorem 2:Let K be as [(Ip) and Assumptioj 1 hold.
Let the intervalY, C R be the orthognal projection &

Moreover, if one defines, := po, and orthogonal projection of the s&N{x : 21 = Z1; 22 = T2}
into the z3-coordinate axis, and etc. in the obvious way.
y = pi(y) = max[p;—1(y),pi(y)], i=1,2,..., For everyk = 2,...,n, andx,—1 € Y1 X Ya(X1) - %

Y1 (Xi—2), let fu(xi) = f((Xe—1,%x)), and g (xx) ==

5. k - 5.
thenp;(y) 1T J*(y), for pi-almost ally € Yy, and sop; — 03 (Rpor %)), § = 1., m. Similarly, let

J*, pr-almost uniformly onYy.

Theoren{ is a direct consequence of [6, Corollary 2.6]. Kr(Xi-1) = {xx : gj(xx) >0, j=1,...,m},
- . _ = {xk : (Xk-1,%xx) € K}, (18)
B. A 7"joint+marginal” algorithm for the general case

Theoremﬂz provides a rationale for the following (J+M)-and consider the problem:

algorithm in the general case. In what follows we use the - ) . 7 ) s
primal and dual semidefinite relaxatiofis](1m}(15) withérd PRe-1) s min{fi(xz) © % € Kj&e-1)h - (19)
i fixed i.e. the original problenP where the variable, is fixed at
ALGO 1: (J+M)-algorithm: non convex K, relaxation;  the valuez, foreveryl=1,....k —1.

Write Y (Xx—1) = [z}, Tk, and lety;, be the probability
Setk = 1; o measure uniformly distributed oW, (%;_1).
Step k: Input: K, f, and the orthogonal projectiol;, = Let z be a sequence indexed in the monomial basis
[z, Tx] of K into the z;-coordinate axis, with associated o R[x;]. With index i, fixed, the parametric semidefinite
probability measurey, uniformly distributed onY,. relaxation [14) with parameter;, associated with problem
Ouput: z;, € Y. P(%)_1), reads:

Solve the semidefinite program [16) and from an optimal -

(or nearly optimal) solutior{p;, (o;)) of ({L8), get a global Pik = irzlf L, (fx)

minimizer Z; of the univariate polynomigh; on Y. st. M;(z), Mi_,, (gé? z) =0, j=
If &K = n stop and outpuk = (Z1,...,%,), otherwise set Lz(wi) =B, (=0,1,...,2,
k =k + 1 and repeat. (20)

1,....m



ALGO 2 | rel. error

.

where (3;) is defined in [(T1). Its dual is the semidefinite Prob | n | m i

program (withgt = 1)): 22| 5 |11 -17 -17.00 0%
23| 6 | 8 -361.5 -361.50 0%
o _ _ 26| 10| 21 | -268.01 -267.00 0.3%
Pik = p_s‘(lf‘)/Yk(ik l)pzd@’f (21) 29|10 21 0 0.00 0%
R J o ¢ —

2.8C1| 20 | 30 -394.75 -385.30 2.4%

RPRRPRRRRERRERREN

. L 2.8C2| 20 | 30 | -884.75 -871.52 1.5%
st fk—pi=o00+ Z 0; J; 2.8C3| 20 | 30 -8695 -8681.7 |  0.15%
= 2.8C4| 20 | 30 | -754.75 -754.08 |  0.09%

2.8C5| 20 | 30 | -4150.41 -3678.2 11%

pi € Rlzy]2i, 05 € E[xi], j=0,....m
dego;gh <2i, j=0,...,m. TABLE |

The important difference betweep [14) afd] (20) is siee ALGO 2 FOR CONVEX SETK
of the corresponding semidefinite programs, siada (E)

(resp. in [2D)) is indexed in the canonical basi®t] (resp.

Rxg]). A. ALGO 2 for convex seK

The (J+M)-algorithm forK convex Those problems are taken from [§2]. The setK is a
convex polytope and the functighis a nonconvex quadratic
polynomialx — x’'Qx+b’x for some real symmetric matrix
@ and vectorb. In Table | one displays the problem name,

Recall that the ordet of the semidefinite relaxation is
fxed. The (J+M)-algorithm consists of steps. At stepk of

the algorithm, the vectok,_1 = (Z1,...,2Zx—1) (already . :
computed) is such that; € Y; andZ, € Yy(%X¢—1) for thebnlumb_em of \*/ar;]abl_e(sj, the Puhmben O; c:fgnstraths, the
every ¢ — 2,....k — 1, and so the seK(X;_1) is a gobal optimumf*, the index: of the semidefinite relaxation

in ALGO 2, the optimal value obtained using the output of

nonempty compact convex set. o . LS .
PYy P ALGO 2 as initial guess in a local minimization algorithm

ALGO 2: (J+M)-algorithm: convex K, relaxation i of the MATLAB toolbox, and the associated relative error.
Setk — 1: As recommended in Gloptipoly [3] for numerical stability
Stepk > 1: Input: Fork = 1, % = 0, Y1(%0) = Yi; and precision, thc_e problem data have been rescaled to obtain
P(%o) :_P, fi=fandgl =g, j=1,...,m. a polytope contained in the bdx1,1]™. As one may see,
Fork > 2, %1 € Y, x ‘7{2@1) X Y1 (Fh). and excepted for problem 2.8C5, the relative error is very

small. For the last problem the relative error (abauft)

Output: x; = (Xp—1,Tr) With 2, € Y (Xk—1). . . . : :
put: X = (X1, r) Tk £ (Ri-1) is relatively high despite enforcing some extra upper and

Consider the parametric semidefinite relaxatiopd ( -(2I = o . h imal
with parameter;,, associated with proble(x;_;) in ({L9). '°We' boundsz; < x; < ;, after reading the optima

From an obtimal solution 1) extract the univari tsolution. However, usingk € K as initial guess of the
+ Froman optimal solutio 0@- )’S Zac & unvarat§, .| minimization algorithm in MATLAB, one still finds

polynomialay, = pi(wy) := 3,2 Aj . the optimal valuef*.
o Get a global minimizerz; of p;, on the interval
Yy (Xk-1) = [z, Ty, and setky, := (Xp—1, Tk). B. ALGO 1 for non convex seK
If Z =n sttop and oupuk < K, otherwise sek = k + 1 Again in Table Il belowy: (resp.m) stands for the number
and repeat.

of variables (resp. constraints), and the value displayed i
As K is convex,x € K and one may Stop_ A refinementthe "ALGO 1" column is obtained in running a local

is to now usex as the initial guess of a local minimization minimization algorithm of the MATLAB toolbox with the

algorithm to obtain a local minimizet € K of P. In view outputx of ALGO 1 as initial guess.

of Theorem{R, the larger the indeof the relaxations[(20)-  In Problems3.2, 3.3 and3.4 from Floudas et al. [1§3],

[©1), the better the value§(x) and f(%). one ha2n linear bound constraints and additional linear and
Of course,ALGO 2 can also be used wheK is not non convex quadratic constraints. As one may see, the sesult

convex. However, it may happen that at some stagthe displayed in Table Il are very good.

semidefinite relaxatior] (R0) may be infeasible becalidg) For the Haverly Pooling problem 5.2.2 in [§5] with three

is infinite for some values af € Y.(Xx_1). This is because different data sets, one has= 9 andm = 24 constraints,

the feasible seK(x;_1) in (@) may be disconnected. among which3 nonconvex bilinear constraints and linear

bound constraint® < z; < 500, ¢ = 1,...,9. In the first

run of ALGO 1 we obtained bad results because the bounds
We report on preliminary computational experiments omre very loose and in the hierarchy of lower bourids)

some non convex NP-hard optimization problems. We hava [4] that converge tof*, if on the one handf; = f*, on

tested the algorithms on a set of difficult global optimiaati the other hand the lower boung < f* is loose. In such a

problems taken from Floudas et al. [1]. To solve the semide&ase, and in view of the rationale behind the "joint+martjina

inite programs involved ilPALGO 1 and in ALGO 2, we approach, it is illusory to obtain good results wih. GO

have used the GloptiPoly software [3] that implements th& or ALGO 2. Therefore, from the optimal solutiox* in

hierarchy of semidefinite relaxations defined in [4, (4.5)]. [1], and when0 < z} < 500, we have generated stronger

IV. COMPUTATIONAL EXPERIMENTS



Prob n | m f* 1 ¢ | ALGO 1 | rel. error n 20 30 40
3.2 8 | 22 7049 | 1 7049 0% (p—f5)/I1f7] | 10.3% | 12.3% | 12.5%
3.3 5| 16 | -30665| 1 | -30665 0%
3.4 6 | 18 310 | 1 -298 3.8%
522(1)| 9| 24 400 | 1 400 0% TABLE TH
L 0
522 (2) 9 24 600 1 600 0% RELATIVE ERROR FORMAXCUT
523Q3)| 9| 24 750 | 1 750 0%
524 | 9| 24 750 | 1 750 0%
L I I el I e (1)? etc. finally withz,, to obtain(\7, 7). One then seledt such
2. -03. -oZ. () - . ..
that |\}| = max, |\{|, and computet; accordingly. This is
TABLE II because the largeh, |, (i.e. the largetp;(—1) — p;(1)|), the
ALGO 1 FOR NON CONVEX SETK more likely the choice-1 or 1 is correct. Afterx;, is fixed

at the valuez, one repeats the procedure for the— 1)-
problemP (), etc.
We have tested the "max-gap” variant for MAXCUT

bounds0.4z7 < z; < 1.6z7. In this casefT is much closer problems on random graphs with= 20,30 and40 nodes.
to f* and we obtain the global minimuni* with ALGO  For each value of,, we have solved0 randomly generated
1 followed by the local minimization subroutine; see Tableyroblems and 00 for n = 40. The probabilityp;, on Y, =
Il Importantly, in ALGO 1, and before running the local {_1 1} is uniform (i.e.,5; = 0 in [©0)). Let f; denote the
optimization subroutine, one ends up with a non feasiblgptimal value of the Shor’s relaxation with famous Goemans
pointx. Moreover, we had to sometimes use the dichotomynd williamson's 0.878 performance guarantee. denote
procedure of Remarf§ 1 becauséif, is large, one may have the cost of the solutionx € {—1,1}" generated by the
K, = 0 for y in some open subintervals &f. ALGO 2. In Table Ill we have reported the average relative

Problem 7.2.2 had3 linear constraints and nonlinear grror (p — f5)/|fF], which as one may see, is comparable
constraints with bilinear terms. To handle the non-polyi@m ith the Goemans and Williamson (GW) ratio.
function 2-5, one uses the liftingu? = z;, u; > 0,
i = 5,6. Problem 7.2.6 has only variables, 6 linear V. CONCLUSION
bound constraints, and one highly nonlinear constraind (an First preliminary results are promising, even with small
criterion). Here one uses the lifting?z, = 1, « > 0, to  relaxation orderi. When the feasible set is non convex, it
handle the term:; *. Again one obtains the optimal valyfé  may become difficult to obtain a feasible solution and an
with ALGO 1 followed by a local optimization subroutine. interesting issue for further investigation is how to prede
C. ALGO 2 for MAXCUT when K, = ) for y in some open subinterval oY

(proceeding by dichotomy oY, is one possiblity).
Finally we have testedLGO 2 on the famous NP-hard

discrete optimization problem MAXCUT, which consists of REFERENCES
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with parameterz; to obtain an optimal solutiop;(x;) =
AL+ Az of the dual (1), then with:, to obtain(A2, A2),



