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This paper investigates semi-analytically the latching control applied to a mechanical oscillator; and numerically three strategies of 
latching control for a point absorber wave energy converter oscillating in the heave mode only. By solving the equation of motion of a 
mechanical damped oscillator, it is shown that latching control can magnify the amplitude of the motion whatever the frequency of the 
excitation force, and how it can improve the efficiency of the system, in term of absorbed energy, for excitation frequencies apart from the 
natural frequency. Assuming that the excitation force is known in the close future and that the body is locked in position at the current time 
step, equations of motion of the body are solved numerically in the time domain for different initial conditions (i.e. latching durations). For all 
these simulations, three criteria—one for each strategy—are tested and the latching time leading to the best result is selected. Time domain 
simulation results are presented for a heaving buoy in small-amplitude regular and random waves. In regular waves, the same results as for 
the case of a mechanical oscillator are recovered for the wave energy converter. In random sea, results show that for all the three proposed 
strategies, efficiency of the wave energy converter is considerably improved in terms of absorbed energy. Numerical study of the period of 
the controlled system shows that the delay of prediction of the excitation force in the future seems to be bounded by the natural period of the 
system.
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1. Introduction

The aim of the study was to assess the benefit brought to

a simple point absorber wave energy device by a discrete

latching control, in random waves conditions. A generic and

ideal wave energy device is considered: a vertical circular

cylinder being free to move in a single vertical mode of

motion, all five other motions being restrained by an ideal

frictionless mechanism (Fig. 1). In calm water, it remains at

a fully submerged equilibrium position under the action of

its weight, its buoyancy and a linear spring force (stiffness

k). The Power Take Off (PTO) mechanism is idealized here

by a linear damping coefficient B, giving a force

proportional to the vertical velocity of the cylinder.
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Hydrodynamic forces due to wave diffraction and radiation

are modelled using linear water wave theory; they appear as

a convolution product over the vertical velocity in the

equations of motions, according to the standard Cummins’

decomposition. The device is thus described as a linear,

single DoF, mechanical oscillator; and the numerical model

that we have used in the study is based on a linear modelling

of the hydrodynamics. But applying a (highly) nonlinear

mode of control like latching makes the whole process a

nonlinear oscillator featuring parametric resonances, which

may be exploited to enhance the energetic performance of

the plant. The latching control of wave energy devices,

proposed by Budal and Falnes in 1980 [3] consists of

locking the oscillating body in position at the instant when

its velocity vanishes, and releasing it after a certain delay to

be determined, when the wave forces are in good phase to

maximize a criterion over the next oscillation. The benefit of

such a control may be assessed semi-analytically for simple

systems in harmonic excitation (regular forces). For the

simulation in random waves which was the final goal of the

study, a time stepping numerical simulation has been



implemented, based on linear water wave theory, consider-

ing the wave excitation to be known in the near future

beyond the current time step. Three criteria on the body

motion on the next ramp—what we called strategies—were

defined to determine the optimal moment to release the

body. A large number of random sea states, based on

discretized PM spectrum with varying peak period but

constant characteristic height, were tested with a 10 m

diameter cylindrical device tuned at 10 s natural period. The

mean power absorbed by the PTO was computed over long

simulation periods, and then was expressed in terms of

capture width, as usual when studying wave energy devices.
2. General formulation

In this study, we shall focus on the control of a generic

point absorber device with a single degree of freedom

(DoF). Namely, we will consider a submerged vertical

cylinder constrained to move in heave motion only, under

the action of wave excitation forces but all the theoretical

work presented here can be applied to the more common

case of floating bodies (provided the linearized buoyancy

force is included in the spring force).
2.1. Free motion

The body oscillates vertically under the action of:

excitation forces, radiation forces, restoring forces idealized
Fig. 1. A generic single DoF wave energy device.
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here as a single spring of stiffness k, and a damping force

proportional to the velocity (with damping coefficient B)

supposed to represent the action of the external Power Take

Off (PTO) mechanism. The vertical motion around the

equilibrium position will be denoted by z(t). This generic

system belongs to the same family as the Archimedes Wave

Swing (AWS) system, which has been tested in Portugal. A

linear approach will be adopted here for modelling the

hydrodynamics, in such a way that the behavior of the body

in waves is governed by the following integro-differential

equation

ðM CmNÞ€z C

ðt

0

_zKðt KtÞdt CB _z Ck _z Z FexðtÞ (1)

which is the so called Cummins’ decomposition [9] of the

radiation forces into an instantaneous added mass term mN
€z

and a memory term expressed by a convolution productÐ t
0
_zðtÞKðtKtÞdt. The kernel K of this integral, generally

named the impulse response function or sometimes the

retardation function, depends essentially on the shape of the

body. It can be computed directly in the time domain by

using seakeeping dedicated BEM codes like ACHIL3D [8],

TIMIT,.. It can also be deduced by a Fourier transform of

the frequency domain hydrodynamic coefficients (added

mass and damping coefficients) for which computer codes

like WAMIT [1], DIODORE, AQUADYN [10],. can be

used. In the present time-domain linear formulation, the free

motion z(t) of the device may be calculated by integrating

(1) for a given history of the wave excitation forcing term

Fex(t), and given initial conditions z(0) and _zð0Þ. Once the

impulse response function K has been determined, it can be

further approximated by a sum of exponential functions by

using the Prony’s method as described in [11]. This allows

replacing the integro-differential form (1) by a system of

ordinary differential equations (ODE) like (25), generally

better suited to numerical simulation. The device as

described up to now is a linear mechanical oscillator. The

mean power P̂ extracted by the PTO over a time range T is,

therefore, given by:

P̂ Z
1

T

ðT

0
B _z

2
ðtÞdt (2)

When the mechanical parameters B and k remain constant

and no latching occur, the device is said to be uncontrolled.
2.2. Latching control

This device is basically a linear mechanical oscillator,

with a natural circular frequency u0 depending on the spring

coefficient k, on the proper mass and the added mass of the

body. When it is supposed to be left uncontrolled, the

designer must tune the natural frequency to the local sea

state statistics of the site where the device will be deployed.

This is indeed the simplest but poorest way to optimize

the power captured by the device. A further step in this



uncontrolled configuration is to allow for different discrete

values of the mechanical characteristics (say B and k here)

in order to allow a certain adaptation of the oscillator to the

variation of the sea state, but in an average sense. The device

can therefore be adapted to the variation of the spectrum,

after averaging over large period of time (say hours). A

device is said to be controlled if the mechanical

characteristics can be varied in order to adapt continuously

the system to the incident wavetrain, wave after wave. The

control can be either continuous or discrete (see Falnes [15]

for a recent review of this topic).For an axisymmetrical

wave-absorbing device in regular waves, it is known [14]

that the maximum power that can be absorbed equals the

incident wave power associated with a wave front of width

one wavelength divided by 2p. This result was first derived

independently by Budal and Falnes [2], Evans [13] and

Newman [22]. Still according to Falnes [14], applying a

control known as ‘reactive control’ to the device allows

absorption of the maximum power. Actually, reactive

control leads the motion of the body to fulfill two

conditions. The first one states that the oscillating velocity

of the body must be in phase with the excitation force on the

body. This happens naturally when the wave frequency

equals the natural frequency of the body, but one must act

on the body when it is not the case in order to respect it. This

is known as phase control. The second condition is called the

optimum amplitude condition. Basically, if the amplitude is

unconstrained, this condition is that the resistive load B of

the PTO must be equal to the hydrodynamic damping

coefficient at the incident wave frequency. In case of

optimum control, continuous control can be achieved by

acting on the parameters of the PTO in order to respect these

two conditions. Lots of work have been done about this

topic, see e.g. [5,6,11]. In the present work, we have put the

focus on another approach to Wave Energy Converters

(WECs) control, called latching control. Unlike the previous

one, this method is discrete. It consists in locking (latching)

the motion of the body at the moment when its velocity

vanishes, and waiting for the wave force having reached the

most favorable phase to release the body (see Fig. 4). The

body then starts moving from this initial position to the next

vanishing velocity position where it is latched again, and so

on,. Instead of being a smooth, continuous function, the

position of the body is a succession of ramps of transient

motions separated by stages of rest. The action upon the

system is therefore binary: either the body is latched, or it is

free to move, which explains the meaning of the term

‘discrete’ used in this context. The instant of latching is

imposed by the dynamics of the body itself (i.e. vanishing

velocity); thus, the control variable is simply the duration of

the latching phase, or equivalently the instant of release.

This mode of control, applied to the heave motion of the

buoy, was proposed by Budal and Falnes [16,3] and further

investigated experimentally by Budal et al. [4] in irregular

waves and numerically in irregular waves by Iversen [20]

and Eidsmoen [12] and in regular waves by Greenhow and
3

White [17] and Hals et al. [18]. It is shown in the last

paper that one of the advantages of the latching control

is that the ratio between the maximum absorbed power

and the average absorbed power is smaller than the one

of the reactive control. Obviously, this control cannot

lead to an absolute respect of the optimality conditions,

but it gives nevertheless very good results in terms of

absorbed power. In the formerly quoted papers dealing

with numerical simulations of latching control in

irregular waves, the authors generally assumed that the

excitation force was known sufficiently far in the future.

We will make the same assumption in the present study.

It is indeed a strong hypothesis, which will require some

short-term forecasting process to implement the present

latching strategies in real world. Such algorithms exist

and they will be used in due time; such developments are

beyond the scope of the present study which is simply

aimed at assessing and comparing some latching

strategies in random waves. However, note that Budal

et al. [4] used a Kalman filter in order to predict the

incident wave when applying latching control in the

experiments reported in with success.
3. Latching control of a simple mechanical oscillator

under harmonic excitation

The study of latching control of a simple mechanical

oscillator consisting of a mass, a damper, and a spring under

harmonic excitation will help us to understand the

mechanical phenomena involved.
3.1. Analytical calculation of the latching time

The aim of the latching control will be here to maximize

the amplitude of the oscillations of the mass. We will see

that it will also maximize the absorbed power at the same

time. When the excitation force is harmonic and when the

system is a simple mechanical oscillator described by Eq.

(3), one can solve analytically the problem of determining

the optimal latching duration. Indeed, the motion of such a

controlled system is composed alternately of:

† periods of rest, when the body is held. During these

phases, the position of the body is constant, and its

velocity equals 0,

† periods of transient motion, here called ‘ramp’, for

which we can calculate analytically the motion in the

case of a simple oscillator governed by the following

differential equation

€z C2m _z Cu
2
0z Z Fex cosð40 CutÞ (3)

where:

† u0 is the natural frequency of the body.

† m is the damping coefficient (essentially positive).
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Fig. 2. A ramp of the body response.
† Fex is the modulus of the excitation force.

† u is the frequency of the excitation force.

† f0 is the phase of the excitation force at the initial time

tZ0.

Let sZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0 Km2
p

, the general solution of Eq. (3) can be

expressed in real notation by

zðtÞ Z ða cosðstÞCb sinðstÞÞeKmt

CHðuÞFex cosð40 Cut C4ðuÞÞ (4)

with

tanð4ðuÞÞ Z
K2mu

ðu2
0 Ku2Þ

(5)

HðuÞ Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu2
0 Ku2Þ2 C ð2muÞ2

p (6)

and (a,b) is a pair of real variables depending on the initial

conditions.
3.2. Ramps with alternated maxima

We further suppose that the body will move during its

transient motion from a position z0 to the position Kz0,

alternating the sign of the maxima of the successive ramps.

It means that starting from an initial state z0 with the zero

velocity, we want the body position to be equal to Kz0 at

the next stop. So, as summarized in Fig. 2:1

† The body is locked in the position z0 for t%0. So
_zð0ÞZ0.

† The initial phase of the excitation force is such that at

time t1, defined by _zðt1ÞZ0, we have z(t1)ZKz0.

So, from these considerations, we write the initial

conditions as

zð0Þ Z z0

_zð0Þ Z 0

(
(7)

and the final conditions:

zðt1Þ ZKz0

_zðt1Þ Z 0

(
(8)

Using Eq. (4) with boundary conditions (7) and (8), and

by combination in order to remove a and b, we get the

following system of equations

Aðt1;40Þz0 CBðt1;40ÞFexHðuÞ Z 0

Cðt1;40Þz0 CDðt1;40ÞFexHðuÞ Z 0

(
(9)

with:
1 Files containing the data of all the figures of this paper are freely

available at http://www.ec-nantes.fr/dhn/Francais/publi/public.html.
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Aðt1;40Þ Z cos st1 C
m

s
sin st1

� �
eKmt1 C1 (10)

Bðt1;40Þ Z Kcos st1 cosð40 C4ðuÞÞC
sin st1

s

�

!ðu sinð40 C4ðuÞÞKm cosð40 C4ðuÞÞÞ

	
!eKmt1 Ccosð40 C4ðuÞCut1Þ

(11)

Cðt1;40Þ ZK
u2

0

s
sin st1eKmt1 (12)

Dðt1;40ÞZ u cos st1 sinð40 C4ðuÞÞC
sin st1

s

�

!ðKmu sinð40 C4ðuÞÞCu2
0 cosð40 C4ðuÞÞÞ

	
!eKmt1 Ku sinð40 C4ðuÞCut1Þ

(13)

The system (9) accepts non-trivial solutions for z0 only if

the couple (f0,t1) satisfies:

Aðt1;40Þ!Dðt1;40ÞKBðt1;40Þ!Cðt1;40ÞZ0 (14)

Which can be re-written as:

0 ZKsinð40 C4ðuÞCut1Þ

C2
sin st1

s
cos

ut1

2

u2
0

u
cos 40 C4ðuÞC

ut1
2

� �
Km sin 40 C4ðuÞC

ut1
2

� �
0
BB@

1
CCA

2
664

Kcos st1 sin
ut1

2
cos 40 C4ðuÞC

ut1
2

� �3775eKmt1

Csinð40 C4ðuÞÞeK2mt1

(15)
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Fig. 4. Numerical simulations of the motion of a mechanical oscillator with

and without latching control (alternated maxima ramps); u0Z0.6, mZ0.1,

FexZ1, uZ1.
Whatever is the value of f0, one can see that t1Z0 is

always a trivial solution of the former equation. On another

hand, letting t1/CN asymptotically leads to the simpli-

fied Eq. (15)

0 ZKsinð40 C4ðuÞCut1Þ

whose solutions are t1Zkðp=uÞKð40C4ðuÞÞ, k2N.

These long-term solutions corresponding to the established

solution in forced motion are no more interesting in the

present context where the focus is to be put on transients.

Eq. (15) admits other short-term solutions, as can be seen in

Fig. 3 where we have plotted together Eq. (15) and its

asymptotic limit as a function of t1. The most noticeable one

is here for t1 x5sZp=u0. When m is sufficiently small

(weak damping), the first half-period of the motion roughly

equals half the natural period of the oscillator. Now for a

given parameter set [m,u0,u,Fex], one can compute

numerically the couples (f0,t1) solution of (14) and then

calculate the associated positions z0 given by:

z0 ZK
Bðt1;40ÞFexHðuÞ

Aðt1;40Þ
(16)

Finally, one has to select amongst all the couples (f0,t1)

solutions of (14) the couple maximizing z0. So it has been

established how, when the body is locked in such a position

z0max, releasing it when the phase of excitation force equals

f0 will drive it in position Kz0max with a velocity equal to 0

in t1 seconds.

Working here under the assumption of harmonic forcing

regime, this cycle will be reproduced periodically,

alternating periods of motion and periods of rest. But it

must be pointed out here that the period of this global

response of the system to the harmonic forcing at frequency

u will not always equal the period of the excitation Tex, but

can be integer multiple of it depending on the ratio u/u0. Let

u0Z0.6, mZ0.1 and FexZ1. We have computed z0max for

motion whose response period Tout is either Tex either 3Tex

or 5Tex. In Fig. 4, we have plotted the three numerical
1(s)t
0 10 20 30 40-2

-1

0

1

2

Fig. 3. Plot of Eq. (15) as a function of t1 (solid) and asymptotic behaviour

of Eq. (15) (dashed). Parameters are set equal to u0Z0.6, uZ0.5, mZ0.05.
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simulations in time domain of the body response with and

without latching control corresponding to the marks

numbered one, two and three on Fig. 5. One can observe

the huge magnification of the amplitude of the motion for

the controlled system compared to the uncontrolled one.

Rather than adapting the device parameters to the excitation

force in order to optimize the linear body response, the

latching control adapts the body response to the device and

to the excitation in a nonlinear fashion. It is a kind of

parametric resonance adaptation process as can be found in

nonlinear oscillators theory. This exotic behavior was not

observed in the previous studies which were, generally,

made in the frequency domain approach which is based on

the hypothesis that output frequency equals input frequency.

Only time-domain simulations are able to highlight this kind

of phenomenon.

Indeed, from Fig. 3 one can see that several solutions of

(15) exist for t1. The first one is located between 0 and

ðTex=2ÞZ ðp=uÞZ6:28 in this example, but we can see that

in each segment [kC(1/2))Tex,(kC(3/2))Tex], k 2N there

are two other values of t1 solutions of (15). Now, selecting

the value of t1 between [kC(1/2))Tex,(kC(3/2))Tex] leads to

a period of the mass motion Tout Z2ðkC ð3=2ÞÞTex. Then,

choosing kZ0 results in a response period three times larger

than the excitation period (ToutZ3Tex). (See Fig. 4b); kZ1

gives ToutZ5Tex (see Fig. 4c), and so on.

The maximum amplitude z0max of the controlled

oscillator obtained by using the method explained above

is plotted in Fig. 5 in a wide range of the frequency of
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Fig. 5. Response amplitude and average absorbed power of a mechanical

oscillator with and without latching control—alternated maxima ramps

control strategy.
the excitation force, together with the transfer function

of the uncontrolled oscillator, for the sake of comparison. In

the upper Figure, the marks 1, 2, 3 correspond to the three

different responses plotted in Fig. 4. In the lower figure, the

average power absorbed by both the controlled and the

uncontrolled system have been plotted.

First, one can appreciate the very large magnification of

the body response brought by the discrete control when the

wave frequency is off the natural frequency of the device. In

the low frequency range (i.e. when u!u0), it is a well-

known result which had been already observed and reported

by M. Greenhow and S.P. White [17], among others. When

the excitation frequency u becomes higher than the natural

frequency u0, the period of the motion is no longer the

period of the excitation, but three times this period (see

Fig. 4K2). Going further where uO3u0, the period of the

response maximizing the amplitude is now five times the

excitation period (see Fig. 4(3)); and so on. Considering

now the mean absorbed power (Fig. 5), one can see that the

latching control is highly beneficent when u!u0, and that it

is also interesting when uOu0 except in a frequency band

ð0:6!u(0:8Þ just above the natural frequency of the

oscillator. In this zone, the gain in term of absorbed energy

due to the amplification of the response amplitude is lower

than the loss of absorbed energy during the latching of the

body, in comparison with the uncontrolled motion. Indeed,
6

in this zone, the latching duration equals approximately 3/

2Tex. So, here, one would have better to leave the system

uncontrolled, or to try another strategy as described in

Section 3.3 to shorten this delay.

Let us now Fourier decompose the velocity of the

controlled motion number 2 in Fig. 4(2) considering not u

but u/3 as the fundamental frequency:

_zðtÞ Z A0 C
XCN

nZ1

An cos n
u

3
t

� �
CBn sin n

u

3
t

� �� �
(17)

Results are plotted in Fig. 6, where the term correspond-

ing to the exciting frequency is represented by the second

bar (nZ3). One can see here that the subharmonic mode nZ
1(u/3) of the body response is far more energetic than the

third one corresponding to frequency of the incident wave.

No even mode are indeed present due to the antisymmetry

of condition Eq. 8.
3.3. Equal ending ramps

The sub-harmonic phenomena described above are due,

clearly, to the initial and final conditions zðt1ÞZKzð0ÞZ
Kz0 which is one mean to impose global periodicity of the

system response. This is not the unique way to achieve this

goal, and another condition could be, indeed

zðt1Þ Z zð0Þ Z z0 (18)

enforcing the system to return to its starting point at the end

of the ramp.

The same algebra as developed in the above section can

then be repeated after having changed only the final

condition Eq. (18). This new condition results only in a

change in the function A(t1,f0) which now reads:

A0ðt1;40Þ Z cos st1 C
m

s
sin st1

� �
eKmt1 K1

The same considerations and calculations as previously

exposed finally results in typical system responses as plotted

in Fig. 7. Again we can see that, for uOu0, the optimal
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Fig. 7. Numerical simulations of the motion of a mechanical oscillator

with and without latching control (equal ending ramps); u0Z0.6, mZ0.1,

FexZ1, uZ1.
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response of the controlled system features sub-harmonic

periods, multiples of the excitation period, but now

beginning with period doubling, then tripling, etc.
The systematic computations reported above (Fig. 5)

were performed again with this new latching condition;

results are plotted in Fig. 8.

Again we can appreciate the response amplification

on the top figure. Globally the amplification is less

important than with the first strategy, particularly in the

low frequency range u!u0. The frequency band where

latching control is inefficient ð0:6!u(0:75Þ is a bit

narrower than in the previous case. Considering finally

the bottom Fig. 8, we can see that the gain in term of

absorbed power is globally lower with this latching

strategy (equal ending ramps) than with the previous

(alternated maxima ramps).

So we have now a better understanding on the best

latching strategy for a basic oscillator in forced harmonic

regime. Let us now consider the case of a wave activated

energy converter, including the hydrodynamic terms of

the motion equation, excited by regular and irregular

waves.
4. Application to a heaving wave energy converter in

regular and in random waves
4.1. Governing equations

We consider a wave energy converter in one mode of

motion only, namely the heaving mode as described in

Section 2. With the modelling adopted previously, the

equation of motion is:

ðM CmNÞ€z C

ðt

0

_zðtÞKðt KtÞdt CB _z Ckz Z FexðtÞ (19)

With, according to Cummins (1962) [9]

KðtÞ Z
2

p

ðCN

0
CAðuÞcosðutÞdu (20)

where CA(u) is the hydrodynamical damping coefficient.

Let us assume that K can be approximated by a sum of

exponentials:

KðtÞx
XN

iZ1

ai$ebit (21)

K being real, the coefficients (ai,bi) are necessarily either

real or associated by pair of complex conjugate. They can be

determined by using, among others, Prony’s method as

described in [11] or in [7]. Let I(t) be the convolution

product to be evaluated:

IðtÞ Z

ðt

0

_zðtÞKðt KtÞdt



Using (21), this equation can be rewritten as a sum:

IðtÞ Z
XN

iZ1

IiðtÞ

With:

IiðtÞ Z

ðt

0

_zðtÞaie
biðtKtÞdt (22)

Differentiating Ii leads to:

_IiðtÞ Z biIiðtÞCai
_zðtÞ (23)

With the initial conditions, according to (22):

Iið0Þ Z 0 (24)

So the equation of motion (19) can be replaced by

ðM CmNÞ€zðtÞC
XN

iZ0

IiðtÞCB _zðtÞCkzðtÞ Z FexðtÞ

_IiðtÞ Z biIiðtÞCai
_zðtÞ

8><
>: (25)

which indeed applies when the body is moving (during the

ramps). Otherwise, when the body is latched, the equation of

motion simplifies into:

_zðtÞ Z 0

_IiðtÞ Z biIiðtÞ

(
(26)

For random sea simulations, the excitation force was

derived by discretizing the ITTC energy spectra [23] and

using a random phase numerical generator

SðuÞ Z
A

u5
exp

KB

u4

� 	
(27)

with:

A Z 173
H2

1=3

T4
1

B Z
691

T4
1

In the reported applications, we have considered 300

frequencies between 0.01 and 6.0 rad/s. Using our BEM

seakeeping computational code AQUAPLUS, we have

got the transfer function between the frequency of an

incident harmonic wavetrain and the associated excitation

force acting on the body. Then we were able to proceed

to numerical simulation of motions by integration of the

Eqs. (25) and (26) using a Runge–Kutta method. The

body considered was a fixed volume fully submerged

heaving cylinder, but there is no restrictions to apply the

methods described here to any generic floating devices.

The radius of the cylinder is 5 m, the height is 10 m and

it is submerged 10 m below the free surface. The

following parameter set was used in the calculations:

MZ360 t, mNZ155 t, kZ240 kN/m, BZCA(u0)Z
27 kN s/m.
8

As in Section 3, we have considered here for

simplification that the excitation force is known in the

future of the current computation time, but keeping in mind

that the final goal of our approach is to devise a causal

control algorithm free of this constraint. Other optimal

control approaches based on Pontragyin principle has been

applied to this problem [19]; due to the fact that they rely on

the knowledge of all the time range of the process, from the

first to the last instant of running, they do not fit our final aim

and we have preferred investigating another approach to the

problem using some short-term prediction techniques such

as Kalman extended filter [5], among others.

The aim of the present study being to compare three

latching strategies, we have assumed herein that this short-

term prediction of the future excitation force is available

every time during the computation. The implementation of

this prediction algorithm in real world application is beyond

the scope of the present paper.
4.2. Three unlatching strategies

The motion of a wave energy converter under latching

control is a succession of time of rest and of transient

motion, that we call ramps. The control variable is the

release (or unlatching) time, or equivalently the latching

duration. In [21], Korde calculated the optimal control law

from a variational approach in the case of a wave energy

converter where energy absorption and latching are

achieved by means of pneumatic cylinders with open/

close valves. We have tried to apply such a method to our

problem but the fact that the latching control is applied to

the body, and not on the power take-off system, introduced a

nonlinear constraint in the equation and we have not got, up

to now, any interesting result using this method. We,

therefore, decided to try a direct numerical approach.

Let us imagine that we are in a latched position at a time

tc, with all the state variables being known. One can

integrate Eq. (26) from tc to tcCtl, for any given latching

duration, and then compute the motion the body would have

for this tl during the next ramp by integrating Eq. (25), till

the velocity vanishes again. The amount of energy absorbed

during this ramp may be computed by integrating the

product of the velocity by the PTO force over the time

interval. In Fig. 9, we have plotted the energy absorbed

during the next ramp when we vary the latching duration tl.

One can see the existence of successive local maxima and

discontinuities in this curve. Discontinuities arise from the

fact that we consider only the energy absorbed between two

successive zeros of the velocity.

From these considerations, we have formulated three

different strategies to determine the optimum unlatching

time. These criteria are formulated in such a way that they

can be applied in regular as well as irregular waves:

(1) The first control strategy we tested consists in choosing

the latching time associated with the maximum of:
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Fig. 9. Absorbed energy associated after current time t as a function of

latching duration in random incident wave.
– the absorbed energy for the first of the local

maxima (e.g. tl x3 s in Fig. 9)

– the absorbed energy when latching time

equals 0 otherwise.

In real implementation based on estimation of the

exciting force as explained before, the error will indeed

increase with the prediction duration. Moreover, on an

engineering point of view, it is better to have more small

oscillations than a few large ones. From these two practical

arguments, we have chosen to select the first local maxima

in the future (i.e. the first maximum), even if the second

maximum is more powerful, as in Fig. 9.

(2) The second control strategy we have tested is quite the

same as the first one, except that now we no longer

maximize the absorbed energy but the amplitude of the

foregoing ramp. We have plotted in Fig. 10 an example

of a numerical simulation of the body motion in a real

sea state under latching control according to this

strategy number 2. One can easily appreciate the

amplifying effect of discrete control in random waves.

On the lowest figure, we have plotted the accumulated

energy by time integrating the instantaneous power.

The mean absorbed power is, therefore, given by the

mean slope of these curves. The benefit of latching is

clearly exemplified by this example.

(3) The third strategy used is the same as the one used by

Hals, Bjarte-Larsson and Falnes in [18]. By foreseeing

at each time step the motion on the next ramp, we

selected the right release time in order to put the next

maximum of the velocity in phase with the next

maximum of the excitation force. In regular monochro-

matic waves, this is an exact criterion of optimality for a

WEC under continuous phase control. But in random

waves where the phase becomes meaningless, this

cannot be established theoretically. Nevertheless, we
9

will assess the efficiency of this strategy after

transposing it to discrete control in a real (random)

waves context. This strategy will be numbered 3 in the

sequel.
5. Results in harmonic wave

First, we compare the capacities of each proposed

strategy in term of absorbed energy when the incident

wave is monochromatic. We made time domain simu-

lations of the body response for incident monochromatic

wave with frequency in the range [0.1,2] rad/s, and with a

common 1 m wave amplitude. Results are plotted in

Fig. 11 in terms of relative capture width which is a

common measure of point absorber devices efficiency in

wave energy literature. This index is defined as the ratio

of power absorbed over wave power incident in a width

equal to the body diameter. For the sake of comparison

we have also plotted on each graph the capture width for

the uncontrolled system and the theoretical maximum (in

linear theory). For such a single axisymmetric system in

symmetric mode of motion, the maximum capture width

equals to l/(2p) [2,13,22]. Note that it means that for low

frequency waves, the absorbed power can possibly be

greater than the incident power in the width of the body,

implying capture widths greater than 1. One can see that

all three strategies greatly improve the system efficiency

by enlarging considerably its bandwidth. The most

efficient one in regular waves appears to be the second

strategy (maximizing response amplitude) since it allows

an improvement of the capture width whatever the

frequency of the incident wave. Thus the result deduced

previously from analytical calculations of optimal latching

control applied to a mechanical oscillator seems to apply

also to our hydrodynamical oscillator.
6. Results in random sea

Given a system and a latching strategy, the benefit that

one can expect from such a control depends indeed on the

spectral characteristics of the incident wave. Most

commonly, a wave energy converter will work with

wavetrain in which peak period T1 is in the range [6s,14s].

The characteristic height is also a variable, but, as long as

we do not consider motion limitation by end stops, the

latching control does not depend on the wave amplitude.

Multiplying it by, say, a, results in the multiplication by a

for the body motion, since we work here in linearized

theory, but the control points (i.e. the points where the

body velocity vanishes) remain invariant, and so the

moment of unlatching. We have made a great number of

numerical simulations in random seas for different values

of the peak period T1 between 6 and 15 s, repeating the
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Fig. 10. Comparison of the motion with and without control using a strategy #2 aiming at maximizing the body response amplitude. (a) Incident wave height,

(b) free body response, (c) controlled body response and (d) accumulated energy in both cases.
same simulations for different random phase arrangements

in order to obtain a mean estimation, for each one of the

three control strategies. Results are plotted in terms of

capture width in Fig. 12 as a function of the peak period

T1. For each strategy, we have also plotted, as a reference,

the capture width we obtained for the same device without

control. One can observe that the gain may be very
10
important (up to a factor 4), in a range of peak period

located around the natural period of the system (10 s),

whereas the gain becomes negligible in the low period

range. As for regular waves, the strategy number 2 based

on maximizing the amplitude seems to give better results.

For the free system, the most favorable range lies below

the natural period of the device while the efficiency
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the peak period of the incident wave train for three different natural periods.
remains very high for controlled devices in the long

period range.

This is a key result of the study because it means that

latching control will work with smaller devices (resulting in

higher natural frequency), for a given power rating. This

will be a helpful hint for engineers in charge of the design of

such wave energy converters, for the placement of the

natural period of the system with respect to the local sea

state statistics at the working site.

As we pointed it out before, all these strategies will

need to predict the excitation force in the close future or

each unlatching event. In order to evaluate the size of the

time window that we call ‘close future’, we define an

half-period of the motion T1/2 by the sum of the latching

duration plus the duration of its associated ramp. The

value of T1/2 is the minimum of the prediction time

required to achieve an efficient latching control by the

method exposed herein. So we have plotted in Fig. 13, the

mean Tm of all the computed T1/2 as a function of

the peak period of the incident wave train. We made three

series of computations, keeping the same body geometry,

but for three different values of the stiffness of the spring

in order to obtain three different natural periods of the

system: T02{7s,10s,13s}. One can see that Tm is
11
minimum when the peak period equals the natural period.

Moreover, when T1ZT0, it seems that TmZ ðT0=2ÞC2:0 s.

Anyway, Tm is always less than T0, so we conclude that

the length of the prediction time window is bounded by

the natural period T0 of the device.



7. Conclusion

By solving semi-analytically the equation of motion of a

mechanical oscillator with a single degree of freedom, we

have shown that latching control is able to increase

significantly the amplitude of the motion, whatever the

wave frequency. But the global behavior of the system,

featuring period doubling, period tripling,., of the

response is much more like a time-varying system.

Thus, we compared a strategy aiming at the

maximization of the amplitude of the motion of wave

energy converter with a strategy aiming at the

maximization of the absorbed energy and a strategy

aiming at keeping velocity and excitation force in phase.

Results in irregular waves show that, whatever is the

control strategy, the efficiency of such a generic WEC

device is considerably improved by latching control,

provided one can predict the excitation force in the close

future of the unlatching instant. In random waves, the

control strategy (2) aiming at maximizing the amplitude

of the motion gives approximately the same results as

strategy (3) aiming at keeping velocity and excitation

force in phase. In regular waves, the former one is the

most efficient. Moreover, we found that the need for

prediction of the future excitation force remains bounded

by the natural period of the system. Further investi-

gations should now be done to implement a method of

short-term wave excitation forecasting in the latching

control algorithm. It would permit the assessment of the

feasibility of the present control strategy in real sea wave

conditions.
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