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The nonnegative viscosity solutions to the infinite heat equation with homogeneous Dirichlet boundary conditions are shown to converge as t → ∞ to a uniquely determined limit after a suitable time rescaling. The proof relies on the half-relaxed limits technique as well as interior positivity estimates and boundary estimates. The expansion of the support is also studied.

Introduction

Since the pioneering work by Aronsson [START_REF] Aronsson | Extensions of functions satisfying Lipschitz conditions[END_REF], the infinity-Laplacian ∆ ∞ defined by

∆ ∞ u := D 2 u∇u, ∇u = N i,j=1
∂ 2 u ∂x i ∂x j ∂u ∂x i ∂u ∂x j has been the subject of several studies, in particular due to its relationship to the theory of absolutely minimizing Lipschitz extensions [START_REF] Aronsson | Extensions of functions satisfying Lipschitz conditions[END_REF][START_REF] Aronsson | A tour of the theory of absolutely minimizing functions[END_REF][START_REF] Crandall | A visit with the ∞-Laplacian equation[END_REF]. More recently, a parabolic equation involving the infinity-Laplacian (the infinite heat equation)

∂ t u = ∆ ∞ u, (t, x) ∈ (0, ∞) × Ω, (1.1) 
has been considered in [START_REF] Akagi | Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian[END_REF][START_REF] Akagi | Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the inifinity-Laplacian[END_REF][START_REF] Crandall | Another way to say caloric[END_REF]. When Ω ⊂ R N is a bounded domain and (1.1) is supplemented with nonhomogeneous Dirichlet boundary conditions, the large time behaviour of solutions to (1.1) is investigated in [START_REF] Akagi | Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian[END_REF] and convergence as t → ∞ to the unique steady state is shown. Furthermore, for homogeneous Dirichlet boundary conditions

u = 0, (t, x) ∈ (0, ∞) × ∂Ω, (1.2) 
and nonnegative initial condition

u(0, x) = u 0 (x), x ∈ Ω, (1.3) 
satisfying u 0 ∈ C 0 ( Ω) := {f ∈ C( Ω) : f = 0 on ∂Ω}, u 0 ≥ 0, u 0 ≡ 0, (1.4) a precise temporal decay rate is given for the L ∞ -norm of u, namely

C -1 1 (t + 1) -1/2 ≤ u(t, •) L ∞ (Ω) ≤ C 1 (t + 1) -1/2 for all t > 0 (1.5)
with some C 1 ≥ 1 depending on u 0 and Ω, the unique steady state of (1.1)-(1.2) being zero in that case.

The purpose of this note is to improve (1.5) by identifying the limit of t 1/2 u(t, •) as t → ∞ (see Theorem 1.2 below). We also provide additional information on the propagation of the positivity set of u as time goes by. Before stating our main result we first recall that the infinity-Laplacian is a quasilinear and degenerate elliptic operator which is not in divergence form and a suitable framework to study the well-posedness of the infinite heat equation is the theory of viscosity solutions (see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]). Within this framework the well-posedness of (1.1)-(1.3) has been established in [START_REF] Akagi | Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the inifinity-Laplacian[END_REF] when Ω fulfills the uniform exterior sphere condition:

For all x 0 ∈ ∂Ω there exists

y 0 ∈ R N such that |x 0 -y 0 | = R and {x ∈ R N : |x -y 0 | < R} ∩ Ω = ∅ for some positive constant R independent of x 0 . (1.6) Introducing F (s, p, X) := s -Xp, p for s ∈ R, p ∈ R N , X ∈ S(N ), (1.7) 
where S(N ) denotes the set of all symmetric N × N matrices, the definition of viscosity solutions to (1.1)-(1.3) reads [START_REF] Akagi | Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian[END_REF][START_REF] Akagi | Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the inifinity-Laplacian[END_REF]:

Definition 1 Let Q := (0, ∞) × Ω ⊂ R N +1
and let U SC( Q) and LSC( Q) denote the set of upper semicontinuous and lower semicontinuous functions from Q into R, respectively. A function

u ∈ U SC( Q) is a viscosity subsolution to (1.1)-(1.3) in Q if (a)
F (s, p, X) ≤ 0 is satisfied for all (s, p, X) ∈ P 2,+ u(t 0 , x 0 ) and all (t 0 , x 0 ) ∈ Q, where

P 2,+ u(t 0 , x 0 ) := (s, p, X) ∈ R × R N × S(N ) : u(t, x) ≤ u(t 0 , x 0 ) + s(t -t 0 ) + p, x -x 0 + 1 2 X(x -x 0 ), x -x 0 + o(|t -t 0 | + |x -x 0 | 2 ) as (t, x) → (t 0 , x 0 ) , (b) u ≤ 0 on (0, ∞) × ∂Ω, (c) u(0, x) ≤ u 0 (x) for x ∈ Ω. Similarly, u ∈ LSC( Q) is a viscosity supersolution to (1.1)-(1.3) in Q if F (s, p, X) ≥ 0 for all (s, p, X) ∈ P 2,-u(t 0 , x 0 ) := -P 2,+ (-u)(t 0 , x 0 ) and (t 0 , x 0 ) ∈ Q, u ≥ 0 on (0, ∞) × ∂Ω and u(0, x) ≥ u 0 (x) for x ∈ Ω. Finally, u ∈ C( Q) is a viscosity solution to (1.1)-(1.
3) if it is a viscosity subsolution and a viscosity supersolution to (1.1)- (1.3).

With this definition, the well-posedness of ( 

C -1 1 (t + 1) -1/2 ≤ u(t, •) L ∞ (Ω) ≤ C 1 (t + 1) -1/2 for all t > 0. (1.8)
Our improvement of (1.8) then reads: 

Theorem 1.2 Suppose Ω ⊂ R N is
lim t→∞ t 1/2 u(t, •) -f ∞ L ∞ (Ω) = 0, (1.9)
where f ∞ is the unique positive viscosity solution to 

-∆ ∞ f ∞ - f ∞ 2 = 0 in Ω, f ∞ > 0 in Ω, f ∞ = 0 on ∂Ω. ( 1 
u(t, x) ≤ t -1/2 f ∞ (x) for (t, x) ∈ (0, ∞) × Ω, (1.11) 
the function f ∞ being defined in Theorem 1.2.

The proof of Theorem 1.2 and Corollary 1.3 involves several steps: According to (1.8) the evolution of u(t, •) takes place on a time scale of order t -1/2 and we first introduce a rescaled version v of u defined by u(t, x) = t -1/2 v(ln t, x). The outcome of Theorem 1.2 is then the convergence of v(s, •) to the time-independent function f ∞ as s → ∞. To establish such a convergence, we use the half-relaxed limits technique introduced in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF] which is well-suited here as we have rather scarce information on v(s, •) as s → ∞. This requires however a strong comparison principle for the limit problem (1.10) which will be established in Section 2, under an additional positivity assumption, and furthermore implies the uniqueness of f ∞ . That the half-relaxed limits indeed enjoy this positivity property has to be proved as a preliminary step and follows from the observation that v(s, •) is non-decreasing with time and eventually becomes positive in Ω (see Section 3.1). At this point, boundary estimates are also needed to ensure that the half-relaxed limits vanish on ∂Ω and are shown by constructing suitable barrier functions. Thanks to these results, we deduce that the half-relaxed limits coincide, which implies that v(s, •) converges as s → ∞ and the existence of a positive solution f ∞ to (1.10) as well (see Section 3.2). We emphasize here that the existence of a positive solution to (1.10) is a consequence of the dynamical properties of v and was seemingly not known previously. Finally, Corollary 1.3 is a consequence of Theorem 1.2 and the time monotonicity of v (see Section 3.2). Additionally, in Section 4 we investigate further positivity properties of the solution u to (1.1)-(1.3). We show that u(t, •) becomes positive in Ω after a finite time if Ω satisfies an additional uniform interior sphere condition. Aside from this, u may have a positive waiting time if the initial data are flat on the boundary of their support, namely the support of u(t, •) will be equal to that of u 0 for small times.

For further use, we introduce the following notation: Given x ∈ Ω, let d(x, ∂Ω) := dist(x, ∂Ω) denote the distance to the boundary. Moreover, for x ∈ R N and r > 0 we define B(x, r) := {y ∈ R N : |y -x| < r} to be the ball of radius r centered at x.

Uniqueness of the friendly giant

In this section we show that the friendly giant is unique. This will be a consequence of the following more general comparison lemma.

Lemma 2.1 Let w ∈ U SC( Ω) and W ∈ LSC( Ω) be respectively a bounded viscosity subsolution and a bounded viscosity supersolution to

-∆ ∞ ζ - ζ 2 = 0 in Ω (2.1) such that w(x) = W (x) = 0 for x ∈ ∂Ω, (2.2) 
W (x) > 0 for x ∈ Ω. (2.3) Then w ≤ W in Ω. (2.4) Proof. We fix N 0 ∈ N large enough such that Ω n := {x ∈ Ω : d(x, ∂Ω) > 1/n} is a nonempty open subset of Ω for all integer n ≥ N 0 . Let n ≥ N 0 .
Since Ωn is compact and W ∈ LSC( Ω), W has a minimum in Ωn and the positivity of W in Ωn implies that

µ n := min Ωn W > 0. (2.5)
Similarly, the compactness of Ω \ Ω n and the upper semicontinuity and boundedness of w ensure that w has a point of maximum x n in Ω \ Ω n and we set

η n := max Ω\Ωn w = w(x n ) ≥ 0, (2.6) 
the nonnegativity of η n being a consequence of the fact that w vanishes of w on ∂Ω. We next claim that lim

n→∞ η n = 0. (2.7)
Indeed, owing to the compactness of Ω and the definition of Ω n there are y ∈ ∂Ω and a subsequence of (x n ) n∈N (not relabeled) such that x n → y as n → ∞. Since w(y) = 0, we deduce from the upper semicontinuity of w that lim sup

x→y w(x) = lim εց0 sup{w(x) : x ∈ B(y, ε) ∩ Ω} ≤ 0. Given ε > 0, there is n ε such that x n ∈ B(y, ε) ∩ Ω for all n ≥ n ε . Hence, lim sup n→∞ η n ≤ sup{w(x) : x ∈ B(y, ε) ∩ Ω}
and letting ε ց 0 and using (2.6) allow us to conclude that

0 ≤ lim sup n→∞ η n ≤ 0.
This shows that a subsequence of (η n ) n≥N0 converges to zero and the claim (2.7) follows by noticing that (η n ) n≥N0 is a nonincreasing sequence. Next, fix s ∈ (0, ∞). For δ > 0 and n ≥ N 0 , we define

z n (t, x) := (t + s) -1/2 w(x) -s -1/2 η n , (t, x) ∈ [0, ∞) × Ω, Z δ (t, x) := (t + δ) -1/2 W (x), (t, x) ∈ [0, ∞) × Ω.
Then z n and Z δ are respectively a bounded usc viscosity subsolution and a bounded lsc viscosity supersolution to (1.1) with

Z δ (t, x) = 0 ≥ -s -1/2 η n = z n (t, x), (t, x) ∈ (0, ∞) × ∂Ω.
In addition, if

0 < δ < µ n 1 + w L ∞ (Ω) 2 s (2.8)
we have

Z δ (0, x) = δ -1/2 W (x) ≥ δ -1/2 µ n ≥ s -1/2 w L ∞ (Ω) ≥ z n (0, x) for x ∈ Ω n and Z δ (0, x) ≥ 0 ≥ s -1/2 (w(x) -η n ) = z n (0, x) for x ∈ Ω \ Ω n .
We are then in a position to apply the comparison principle [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.2] to deduce that

z n (t, x) ≤ Z δ (t, x), (t, x) ∈ [0, ∞) × Ω, (2.9) 
for any δ > 0 and n ≥ N 0 satisfying (2.8). According to (2.8), the parameter δ can be taken arbitrarily small and we deduce from (2.9) that

(t + s) -1/2 w(x) -s -1/2 η n ≤ t -1/2 W (x), (t, x) ∈ (0, ∞) × Ω,
for n ≥ N 0 . We next pass to the limit as n → ∞ with the help of (2.7) to conclude that

(t + s) -1/2 w(x) ≤ t -1/2 W (x), (t, x) ∈ (0, ∞) × Ω.
Finally, as s > 0 is arbitrary, we may let s ց 0 and take t = 1 in the above inequality to complete the proof. //// Now the uniqueness of the friendly giant is a straightforward consequence of Lemma 2.1.

Corollary 2.2

There is at most one positive viscosity solution to (1.10) in C 0 ( Ω).

Large time behaviour

In this section, we assume that Ω is a bounded domain fulfilling (1.6) and that u 0 satisfies (1.4).

Let u be the corresponding viscosity solution to (1.1)-(1.3). In order to investigate the asymptotic behaviour of u as stated in Theorem 1.2 we introduce the scaling variable s = ln t, t > 0, and the rescaled unknown function v defined by

u(t, x) = t -1/2 v(ln t, x), (t, x) ∈ (0, ∞) × Ω. ( 3.1) 
It is easy to check that v is the viscosity solution to 

∂ s v = ∆ ∞ v - v 2 , (s, x) ∈ (0, ∞) × Ω, (3.2) 
v = 0, (s, x) ∈ (0, ∞) × ∂Ω, (3.3 

Positivity and time monotonicity

A further property of v is its time monotonicity which follows from the homogeneity of the operator ∆ ∞ by a result from Bénilan & Crandall [START_REF] Ph | Regularizing effects of homogeneous evolution equations, Contributions to analysis and geometry[END_REF].

Lemma 3.1 For x ∈ Ω, s 1 ∈ R, s 2 ∈ R such that s 1 ≤ s 2 , we have v(s 1 , x) ≤ v(s 2 , x).
Proof. Theorem 1.1 provides the well-posedness of (1.1) in C 0 ( Ω) which is an ordered vector space. As the comparison principle is valid for (1.1)-(1.3) by [2, Theorem 2.3] and the infinity-Laplacian is homogeneous of degree 3, [9, Theorem 2] implies

u(t + h, x) -u(t, x) ≥ t + h t -1/2 -1 u(t, x) for (t, x) ∈ (0, ∞) × Ω, h > 0. (3.6)
Hence, for any (s, x) ∈ R × Ω and h > 0, we obtain v(s + h, x)v(s, x) = e (s+h)/2 u(e s+h , x)e s/2 u(e s , x)

≥ e (s+h)/2 e s+h e s -1/2 u(e s , x)e s/2 u(e s , x) = 0, which is the expected result. //// The monotonicity of v now enables us to prove that v eventually becomes positive inside Ω.

Lemma 3.2 For any compact subset K ⊂ Ω there are s K > 0 and µ K > 0 such that

v(s, x) ≥ µ K > 0 in [s K , ∞) × K. (3.7)
Proof.

Three steps are needed to achieve the claimed result: we first prove that if v(s, •) is positive at one point of Ω, then it becomes positive on a "large" ball centered around this point after a finite time. The second step is to prove that v(s, •) becomes eventually positive in Ω as s → ∞, from which we deduce (3.7) in a third step.

Step 1: Consider first (t 0 , x 0 ) ∈ (0, ∞) × Ω such that there are ε > 0 and δ > 0 with B(x 0 , ε) ⊂ Ω and

u(t 0 , x) ≥ δ > 0 for x ∈ B(x 0 , ε). (3.8) 
Then, choosing α := min{(4δ) 1/3 , ε 2/3 }, T := (d(x 0 , ∂Ω) 6 /α 9 ) -1 ≥ 0, and defining

B(t, x) := α 3 4 (t -t 0 + 1) -1/6 1 -α -2 |x -x 0 | 4/3 (t -t 0 + 1) -2/9 3/2 + , (t, x) ∈ [t 0 , ∞) × R N ,
we deduce from [1, Proposition 1 and Corollary 1] that B is a viscosity solution to (1.1) in (t 0 , t 0 + T ) × Ω. In addition, on the one hand, we have by (3.8)

B(t 0 , x) ≤ α 3 4 ≤ δ ≤ u(t 0 , x) for x ∈ B(x 0 , ε) and B(t 0 , x) = 0 ≤ u(t 0 , x) for x ∈ Ω \ B(x 0 , ε).
On the other hand, we have u(t, x) = B(t, x) = 0 for (t, x) ∈ [t 0 , t 0 + T ] × ∂Ω thanks to the choice of T , α and the properties of B. The comparison principle [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.2] then implies u ≥ B in [t 0 , t 0 + T ] × Ω. In particular, we have

u(t 0 + T, x) > 0 for x ∈ B(x 0 , d(x 0 , ∂Ω)), (3.9) 
where T only depends on ε and δ, but is independent of x 0 and t 0 .

Step 2: We next define the positivity set P(s) of v(s, •) for s ≥ 0 by

P(s) := {x ∈ Ω : v(s, x) > 0}.
Owing to the time monotonicity of v (Lemma 3.1), (P(s)) s≥0 is a non-decreasing family of open subsets of Ω and

P ∞ := s≥0 P(s) is an open subset of Ω.
Assume for contradiction that ∂P ∞ ∩ Ω = ∅. Then there is x 0 ∈ ∂P ∞ ∩ Ω. Since d(x 0 , ∂Ω) > 0 there is y 0 ∈ P ∞ such that |y 0x 0 | ≤ d(x 0 , ∂Ω)/2 < d(y 0 , ∂Ω). Next, since y 0 ∈ P ∞ , there is s 0 > 0 such that v(s 0 , y 0 ) > 0, that is u(e s0 , y 0 ) > 0. The previous step then guarantees the existence of T ≥ 0, such that u(e s0 + T, x) > 0 for x ∈ B(y 0 , d(y 0 , ∂Ω)). As x 0 ∈ B(y 0 , d(y 0 , ∂Ω)), we deduce from this that v(ln(e s0 + T ), x 0 ) = (e s0 + T ) 1/2 u(e s0 + T, x 0 ) > 0, which contradicts the fact that x 0 ∈ ∂P ∞ . Therefore, ∂P ∞ ∩ Ω = ∅ and Ω is the union of the two disjoint open sets P ∞ and Ω \ P ∞ . Since P ∞ = ∅ by (1.8), the connectedness of Ω implies

Ω = P ∞ . (3.10) 
Step 3: Let K be a compact subset of Ω and assume for contradiction that K ⊂ P(n) for each n ≥ 1. Then there is a sequence (x n ) n≥1 in K such that v(n, x n ) = 0 for n ≥ 1 and we may assume without loss of generality that x n converges towards x ∞ ∈ K as n → ∞, thanks to the compactness of K. Since x ∞ ∈ Ω, it follows from (3.10) that there is

s ∞ > 0 such that v(s ∞ , x ∞ ) > 0. Owing to the continuity of v(s ∞ , •) there are ε > 0 and δ > 0 such that v(s ∞ , x) ≥ δ for x ∈ B(x ∞ , ε) ⊂ Ω.
But then for n large enough we have n ≥ s ∞ and x n ∈ B(x ∞ , ε) and it follows from Lemma 3.1 and the previous bound that 0

= v(n, x n ) ≥ v(s ∞ , x n ) ≥ δ
and a contradiction. Consequently, there is n K such that K ⊂ P(n K ) and

µ K := min x∈K v(n K , x) > 0.
Due to the time monotonicity of v, this implies (3.7). ////

Convergence

Having studied the positivity properties of v, we next turn to its behaviour near the boundary of Ω and first show the following lemma which is a modification of [19, Lemma 10.1].

Lemma 3.3 Consider x 0 ∈ ∂Ω, α ∈ (0, 1/2), δ > 0, B > 0, and define 

ψ δ,B (r) := δ + B r - r 2 2 , r ∈ R . Let y 0 ∈ R N be such that |x 0 -y 0 | = R and Ω ∩ B(y 0 , R) = ∅ (
-y 0 | -R) , (s, x) ∈ [0, ∞) × U α,x0 , then w is a supersolution to (3.2) in (0, ∞) × U α,x0 if B ≥ 2(1 + δ).
Proof. To simplify notations, we set ψ := ψ δ,B and U := U α,x0 . Since ψ ∈ C ∞ (R) and y 0 ∈ U , the function w is C ∞ -smooth in (0, ∞) × U and, if (s, x) ∈ (0, ∞) × U , we have

∂ s w(s, x) -∆ ∞ w(s, x) - w(s, x) 2 = -ψ ′ 2 ψ ′′ + ψ 2 (|x -y 0 | -R) . (3.11) 
Since α ∈ (0, 1/2) and B ≥ 2, we have for r ∈ [0, α]

-ψ ′ 2 ψ ′′ + ψ 2 (r) = B 3 (1 -r) 2 - B 2 r - r 2 2 - δ 2 ≥ B 3 8 - B 4 - δ 2 ≥ B -2δ 4 .
Consequently, as |xy 0 | -R ∈ [0, α] for (s, x) ∈ (0, ∞) × U , we deduce from (3.11) and the above inequality that 

∂ s w(s, x) -∆ ∞ w(s, x) - w(s, x) 2 ≥ B -2δ 4 ≥ 0 
Then there is α 0 ∈ (0, 1/2) such that, for any α ∈ (0, α 0 ) and x 0 ∈ ∂Ω, we have

0 ≤ v(s, x) ≤ ω(α) + 2C 1 α |x -x 0 | , (s, x) ∈ [0, ∞) × ( Ω ∩ B(x 0 , α)) , (3.13) 
the constant C 1 being defined in (3.5).

Proof.

Consider x 0 ∈ ∂Ω and let y 0 ∈ R N be such that |x 0y 0 | = R and Ω ∩ B(y 0 , R) = ∅, the existence of such a point y 0 being guaranteed by the uniform exterior sphere condition (1.6). With the notations of Lemma 3.3, we define

w(s, x) := ψ ω(α),2C1/α (|x -y 0 | -R) , (s, x) ∈ [0, ∞) × U α,x0 ,
the constant C 1 being defined in (3.5) and observe that

B(x 0 , α) ∩ Ω ⊂ U α,x0 ⊂ {x ∈ Ω : d(x, ∂Ω) < α} . (3.14) 
On the one hand, it follows from (3.12) and (3.14) that

w(0, x) ≥ ω(α) ≥ v(0, x) , x ∈ U α,x0 . On the other hand, if (s, x) ∈ [0, ∞) × ∂U α,x0 , we have either x ∈ ∂Ω and w(s, x) ≥ 0 = v(s, x) or |x -y 0 | = R + α and w(s, x) = ψ ω(α),2C1/α (α) ≥ 2C 1 α α - α 2 2 ≥ C 1 ≥ v(s, x)
by (3.5). Furthermore, since v(0, x) = 0 on ∂Ω, ω(α) converges to 0 as α ց 0 and there is thus α 0 ∈ (0, 1/2) such that 2C 1 /α ≥ 2(1 + ω(α)) for α ∈ (0, α 0 ). This condition implies that w is a supersolution to (3.2) in (0, ∞) × U α,x0 by Lemma 3.3. According to the above analysis, we are in a position to apply the comparison principle [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.2] to conclude that

v(s, x) ≤ w(s, x) , (s, x) ∈ [0, ∞) × U α,x0 .
In particular, if (s, x) ∈ [0, ∞) × ( Ω ∩ B(x 0 , α)), the above inequality, (3.14), and the properties of

y 0 entail that v(s, x) ≤ ω(α) + 2C 1 α (|x -y 0 | -R) ≤ ω(α) + 2C 1 α (|x -x 0 | + |x 0 -y 0 | -R) ≤ ω(α) + 2C 1 α |x -x 0 | , whence (3.13). //// Proof of Theorem 1.2. For ε ∈ (0, 1), we define V ε (s, x) := v s ε , x , (s, x) ∈ [0, ∞) × Ω ,
and the half-relaxed limits

V * (x) := lim inf (σ,y,ε)→(s,x,0) V ε (σ, y) , V * (x) := lim sup (σ,y,ε)→(s,x,0) V ε (σ, y)
for (s, x) ∈ (0, ∞) × Ω. These functions are well-defined by (3.5), indeed do not depend on s > 0, and the stability result for (discontinuous) viscosity solutions ensures that

V * is a supersolution to -∆ ∞ z - z 2 = 0 in Ω , (3.15) 
V * is a subsolution to -∆ ∞ z - z 2 = 0 in Ω . (3.16) 
In addition, it follows from (3.5) and (3.13) that

0 ≤ V * (x) ≤ V * (x) ≤ C 1 , x ∈ Ω , (3.17) 
and, for all (x 0 , α) ∈ ∂Ω × (0, α 0 ),

0 ≤ V * (x) ≤ V * (x) ≤ ω(α) + 2C 1 α |x -x 0 | , x ∈ Ω ∩ B(x 0 , α) . (3.18) 
In particular, (3.18) guarantees that 0 ≤ V * (x 0 ) ≤ V * (x 0 ) ≤ ω(α) for all x 0 ∈ ∂Ω and α ∈ (0, α 0 ). Since ω(α) → 0 as α ց 0, we end up with

V * (x) = V * (x) = 0 , x ∈ ∂Ω . (3.19)
of T > 0 which is independent of x 0 ∈ M such that (3.9) is fulfilled for any x 0 ∈ M . Thus, we conclude that v(s 0 , x) > 0 for x ∈ M := If x 0 ∈ Ω ∩ ∂P 0 is such that

u 0 (x) ≤ a |x -x 0 | 2 , x ∈ B(x 0 , δ) ⊂ Ω , (4.4) 
for some δ > 0 and a > 0, then there is τ (x 0 ) > 0 such that u(t, x 0 ) = 0 for t ∈ [0, τ (x 0 )).

In other words, the so-called waiting time τ w (x 0 ) := inf{t > 0 : u(t, x 0 ) > 0} of u at x 0 ∈ Ω is positive if u 0 satisfies (4.4). In addition, it is finite by Lemma 3.2. This waiting time phenomenon is typical for degenerate parabolic equations, see [START_REF] Passo | Waiting time phenomena for degenerate parabolic equations -a unifying approach[END_REF][START_REF] Vázquez | The porous medium equation. Mathematical theory. Oxford Mathematical Monographs[END_REF] and the references therein.

The proof of Proposition 4.2 relies on the construction of supersolutions as in [START_REF] Knerr | The porous medium equation in one dimension[END_REF]Theorem 8.2] which we describe now. Then S T is a supersolution to (1.1) in (0, T ) × Ω.

Proof. We first note that S T ∈ C 2 ([0, T ) × Ω). For (t, x) ∈ (0, T ) × Ω, we compute

∂ t S(t, x) -∆ ∞ S(t, x) = |x -x 0 | 2 8(T -t) 3/2 - x -x 0 , x -x 0 8(T -t) 3/2 = 0
and readily obtain the expected result. ////

  ) v(0, x) = v 0 (x) := u(1, x), x ∈ Ω,(3.4)while it readily follows from (1.8) and (3.1) that0 ≤ v(s, x) ≤ C 1 , (s, x) ∈ [0, ∞) × Ω. (3.5) 

  such a point y 0 exists according to the uniform exterior sphere condition (1.6)). Introducing U α,x0 := {x ∈ Ω : R < |xy 0 | < R + α} and w(s, x) := ψ δ,B (|x

,Lemma 3 . 4

 34 the last inequality following from the choice of B. //// As a consequence of Lemma 3.3, we have the following useful bound for v on ∂Ω. Consider α ∈ (0, 1/2) and define ω(α) := sup {v(0, x) : x ∈ Ω and d(x, ∂Ω) < α} .

x0∈MB

  (x 0 , R 0 ), where s 0 := ln(t 0 + T ) > s K . As (4.1) implies M ∪ K = Ω (see e.g.[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Section 14.6]), we deduce from Lemma 3.1 and (4.3) thatv(s, x) > 0 in [s 0 , ∞) × Ω.By(3.1), this shows (4.2) with t 1 := e s0 . //// Having shown that u is positive in Ω after a finite or infinite time, we next show that the expansion of the positivity set of u(t, •) may take some time to be initiated. Proposition 4.2 Consider u 0 ∈ C 0 ( Ω) and define its positivity set P 0 by P 0 := {x ∈ Ω : u 0 (x) > 0} .

Lemma 4 . 3

 43 Consider x 0 ∈ Ω and T > 0 and defineS T (t, x) := |xx 0 | 2 4(Tt) 1/2 , (t, x) ∈ [0, T ) × Ω .

  1.1)-(1.3) is shown in [2, Theorems 2.3 and 2.5] and the asymptotic behaviour of nonnegative solutions is obtained in [1, Theorem 5]. We gather these results in the next theorem.

	Theorem 1.1 ([1, 2]) Let Ω ⊂ R N be a bounded domain such that (1.6) is satisfied and assume
	(1.4). Then there is a unique nonnegative viscosity solution u to (1.1)-(1.3). Moreover, u(t, •)
	converges to zero as t → ∞ in the sense that there exists a constant C 1 ≥ 1 such that
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We finally infer from Lemma 3.2 that V * (x) > 0 for x ∈ Ω. (3.20) We are then in the position to apply Lemma 2.1 to obtain that V * ≤ V * . Recalling (3.15), (3.16), (3.17), and (3. [START_REF] Lieberman | Second order parabolic differential equations[END_REF] we conclude that

We have thus proved that f ∞ := V * is a positive viscosity solution to (1.10) and it is the only one by Corollary 2.2. In addition, it follows from the identity V * = V * = f ∞ and [7, Lemme 4.1] (see also [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Found[END_REF]Lemma 5.1.9]) that

In other words, lim First we state an extension of Lemma 3.2 which shows that u is indeed positive in Ω after a finite time provided that Ω additionally satisfies a uniform interior sphere condition:

There is R 0 > 0 such that for any x 0 ∈ ∂Ω there is y 0 ∈ Ω such that |y 0x 0 | = R 0 and B(y 0 , R 0 ) ⊂ Ω. 3), then there is

Proof. Let v be defined by (3.1) and set

for some s K > 0 and µ K > 0 by Lemma 3.2. Thus, setting t 0 := e sK , ε := R 0 /2 and δ := t According to Lemma 4.3, the function S T is a supersolution to (1.1) in (0, T ) × B(x 0 , δ). In addition, the choice of T and (4.4) guarantee that

while we infer from the choice of T and (1.8) that, for (t, x) ∈ (0, T ) × ∂B(x 0 , δ)

The comparison principle [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.2] then entails that S T (t, x) ≥ u(t, x) for (t, x) ∈ [0, T ) × B(x 0 , δ). In particular, 0 ≤ u(t, x 0 ) ≤ S T (t, x 0 ) = 0 for t ∈ [0, T ), and the proof of Proposition 4.2 is complete.

////