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Someroles of thevocal tract in clarinet breath attacks:
Natural sounds analysis and model-based synthesis

Philippe Guillemain®

Laboratoire de Mécanique et d’Acoustique,

CNRS UPR 7051

81 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

(Dated: January 16, 2007)

A simplified physical model mainly devoted to the reproduction of some transients of clarinet-
like instruments is presented. From time-frequency analyses of natural clarinet sounds, it
is shown that the vocal tract can play a significant role in some attacks as well as in the

permanent regime.

The model proposed consists in supplying a pressure source at the

entrance of a cylindrical bore attached to the mouthpiece, allowing to reach various vocal
tract configurations. For real-time synthesis purposes, a digital scheme solving the physical
problem is proposed. It is shown that this synthesis model is able to reproduce some of
the complex features observed during the attacks of the natural sounds analyzed, as well as
known effects of the vocal tract in permanent regime.

PACS numbers: 43.75.Ef, 43.75.Pq

I. INTRODUCTION

Synthesis models based upon simplified representa-
tions of the physical functioning of reed instruments have
shown their ability to produce musically relevant timbre
variations with respect to commands of the player. More-
over, such models are interesting from a real-time control
point of view, since they minimize the mapping between
the continuous command of the player and the synthesis
parameters. In counterpart, direct measurement of con-
trols on a player in performance situation is a task diffi-
cult to handle and the complex mechanisms responsible
for the sound production make difficult to know what
the musician is doing from the analysis of the sound he
produces. Moreover, inverting a model requires a deep
but generally unavailable knowledge of some of its parts,
such as the whole resonator. Indeed, though Backus'
considered the vocal tract influence of the player to be
negligible, it is now commonly stated that the resonator
of reed instruments should be seen as an association of
two coupled acoustic bores in series, one corresponding
to the instrument and the other to the player (see e.g.
Benade? ).

Sommerfeldt and Strong® and more recently Fritz*
have studied experimentally and numerically, out of the
real-time synthesis context, how the impedance peaks of
the vocal tract may modify some features of the clarinet
sound (spectrum, playing frequency). Scavone® proposed
a real-time oriented synthesis model and discussed in an-
other paper® several “physically informed” attack models
including noisy components.

While these authors focus on the role of the vocal tract,
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modelled for some of them®® with analogous electric cir-
cuits, during the permanent regime, the present paper
investigates vocal tract influences during breath attacks
without mechanical action on the reed and proposes a
highly simplified distributed model for real-time sound
synthesis. The aim of this paper is not to present a sys-
tematic study of vocal tract manipulations used in musi-
cal performances and their consequences on the sound
produced but rather to use the classical “analysis by
synthesis”? framework to propose a model capable to
mimic natural sounds displaying specific features and to
determine the corresponding set of parameters relevant
both from the physical and the synthesis points of view.

After a brief recall of Fritz’s* model, section II pro-
poses a model in which the pressure is supplied at the
entrance of an upstream bore rather than at the reed
level. For sake of simplicity, this upstream bore is con-
sidered cylindrical and intends to provide a model of the
first impedance peak of the whole respiratory airway.

In section III, time-frequency analyses of transients of
natural clarinet sounds are presented and hypotheses are
made to explain the complex behaviors observed during
the attacks.

Thanks to the presentation of a synthesis scheme that
simulates the behavior of the physical model, section IV
shows that during attack transients, when the blowing
pressure is supplied at the entrance of the upstream bore,
self-oscillations tuned on its first impedance peak may
start and decrease until the steady-state regime tuned
on the instrument bore is reached.

It is concluded that the synthesis model generates tran-
sient and permanent regimes sharing many common fea-
tures with the natural sounds analyzed in section III.

Guillemain: Synthesis of clarinet transients 1



II. PHYSICAL MODEL

The classical model describing the vocal tract by its
impedance seen from the reed is first briefly recalled.

A. Classical model

The classical model (see e.g Wilson and Beavers® ) used
to represent the link between acoustic pressure and flow
in the mouthpiece of a single reed instrument is based
upon the steady Bernoulli equation. It is assumed that
a jet of velocity v;(t) and pressure p;(t) is formed at
the end of the reed channel, and that its kinetic energy
is totally dissipated (in the mouthpiece for a jet entering
the resonator, in the mouth for a jet entering the player’s
vocal tract). Tt is also assumed that the cross-section
S;(t) of this jet is much smaller than the mouth cross-
section S,, and the resonator cross-section S. It is finally
assumed that the jet cross-section is proportional to the
time varying reed channel opening Sy (¢), determined by
the reed motion: S;(t) = aSy(t). For simplicity, it will
be assumed in what follows that o = 1.

With these hypotheses:

=)= 3" gl m

where p is the mean air density. p,, is the mouth pressure.
pr(t) and u, (t) are respectively the acoustic pressure and
flow at the entrance of the resonator.

In permanent regime, by decomposing the mouth pres-
sure pp, into an imposed static (DC) component pg and
an oscillating component p, (t) created by the acoustic
coupling between the vocal tract and the body of the
instrument, Fritz* studied the self-oscillations by consid-
ering an equivalent impedance at the reed level including
the upstream and downstream bores:

Pr(w) = Pu(w)

Ur (w)
where the capital letters denote the Fourier transforms.
Zu(w) = =Py (w)/Ur(w) and 7, (w) = Pr(w)/Ur(w) de-
note the impedances of the upstream and downstream
bores.

Nevertheless, this model can be questionable from a
physical point of view in the case of a time varying blow-
ing pressure, since the static pressure pgy is imposed at
the entrance of the reed channel. This makes the mouth
pressure depend only on the acoustic coupling between
the two bores and on the imposed pressure but not on
the vocal tract itself, independently of the instrument.

ot (W) = = Zp(w) + Zu(w) (2)

B. Proposed model

We propose a model in which the mouth pressure p,,,
from now denoted py, (), is the consequence of a blow-
ing pressure p,(t) imposed at the entrance of an upstream
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FIG. 1. Geometry of the system and physical variables.

bore surrounding the mouthpiece. Though Scavone® con-

sidered an equivalent lung flow source, simple calcula-
tions based on measurements by Mukai® show that in
permanent regime, the cross-section area of the glottis is
about three times larger for experienced musicians and
twenty times larger for inexperienced musicians than the
average reed channel opening of a clarinet. Moreover,
during attacks the energy source can be located at the
palatal constriction level rather than at the glottis or
lungs level. For these reasons, supplying a pressure seems
as realistic as supplying a flow and will be more conve-
nient for real-time synthesis purposes.

1. Resonator model

The geometry of the system and its physical variables
are depicted in figure (1).

The body of the instrument is assumed to be a per-
fect cylinder of equivalent (including only the imaginary
part of the radiation impedance'? as a length correc-
tion) length L and radius R, with linear propagation of
plane waves. In this case, its input impedance linking the
Fourier transforms of the pressure p,(¢) and flow u,(¢) in
the mouthpiece of the instrument is:

Zr(w) = jZ. tan(k(w)L) (3)

Ze = pc/S is the characteristic impedance of the bore.
S is its input cross-section. k(w) is the wavenumber in-
cluding viscothermal losses'': k(w) = w/c — j3/?ner/w,
where 5 = 1/(Rc3?) (VI + (¢p/cy — 1)VI;). Typical val-
ues of the physical constants, in mKs units, are: ¢ = 340,

l, =4.1078, 1, =5.6.1075, ¢, /c, = 1.4.

For sake of simplicity, digital efficiency and controlla-
bility issues in a real-time synthesis context, the “player
bore” is also considered cylindrical, with radius R,,,
cross-section S,, and length L,,. It includes frequency
dependent losses and models the low frequency behavior
of the vocal tract. The losses model, taken into account in
the wavenumber denoted k,,, is also based upon the clas-
sical viscothermal losses rule'! but the geometrical radius
is replaced by a smaller and adjustable radius R, in or-
der to take into account additional losses corresponding
to those of the human tissues. Indeed, a straightforward
simulation shows that this method provides an approx-
imation of Sondhi’s!? losses model sufficient for digital
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sound synthesis purposes. Moreover, it provides an addi-
tional degree of freedom to control the quality factor of
the first impedance peak independently of the bore length
and radius. For digital synthesis purposes, it is finally as-
sumed that k,, equals zero at zero frequency. This way,
the DC component of the blowing pressure p,(t) is fully
transmitted to the mouth pressure py, (t).

Obviously, in real situations, these parameters are
modified dynamically by the player during the attack and
during the play, but for the purpose of this paper which
mainly aims at understanding and simulating the role of
the vocal tract during the transient, it will be assumed
that they remain constant. The three control parameters
Sm, Lm and R, allow to reach different configurations,
running from the classical model in which S, is large
and L,, is small, to more realistic configurations in which
Ly, and R, will determine respectively the frequency and
the quality factor of the first impedance peak of the vocal
tract and S,, will determine the level of acoustic coupling
between the player bore and the instrument bore.

By denoting U, = Sy Vi and Uy = S,V the Fourier
transforms of the acoustic flows associated to the acous-
tic velocities v, and vg, the pressure and flow propaga-
tion within the player bore is described by the following
transmission line equations:

Py(w) = co§(kmLm)Pm(w) + 7 Zm sin(ky L ) Uy (w)
Uy(w) = Zj—m $i0 (L ) P (@) + €08 (km L ) U ()

where Z,, = pc/Sy, is the characteristic impedance of
the upstream bore.
These equations are finally written as follows:

Py(w) = ZmUg(w) + e 7FmEm (P (W) = ZimUnm (@) (4)
Pr(w) = =ZmUn(w) + e *mEm (Py(w) + ZnUy (@) (5)

It is worth noting that since Py(w) is imposed, equa-
tions (4) and (5) can be combined to remove Uy (w):

Qe—dkmlm

P (w) Py(w) — jZm tan(km Lm ) U (w)

(6)
which shows that the resonances induced by the vocal
tract are those of a quarter wave resonator. In perma-
nent regime (Py(w) = pod(w)), this model is equivalent to
Fritz’s* model. As soon as p,(t) varies, the two models
are different, due to the filtering of the blowing pres-
sure by 2exp(—jkmLm)/(1 + exp(—2jkm Lm)). There-
fore, during attack transients, it can be expected that
a large bandwidth excitation yields oscillations of py, (¢)
tuned on the poles of this filter, independently of the level
of the acoustic coupling between the two bores occurring
in permanent regime and determined by the value of the
impedance jZ,, tan(km L ).

- 1 + €_2jkmLm

2. Flow model

If it is no longer assumed that the jet cross-section is
much smaller than the mouth cross-section, the acoustic
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velocity v, () in the player bore can no longer be ig-
nored. In this case, for a jet entering the instrument, the
Bernoulli flow model reads:

1 1
Pll) + Lo 0 = 20+ Spri0? (7)
Assuming flow conservation (um (t) = Spvm(t) = ur(t) =
Sy(t)v;(t)) and total dissipation of the kinetic energy of
the jet in the mouthpiece (p,(t) = p;(t)), equation (7)
becomes in terms of pressure and flow variables:

pn(t) = (1) = goue ) (ﬁ - si) ®)

In the same way, for a jet entering the mouth, the
Bernoulli flow model reads:

pelt) + 5o = pi(0) + o) (9)

Assuming again flow conservation and total dissipation
of the kinetic energy of the jet in the mouth (pn,(t) =
p;(t)), equation (9) becomes in terms of pressure and
flow variables:

)=o) =~ 07 (rz = 52) - (0)

The reed channel opening Sy (t) is determined by the
product of its width w and its height H + y(t) (see figure

(1)):
Sy(t) = w(H + y(t))(H + y(t)) (11)

where 0(H + y(t)) is the Heaviside function, the role of
which is to keep the reed channel opening positive (6(H +
y(t)) = 0 when y(¢) < —H) and to model the beating-
reed phenomenon. H denotes the position of the reed at
equilibrium (without any blowing pressure).

The reed is modelled as a linear single degree of free-
dom system and its displacement y(¢) is given by the
following dynamic equation:

1 d%y(t) | g dy(t)
w? dt? wr dt

pm(t) — pr(t)
prw?

+yt) = - (12)
where w, = 27 f,, -1 and p, are respectively the angular
frequency, the quality factor of the reed resonance and
the reed mass per unit area.

The full physical model of the functioning of the in-
strument is made of:

e The blowing pressure pg(t).

e The equations (4) and (5) describing the propaga-
tion of pressure and flow between each termination
of the player bore.

The instrument bore impedance equation (3).

e The reed dynamics equation (12).

The reed channel opening equation (11).
e The flow model equations (8) and (10) .

Guillemain: Synthesis of clarinet transients 3
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FIG. 2. Example 1. Top: First 0.8s of the time signal. Bot-
tom: Enlargement of the first 140ms.

[ll. EXPERIMENTAL OBSERVATIONS

This section firstly presents time-frequency analyses of
transient parts of two natural clarinet sounds. Then, it
proposes an interpretation of the phenomena, linked with
general features of the impedance (seen from the reed) of
the vocal tract, based on measurements by Fritz* and
simulations by Sommerfeldt> .

A. Analysis of natural sounds

In order to study the role of the player bore during
transients, two musicians were asked to play attacks with-
out involving a mechanical contact between the tongue
and the reed. Example 1 was performed by an inexperi-
enced player. Example 2 was played by an experienced
clarinet teacher and performer on its own instrument.
This musician pays a lot of attention to what he calls his
“internal phonation” and is, according to him, trained
to control the movements and shape of its respiratory
airway when playing.

All the spectrograms and spectrogram slices presented
in what follows have been computed with a gaussian win-

dow, the width of which at half-height is 25ms.

1. Examplel

The top of figure (2) shows the external pressure,
recorded at a sampling frequency of 44.1kHz one me-
ter away from the instrument with an omnidirectional
microphone, of the first 0.8s of an attack of a clarinet
sound. The bottom shows an enlargement of the first
140ms. The fundamental frequency, estimated in the
steady-state part of the sound, 1s 149H z. The envelope
of the attack shows an increasing phase, followed by a de-
creasing phase. The total duration of these two phases is
about 40ms. The main frequency of oscillation of the sig-
nal during these phases is around 700H z and is far above
the fundamental frequency of the steady-state regime.

Figure (3) shows the spectrogram of the sound in the
range [0 4kHz]. During the first 0.1s, the component
of highest level is a transient component of short dura-
tion (around 40ms), the frequency of which is around
690H z. This frequency does not correspond to the fre-
quency of one of the harmonics of the sound (less than
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FIG. 3. Example 1. Spectrogram. Horizontal axis in seconds,
vertical axis in kHz.

the frequency of the 5! harmonic) and the spectrogram
does not show a smooth glissando between the frequency
of this transient component and that of the fifth har-
monic. This transient component appears before the be-
ginning of the fifth harmonic and dies after it. One can
notice around 2k H z a similar component at a lower level.
Its frequency corresponds to three times that of the first
transient component. In the same way, it can be noticed
around 3.4k Hz a transient component whose frequency
corresponds to five times that of the main transient com-
ponent. After the first 0.1s, the fifth harmonic has the
highest level. During the first 0.2s, the spectral content
of the sound is rich, with the presence of many com-
ponents that seem to be neither in harmonic relation-
ships between them nor subharmonic of the fundamental
frequency. During the first 0.5s, the amplitudes of the
harmonics vary rapidly, which seems to indicate that a
stable, steady state oscillation regime is not reached.

This is confirmed by figure (4), which shows super-
imposed two vertical “slices” of the spectrogram at ¢ =
0.07s (solid line) and ¢ = 0.7s (dashed line). For clar-
ity the curves have been normalized. The spectrogram
slice corresponding to the attack shows clearly the com-
ponent at 690H z, as well as its harmonics. Harmonic
two emerges among other peaks. Harmonic three is
clearly visible around 2kHz. Harmonic four does not
emerge and harmonic five is split into two components
around 3.4kHz. All these transient components are no
longer visible on the slice corresponding to the permanent
regime and their frequencies are different from those of
the stable self-oscillations. In permanent regime, har-
monics three and five have a higher level than the funda-
mental.

It is worth noting that other instances of the same note
played by the same musician lead to similar results. It
has been noticed that notes played with a lower blowing

Guillemain: Synthesis of clarinet transients
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FIG. 4. Example 1. Spectrogram slices at ¢ = 0.07s (solid
line) and ¢ = 0.7s (dashed line). Horizontal axis in kHz.
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FIG. 5. Example 2. Top: First 0.8s of the time signal. Bot-
tom: Enlargement of the first 140ms.

pressure lead to the death of the harmonics of the tran-
sient component at 690H z and to the simultaneous birth
of the transient component and the fifth harmonic of the
steady-state regime. In the same way, a different note
(two semitones higher) played by the same musician on a
different clarinet lead to a qualitatively similar behavior
of the spectrogram during the transient, with the pres-
ence of a transient component around 700H z and a rich
spectral content during the first 0.1s.

2. Example 2

Figure (5) shows that in this example, the attack is
slower than in the first example. Self-oscillations start
around ¢ = 0.2s. The enlargement shows that during
the beginning of the transient, mainly noise seems to be
present.

Figure (6) shows that the brightness of the sound is
weaker than in the first sound example by considering the
smaller level of high frequency harmonics in the steady
state part of the sound. Between 0 and 1200H z, all the
harmonics appear nearly simultaneously, excepted har-
monic three, appearing before the others, in the con-
tinuation of a noisy and low level transient component
at 500H z. The levels of harmonics three and five are
clearly higher than that of the fundamental. Similarly,
harmonics seven and eight also have a high level. From
the beginning of the self-oscillations until £ = 0.35s, the
components are frequency modulated and seem to re-
main in harmonic relationships. An inharmonicity in the
whole resonator might be the responsible for this pitch
variation. In the steady state regime, above the odd har-
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FIG. 6. Example 2. Spectrogram. Horizontal axis in seconds,
vertical axis in kHz.

monic number seven (around 1200Hz), the level of the
even harmonics is high.

It is worth noting that a different note played by the
same musician (ten semitones higher) also exhibits an
early start of a high level third harmonic in the continu-
ation of a transient component whose frequency is close
to that of the third harmonic (around 850H z).

B. Discussion

According to musicians and measurements by Fritz,*
two main vocal tract configurations are used in perma-
nent regime.

The /a/ configuration (as in “father”) is used in the
lower register. In this configuration, the impedance of
the player air column seen from the reed shows a peak
around 300 — 500H z. The height of this peak remains
small compared to those of the instrument bore.

The /i/ configuration (as in “see”) is preferably used in
the higher register. In this configuration, the impedance
of the player air column seen from the reed shows a peak
around 700 — 900 H z. The height of this impedance peak
is of the same order of magnitude as those of the instru-
ment bore.

As suggested by Clinch'® and measured by Wilson,!*
a trained player may align the first resonance of his vocal
tract to an harmonic of the note played. This could cor-
respond to the second sound example. Indeed, this sound
is played by an experienced teacher, in the lower register.
Thus, it can be hypothesized that the high level of har-
monic three corresponds to an alignment of a resonance
of the vocal tract in a configuration close to /a/ with a
resonance of the instrument and that a strong coupling
of the two bores at this frequency is responsible for the
early birth of the third harmonic. Another argument in
favor of this hypothesis is that a different note played by
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this musician shows a similar behavior.

On the contrary, the performer of the first example did
not make any matching between his vocal tract configu-
ration and the note played. The high level of harmonic
five seems to indicate that he used a vocal tract configu-
ration closer to /i/ than to /a/, with a strong resonance
located between the harmonics four and five. Moreover,
he supplied the pressure suddenly at a high level. There-
fore, it can be hypothesized that a mechanism involving
the vocal tract is responsible for the raising of a distinct
transient component around 690H z accompanied by its
harmonics and many inharmonic components. These hy-
potheses are sustained by the fact that a different note
played by the same player on a different instrument ex-
hibits a similar transient component at roughly the same
frequency.

In order to verify these hypotheses, a synthesis model
simulating the behavior of the proposed physical model
is presented and studied.

IV. SYNTHESIS MODEL

This section presents a real-time oriented digital
scheme allowing to compute the variables of the phys-
ical model. This scheme is a straightforward modifica-
tion of that proposed by Guillemain et al.!'® using Digital
Impedance Models (dimensionless Kirchhoff’s variables
instead of wave variables) to represent numerically the
whole physical model.

The dimensionless variables py, tig, Pm, %y and p,, 4,
are defined from the physical variables by the relation:

- Pgm,r ~

Pgm,r = Ug m,r = Ze
Pm M

Ug,m,r

where pjys is the static beating-reed pressure involving the
physical parameters of the reed and is classically defined
by: par = pr Hw?.

A. Instrument bore

Using dimensionless variables, the input impedance
Zr(w) given by equation (3) is written as:

Ze(w) = 5&‘3

1— e—2jk(w)L

T ] fe-2ikW)L

= jtan(k(w)l) (13)
The delay, dispersion and dissipation contained in

exp(—2jk(w)L) are modelled by a first order low-pass
digital filter and an integer delay D = E(2F;L/c):

Qjk(w) L) ~ 0 14

exp(~2jk(w) L) = 12— (14)

where E(z) denotes the integer part of z, F; is the sam-
pling frequency and z = exp(jw/F}).

The coefficients by and a; are expressed analytically!'®
as functions of the length and radius of the bore by im-
posing that the height of the first two impedance peaks of
the digital model matches those of the continuous model.

6 J. Acoust. Soc. Am.

This finally leads to the following equations:

Prin) = i(n) + V; (15)
Vo = ai(pe(n—1) = iir(n - 1))
~ bo(fr(n—D) +in(n—D))  (16)

B. Player bore

The delay and losses contained in exp(—jkm Lm) are
also modelled by a first order low-pass digital filter and
an integer delay:

Ly bmE 17
exp(—jkm m)—m (17)
The delay Dy, corresponds to Dy, = E(FsLy/¢). The
coefficients b,, and a,, are computed analytically so that
the modulus of the digital model matches, for two given
frequencies, that of the continuous model. For an easier
control of the model, the first matched frequency is zero,
so that the DC component of p,; can be entirely trans-
mitted to pm, (ﬁm(O) = }59(0)), yielding b, = 1 — ap,.
The second frequency is ¢/(4Ly,) and corresponds to the
frequency of the first impedance peak of the player bore.
With this approximation, the time domain digital ver-
sion of the system of equations (4) and (5) becomes:

Pg(n) = Mig(n) + am(Pg(n — 1) — Aty(n — 1))
+ b(Pm(n — D) — Aliy (n — D)) (18)
Pm(n) = —AUm(n) + am(Pm(n — 1) + Al (n — 1))
+ bm(Pg(n — D) + Atg(n — Dp,)) (19)

where A= Z,,,/Z. = 5/Sm.

Since p, is imposed, equation (18) is modified so that
iy can be calculated from p,, pp, and ty,.

This leads to the final set of equations describing the
player bore:

iy(n) = ﬁg(”)}\_ Vo (20)
Pm(n) = =Alm(n) + Vi (21)
where
Vg = am(pg(n —1) = Adg(n — 1))
+ bm(Pm(n — D) — A (n — D)) (22)

Vi = @m(Pm(n — 1) + A (n — 1))
+ by (Pg(n — D) + Attg(n — Dy,)) (23)

C. Reed motion

The dimensionless reed model consists in replacing the
reed displacement y(¢) by z(t) = y(¢t)/H. With this no-
tation, the reed opening equation (11) becomes:

Sy (1) = wHO(1 + 2(1)) (1 + 2(1)) (24)

Guillemain: Synthesis of clarinet transients



and the reed dynamics equation (12) becomes:

1 d*z(t)  qr dz(t)
w2 dt? wy dt

+a(t) = e(t) (25)

where €(t) = pr(t) —pm (t) denotes the dimensionless reed
excitation.

Equation (25) is discretized by the use of centered dif-
ferentiation schemes: jw ~ Fy/2 (z — z_l) and —w? ~
F? (z -2+ z_l). This yields the difference equation:

z(n) =be(n—1)+a,z(n—1)+az,z(n—2) (26)

where the coefficients b1,, a1, and as, are expressed
analytically'® as functions of w, and ¢,.

D. Nonlinear characteristics

For the sake of digital efficiency, it is assumed that
wH /Sy ~ 0and wH/S ~ 0. In this case, from equations
(8) and (10) the dimensionless nonlinear characteristics
reads:

[Pm(n) — pr(n)] (27)
where W represents the reed channel opening:
W =¢O(1 + z(n))(1 + z(n)) (28)

The parameter ( corresponds to the definition by
Kergomard!®: ( = wH Z.\/2/(ppm)-

Uy (n) = Wsign (ﬁm (n) - ﬁr(n))

E. Synthesis scheme

The synthesis scheme presented here calculates at any
sample n the values of 44 (n), pm(n), &m(n), pr(n), @r(n)
and z(n) as functions of their past values and the known
blowing pressure pq(n):

e Calculate V, V,,, V. with equations (22), (23), (16)
and let V=V, — V,.

e Calculate @4(n) with equation (20).

e Calculate z(n) with equation (26).

e Calculate W with equation (28).

e Let iy, (n) = 4r(n), replace pm(n), pr(n) by their
definitions from equations (21), (15) into equation
(27) and let b, = 1+ A.

e Solve analytically equation (27), yielding:

1
iy (n) = Ssign(V) (=2 + W/B2WZ 4]
e Calculate p,(n), pm(n) with equations (15), (21).
e Calculate e(n) = pr(n) — pm(n) .

The external pressure pey:(n) is calculated as the dif-
ference between the sum of mouthpiece pressure and flow
at sample n and at sample n — 1, corresponding to the
simplest approximation of the derivative of pey:(¢) since:

Pegy(w) = jwe NP (w) + Uy (@)

where exp(—jk(w)L) can be ignored from a perceptual
point of view.
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FIG. 7. Typical variations of the transient blowing pressure.
Horizontal axis in ms.

V. RESULTS OF SIMULATIONS

In order to validate the hypothesis made from the anal-
ysis of natural sounds, the synthesis model is used to
generate sounds.

The transient variations of the blowing pressure py(t)
are controlled as follows:

Po(t) = Z(1+ tanh(a(t - t0))) (29)

The parameter «. controls the pressure level and the
parameter « controls the raising time from 0 to the
maximum 7., therefore the excitation bandwidth. In
the model by Kergomard,'® ~, corresponds to the ratio
Pm/pum - Figure (7) shows typical shapes of the transient
pressure for two values of & when 5. = 0.8.

A. Upstream or downstream bore alone

These examples demonstrate that when the instrument
bore is removed, corresponding to impose p.(t) = 0,
self-oscillations can start, tuned on the first peak of an
impedance corresponding to the player bore closed by
the reed. The reed resonance frequency is chosen high:

» = 10kHz so that its role on the functioning of the
model can be ignored and ¢, = 0.3. The values of the
control parameters are: 5. = 0.8, corresponding to a
beating-reed situation and ¢ = 0.35. The raising of the
blowing pressure is chosen fast: a = 3000s~".

1. Instrument bore alone

This simulation corresponds to the classical model ig-
noring the vocal tract. The length of the bore i1s L =
0.57m, its radius is R = Tmm.

The top of figure (8) shows the first 140ms of the exter-
nal pressure, the bottom its spectrogram over a duration
of 0.8s and on the frequency range [0 3k H z]. Though the
blowing pressure (pm (t) = pg(t)) is high and its raising is
fast, the envelope of the external pressure is smooth dur-
ing the attack. A permanent regime is reached at around
t = 100ms, corresponding to a total transient duration of
about 45ms (the beginning of the sound is at ¢ = 55ms).

The spectrogram shows that mostly odd harmonics are
present. The birth of each harmonic is directly related to
its rank. Its frequency seems constant during the tran-
sient and its amplitude decreases with respect to its rank.

Guillemain: Synthesis of clarinet transients 7
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FIG. 8. Instrument bore alone. Top: First 140ms of the

external pressure. Bottom: Spectrogram on 0.8s in the range

(0 3kHz).

2. Player bore alone

This simulation corresponds to the removal of the in-
strument bore, obtained by setting p,(¢) = 0. The length
of the player bore is L,, = 0.125m, its radius is 2.5 times
that of the instrument bore: R,, = 17.5mm. The equiv-
alent radius R, used in the calculation of the losses has
been chosen five times smaller than the geometrical ra-
dius. These values have been adjusted so that the height
of the first impedance peak of the player bore be close to
that of the third impedance peak of the instrument bore.

The top of figure (9) shows the first 140ms of the exter-
nal pressure, the bottom its spectrogram over a duration
of 0.8s and on the frequency range [0 3kH z]. Compared
to figure (8), the raising of the external pressure level
nearly follows that of the blowing pressure py(t) since a
steady state regime is reached after the first two periods
of oscillations.

The spectrogram shows that mostly odd harmonics
with constant frequencies are present. The fundamental
frequency of the sound i1s 650 H z and corresponds to that
of the first peak of the digital impedance of the player
bore. Since the delay D,, is quantified, this value dif-
fers slightly from that of the first impedance peak of the
continuous impedance model which is ¢/(4L,,) = 680H z.

These two examples show that the functioning of the
player/reed and reed/instrument systems is comparable.
Indeed, using the notations and results of Kergomard,'®
by setting p, = v and p; — P, = p, it can be shown that
for a lossless player bore and a massless reed, in perma-
nent regime p,, is a square signal oscillating between 0
and 2p,.

Moreover, in order to study the role of the spectral
bandwidth of the blowing pressure on the attack du-
ration, the same simulations have been performed with
a slower raising of the blowing pressure: a = 200s7!.
These simulations showed that the excitation bandwidth
plays a little role on the raising of self-oscillations of the
instrument bore alone since the attack duration remained
close to 45ms. On the contrary, a significant influence on
the raising of the self-oscillations of the player bore alone

8 J. Acoust. Soc. Am.
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FIG. 9. Player bore alone. Top: First 140ms of the exter-
nal pressure. Bottom: Spectrogram on 0.8s in the range (0

3kHz).

was noticed since the steady-state regime was no longer
reached instantaneously but after 300ms.

B. Full model

This section presents simulations obtained with the full
resonator model. The reed resonance frequency has been
chosen as f, = 2kHz in order to get closer to a nor-
mal playing condition, as it has been measured e.g. by
Thompson'” and ¢, = 0.3. The values of the control and
geometrical parameters were adjusted heuristically using
the analysis by synthesis concept in order to generate two
simulated signals corresponding to the natural examples
displayed respectively in figures (3) and (6), according to
the hypotheses made in section III B.

1. Simulation 1

The first example has been computed with a fast rais-
ing of the blowing pressure (a = 3000s~'). The values of
the control and geometrical parameters are: v, = 0.8,
¢ = 035, L = 057m, R = Tmm, L, = 0.125m,
R, = 17.5mm, R, = R, /5. This set of parameters
leads to a height of the first impedance peak of the player
bore comparable to that of the third impedance peak of
the instrument bore and to a mistuning between the res-
onances of the player bore and the instrument.

Figure (10) shows, from top to bottom: 1-the mouth
pressure in solid line superimposed to the blowing pres-
sure in dashed line; 2-the spectrum of the mouth pres-
sure; 3-the mouthpiece pressure. The transient duration
is 90ms.

Subplot (1) shows that after an instantaneous raising,
the mouth pressure exhibits an oscillating behavior dur-
ing the first 90ms. During the first 50ms after the begin-
ning, the amplitude of the oscillations remains constant.
Then it decays during 40ms until, around ¢ = 110ms, a
totally different regime is reached, made of stable oscil-
lations around ~..

Subplot (2) shows that the frequency of the transient
oscillation 1s tuned on the first impedance peak of the

Guillemain: Synthesis of clarinet transients
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FIG. 10. From top to bottom: 1: First 180ms of the mouth
pressure (solid line) superimposed to the blowing pressure
(dashed line). 2: Spectrum of the mouth pressure in dB,
horizontal axis in Hz. 3: First 180ms of the mouthpiece
pressure.

player bore and that the small oscillations of the per-
manent regime are due to the acoustic coupling of the
two bores. Indeed, the spectrum of the mouth pressure
clearly shows, at least at high frequency, the sharp (hence
not localized in time) harmonics corresponding to self-
oscillations of the instrument bore, and a large (hence
localized in time) component at 650H z.

Subplot (3) shows that the mouthpiece pressure
reaches its steady state level at around ¢ = 110ms. Com-
parison between subplots (1) and (3) shows that from the
beginning of self-oscillations at ¢ = 20ms, the increasing
phase of the oscillations of the mouthpiece pressure cor-
responds to a decreasing phase of the oscillations of the
mouth pressure and that both pressures reach a perma-
nent regime at the same time.

The transient behaviors observed here can be partly
explained from the results of the previous subsection.
While the mouthpiece pressure remains small, self-
oscillations in the mouth, tuned on the first impedance
peak of the player bore, starts. These oscillations die
when the mouthpiece pressure becomes large enough and
a stable regime, tuned on the first resonance of the in-
strument bore, is reached. Indeed, when the instrument
bore is alone, the attack time is 45ms while the steady-
state regime is reached nearly instantaneously when the
player bore is alone. The lengthening of the raising of the
mouthpiece pressure (90ms instead of 45ms) could be
caused by the oscillations of the mouth pressure, reach-
ing periodically values (around 0.25) below the oscillation
threshold® of the instrument bore alone (around 0.33).

Figure (11) shows, from top to bottom: 1-the transfer
function between the mouthpiece pressure and flow; 2-the
transfer function between the mouth pressure and flow;
3-the equivalent impedance seen from the reed calculated

J. Acoust. Soc. Am.
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FIG. 11. From top to bottom: 1: Transfer function between
mouthpiece pressure and flow; 2: Transfer function between
mouth pressure and flow. 3: Equivalent impedance seen from
the reed. Horizontal axes in Hz.

as the transfer function between p,(t) — (Pm(t) — Pg(2))
and the flow @, (¢), corresponding to equation (2).

Subplots (1) and (2) show that the ratio P, (w)/(jr (w)
corresponds to the input impedance of the instrument
bore alone (the two curves superimpose perfectly) and
that the ratio P, (w)/(jr (w) contains a peak at 0H z cor-
responding to the DC component of the supplied pres-
sure and a peak at 650Hz corresponding to the first
impedance peak of the player bore. Up to this frequency,
this behavior is similar to Scavone’s® model and differs
at high frequency, with the presence of other peaks, due
to the use of a distributed element rather than lumped
elements to model the vocal tract.

Subplot (3) shows that the first peak corresponding to
the player bore is slightly higher than the third peak cor-
responding to the instrument bore and that these peaks
are not tuned.

The top of figure (12) shows the first 180ms of the
external pressure, the bottom two vertical slices of the
spectrogram displayed on figure (13). Until ¢ = 90ms,
the external pressure exhibits a complex behavior. After
t = 90ms, it becomes similar to the top of figure (8).
The two vertical slices of the spectrogram, computed at
t = 0.07s in solid line and at ¢ = 0.7s in dashed line
show that during the attack, the component at 650H 2z
and its odd harmonics are visible and vanish totally in
the steady state regime.

These behaviors can also be observed on figure (13),
which shows that during the first 0.1s of the attack, the
spectral content of the sound is rich and inharmonic.
Comparison with figure (3) shows many common fea-
tures and most of the comments of figure (3) remains
valid. On the natural sound, the transient component
at 690H z appears before the fifth harmonic of the per-
manent regime while they appear simultaneously on the

Guillemain: Synthesis of clarinet transients 9
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FIG. 12. Top: First 180ms of the external pressure. Bottom:
Spectrogram slices at ¢ = 0.07s (solid line) and ¢ = 0.7s
(dashed line). Horizontal axis in kHz.

FIG. 13. Spectrogram on 0.8s in the range (0 4kHz) corre-
sponding to a fast raising of the blowing pressure.

simulation. The difference in the levels of the transient
components between natural and simulated sounds might
be attributed to an additional radiation source. Simula-
tions performed with a different reed resonance frequency
indicate that the reed does not play any role on the rais-
ing of the self-oscillations tuned on the player bore.

2. Simulation 2

This second example has been computed with a slower
raising speed of the blowing pressure (o = 900s~'). The
values of the control and geometrical parameters are:
Y =045, (=03, L =0.52m, R = Tmm, L, = 0.1Tm,
R, =9.1mm, R, = Ry, /4. The chosen length L,, is that
of the vocal tract from the glottis to the mouth. Its first
resonance frequency (¢/(4Lp,)) is 500 H z and corresponds
to that of the first impedance peak of the vocal tract in
a neutral position (see e.g. Mathur!® ). This set of pa-
rameters leads to a height of the first impedance peak
of the player bore smaller than those of the instrument

10 J. Acoust. Soc. Am.
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FIG. 14. From top to bottom: 1: First 300ms of the mouth
pressure (solid line) superimposed to the blowing pressure
(dashed line). 2: Spectrum of the mouth pressure in dB,
horizontal axis in Hz. 3: First 300ms of the mouthpiece
pressure.

bore and to a strong coupling between the two bores, due
to similar radii and to the tuning of the first player bore
resonance to the second instrument bore resonance.

Figure (14) shows, from top to bottom: 1-the mouth
pressure in solid line superimposed to the blowing pres-
sure in dashed line; 2-the spectrum of the mouth pres-
sure; 3-the mouthpiece pressure. The chosen duration of
300ms corresponds to that of the whole transient.

Subplot (1) shows that after a fast raising, the mouth
pressure exhibits unstable oscillations until ¢ = 150ms
that turn into stable oscillations around ~.. The ampli-
tude of these oscillations is larger than in the first simu-
lation, showing that the coupling between the two bores
1s more important.

Subplot (2) shows that all the harmonics corresponding
to the instrument bore alone are visible. An increase of
the level of the harmonics around 500H z can be noticed.
The large baselines of all the peaks indicate nonstation-
ary behaviors, such as frequency or amplitude modula-
tions of the harmonics.

Subplot (3) shows that the mouthpiece pressure raises
with a step-like shape and exhibits a long nonstationary
part, until ¢ = 300ms.

The top of figure (15) shows the first 300ms of the ex-
ternal pressure, the bottom two vertical slices), computed
at t = 0.07s in solid line and at ¢ = 0.7s in dashed line, of
the spectrogram displayed on figure (16). Though pg4(?)
remains constant after its raising, the amplitude of the
external pressure shows a complex behavior and reaches a
maximum around ¢ = 130ms. During the transient, the
level of harmonic three is higher than that of the oth-
ers. In the permanent regime, a formant appears around
1200 H z, with an increase of the level of the harmonics
seven, eight and nine. The fundamental frequency of the

Guillemain: Synthesis of clarinet transients
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FIG. 15. Top: First 300ms of the external pressure. Bottom:
Spectrogram slices at ¢ = 0.07s (solid line) and ¢ = 0.7s
(dashed line). Horizontal axis in kHz.

FIG. 16. Spectrogram on 0.8s in the range (0 4kHz) corre-
sponding to a slow raising of the blowing pressure.

sound differs during the attack and permanent regimes.

Figure (16) shows significant frequency and amplitude
modulations of all the components during the first 0.3s,
as well as a high level of the harmonics five, seven, eight
and nine and an early birth of the harmonic three. Most
of these features can be linked to those observed in the
natural sound example 2 on figure (6). A simulation per-
formed with a reed resonance frequency of 10kH z indi-
cates that the reed seems to be the main reason of the
formant around 1200H z and the player bore the respon-
sible for the frequency modulation and the high level of
the harmonics three and five.

VI. CONCLUSIONS

Thanks to the introduction of a simple physical model
of the association player-clarinet and a real-time synthe-
sis scheme, it has been shown that the player’s vocal tract
might play an important role in some transient situations.
Despite its simplicity and low computation cost, the syn-
thesis model allows to generate sounds sharing common
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features with the natural sounds considered here, both on
the transient and the steady-state parts. The “Analysis
by Synthesis” concept has been used in order to deter-
mine the parameters linked to the vocal tract from the
analysis of natural sounds recorded in normal playing
conditions. These analyses show that during some at-
tacks, the spectral bandwidth of the pressure transient
produced by the player can be high enough to excite a
resonance of the respiratory airway, as it is the case in
the production of speech consonants.

Simulations using a five cylinders model of the vocal
tract did not show any significant difference in the behav-
ior of transient and permanent regimes and further works
may rather take into account time-varying geometries or
nonlinear effects induced by jets formation at vocal tract
constrictions levels and study the role of the vocal tract
in the coloring of the breath noise.

Though this study is focused on the clarinet, the same
effects would likely be observed and could be simulated
on other reed and valve instruments. In particular, large
members of the saxophone family for which the reed
channel opening is much larger than that of the clarinet
and the first impedance peak 1s low may be even more
sensitive to acoustic coupling between the player tract
and the instrument bore. In the same way, notes played
fortissimo, yielding a high pressure level within the in-
strument bore, probably increase nonlinear losses in tone-
holes, yielding a significant lowering of the impedance
peaks of the instrument, hence giving even more relative
weight to those of the player tract.

Future works will also use a piloted artificial mouth to
study experimentally the functioning of the instrument in
calibrated transient situations and direct measurements
on musicians.

Sound examples are available at:
http://www.lma.cnrs-mrs.fr/~ guillemain/JASA06/JASA06.htm

ACKNOWLEDGMENTS

The author thanks gratefully Claude Crousier, pro-
fessional clarinet performer and teacher and Richard
Kronland-Martinet, member of the Laboratoire de
Mécanique et d’Acoustique, for playing the natural
sounds presented in this paper.

Jean Kergomard, member of the Laboratoire de
Mécanique et d’Acoustique and Claudia Fritz, presently
at the Music Faculty of Cambridge University, are deeply
thanked for their precious advices.

This work 1s supported by the “Consonnes” project,
funded by the french Agence Nationale de la Recherche.

[1] J. Backus, “The effect of the player’s vocal tract on woodwind
instrument tone”, J. Acoust. Soc. Am., 78(1), 17-20 (1985).

[2] A. Benade, P. Hoekje, “Vocal tract effects in wind instrument
regeneration”, J. Acoust. Soc. Am. Suppl, 71(1), 591 (1985).

[3] S. Sommerfeldt, W. Strong, “Simulation of a player-clarinet
system”, J. Acoust. Soc. Am., 83(5), 1908-1919 (1988).

[4] C. Fritz, “La clarinette et le clarinettiste: influence du conduit
vocal sur la production du son” (The clarinet and the player:

Guillemain: Synthesis of clarinet transients 11



(9]

10]

(11]

12

role of the vocal tract on the sound production), Ph. D. thesis,
Univ. Paris 6 and New South Wales, France (2005).

G. Scavone, “Modeling vocal-tract influence in reed wind in-
struments”, in Proc. 2003 Stockholm Music Acoustics Confer-
ence, Stockholm, Sweden (2003).

G. Scavone, “Modeling and Control of Performance Expression
in Digital Waveguide Models of Woodwind Instruments”, in
Proc. 1996 International Computer Music Conference, Hong
Kong (1996).

J. C. Risset, “Timbre analysis by synthesis: producing repre-
sentations, imitations and variants for musical composition”,
in A. Picciali, G. de Poli and C. Roads, editors, Representa-
tions of Musical Signals, M.I.T. Press, Cambridge, Mass., pp.
7-43 (1991).

T. A. Wilson, G. S. Beavers, “Operating modes of the clar-
inet”, J. Acoust. Soc. Am, 56, 653-658 (1974).

M. S. Mukai, “Laryngeal movement while playing wind instru-
ments”, in Proc. International Symposium of Musical Acous-
tics, Tokyo, Japan, pp 239-242 (1992).

H. Levine, J. Schwinger, “On the radiation of sound from an
unflanged circular pipe”, Phys. Rev., 73(4), 383-406 (1948).
A. D. Pierce, Acoustics, (McGraw-Hill, New York 1981),
presently available from Acoust. Soc. Am., New York (1990).

J. Acoust. Soc. Am.

(12]

(13]

(14]

(15]

(16]

(17]

18]

M. M. Sondhi, “Model for wave propagation in a lossy vocal
tract”, J. Acoust. Soc. Am., 51(6), 1070-1075, (1974).

P. Clinch, G. Troup, L. Harris, “The importance of the vo-
cal tract resonance in clarinet and saxophone performance: A
preliminary account”, Acustica, Vol. 50, 280-284, (1982).

T. Wilson, “The measured vocal tract impedance for clarinet
performance and its role in sound production”, J. Acoust. Soc.
Am, 99(4), 2455-2456, (1996).

P. Guillemain, J. Kergomard, T. Voinier, “Real-time synthesis
of clarinet-like instruments using digital impedance models”,
J. Acout. Soc. Am, Vol. 118(1), 483-494, (2005).

J. Kergomard, “Elementary considerations on reed-
instruments oscillations”, in Mechanics of Musical In-
struments, edited by Hirschberg et al., Lectures notes CISM,
(Springer, New York 1995).

S. C. Thompson, “The effect of the reed resonance on wood-
wind tone production”, J. Acoust. Soc. Am, 66(5), 1299-1307,
(1979).

S. Mathur, B. Story, J. Rodriguez,
Fractional elongation of segment lengths in a waveguide model
with half-sample delays”, IEEE Tran. on Audio, Speech and
Language Processing, 14(5), (2006).

“Vocal-tract modeling:

Guillemain: Synthesis of clarinet transients



