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A NOTE ON FROBENIUS DIVIDED MODULES

IN MIXED CHARACTERISTICS

PIERRE BERTHELOT

Abstract. If X is a smooth scheme over a perfect field of characteristic p, and if

D
(∞)
X is the sheaf of differential operators on X [8], it is well known that giving an

action of D
(∞)
X on an OX -module E is equivalent to giving an infinite sequence of

OX -modules descending E via the iterates of the Frobenius endomorphism of X
[6]. We show that this result can be generalized to any infinitesimal deformation
f : X → S of a smooth morphism in characteristic p, endowed with Frobenius
liftings. We also show that it extends to adic formal schemes such that p belongs

to an ideal of definition. In [5], dos Santos used this result to lift D
(∞)
X -modules

from characteristic p to characteristic 0 with control of the differential Galois
group.
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Introduction

Let X0 be a smooth scheme over a perfect field k of characteristic p > 0, and

D
(∞)
X0

the sheaf of differential operators on X0 relative to S0 = Speck (in the sense

of [8, 16.8]). A classical result of Katz [6, Th. 1.3], based on Cartier’s descent [11,
Th. 5.1], asserts that there is an equivalence between the category of vector bundles

on X0 endowed with a left action of D
(∞)
X0

, and the category of families of vector

bundles Ei on X0, i ≥ 0, endowed with OX0-linear isomorphisms αi : F
∗
X0
Ei+1

∼
−→

Ei, where FX0 is the absolute Frobenius endomorphism of X0. The purpose of
this note is to explain how the theory of arithmetic D-modules developed in [1]
and [2] allows to generalize this result to infinitesimal deformations of this setup,
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which are not necessarily characteristic p deformations. Using limit arguments, we
obtain a similar generalization for separated and complete modules over a formal
scheme, including in mixed characteristics. When the base is a discrete valuation ring
of mixed characteristics and dim(X0) = 1, we recover the correspondence defined
earlier by Matzat [12].

We actually start with the more general situation of a smooth morphism f0 :
X0 → S0 between characteristic p schemes. In particular, the perfection hypothesis
on the basis can be removed simply by working with the relative Frobenius morphism
FX0/S0

instead of the absolute Frobenius endomorphism FX0 (as in [11, Th. 5.1]).
We consider a nilpotent immersion S0 →֒ S and a smooth morphism f : X → S
lifting f0. We assume that an endomorphism σ : S → S lifting FS0 and an S-

morphism F : X → X(1) lifting FX0/S0
are given (denoting by X(i) the pull-back

of X by σi). Then our main result is Theorem 2.4, which asserts that, under these

assumptions, the category of D
(∞)
X -modules is equivalent to the category of families

of OX(i)-modules Ei endowed with isomorphisms F ∗Ei+1
∼
−→ Ei. Note that this

equivalence holds without any condition on the modules.

There are two steps in the proof. The first one is to show that, for any such

family, there exists on each Ei a unique structure of D
(∞)

X(i)-module such that the

isomorphisms αi are D
(∞)

X(i)-linear (Theorem 1.2). The second one is to show that a

D
(∞)
X -module can be indefinitely descended by liftings of Frobenius. While the latter

is a direct consequence of the Frobenius descent theorem [2, 2.3.6], the first step is
not covered by the results of [2]. It requires the whole structure provided by the
infinite sequence (Ei, αi), but the theory of arithmetic D-modules provides a more
precise information about the differential structure obtained after a finite number
of Frobenius pull-backs. Namely, the key result is the following (Proposition 1.7):
if a ⊂ OS is the ideal defining S0, and if r is an integer such that a

r = 0, then,
for any m ≥ 0 and any OX(m+r)-module F , there exists on Fm+r ∗F a canonical

structure of D
(m)
X -module, D

(m)
X being the ring of differential operators defined in

[1]. To prove the existence of this structure and its main properties, the main
tool is the interpretation of D-module structures in terms of appropriate notions of
stratification, as initiated by Grothendieck [9, Appendix].

This note has been written to answer questions raised by J. P. dos Santos in his

study of the variation of the differential Galois group associated to liftings of D
(∞)
X -

modules from charactristic p to characteristic 0 [5]. It is a pleasure to thank him for
giving me this opportunity to clarify the relations between the Frobenius descent

theorem proved in [2] and the classical interpretations of D
(∞)
X -modules in terms of

infinite Frobenius descent.

Conventions. — a) We denote by p a fixed prime number.

b) In this note, modules over non commutative rings will always be left modules.
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1. Frobenius divided D-modules and O-modules

We show here that the notions of Frobenius divided O-module and Frobenius
divided D-module coincide.

1.1. Let S be a scheme, and a ⊂ OS a quasi-coherent nilpotent ideal such that
p ∈ a. We denote by S0 ⊂ S the closed subscheme defined by a, and we suppose
given an endomorphism σ : S → S lifting the absolute Frobenius endomorphism of
S0. For any S-scheme X and any i ∈ N, we denote by X0 the reduction of X modulo
a, and by X(i) the S-scheme deduced from X by base change by σi : S → S.

We will consider S-schemes X endowed with an S-morphism F : X → X(1) lifting
the relative Frobenius morphism of X0 with respect to S0. For any i ≥ 0, we will
simply denote by F : X(i) → X(i+1) the morphism deduced from F by base change
by σi. More generally, for any i, r ≥ 0, we will denote by F r : X(i) → X(i+r) the
composition of the r successive morphisms F : X(i+j) → X(i+j+1) for 0 ≤ j ≤ r− 1.
The morphism F is automatically finite locally free, as a consequence of the flatness
criterion by fibers [7, Th. 11.3.10].

In this situation, an F -divided OX -module will be a family (Ei, αi)i≥0 of OX(i)-

modules Ei, endowed with OX(i)-linear isomorphisms αi : F
∗Ei+1

∼
−→ Ei. They form

a category, for which the morphisms from (Ei, αi) to (E ′i , α
′
i) are the families of OX(i)-

linear homomorphisms Ei → E
′
i which commute with the αi’s and α

′
i’s in the obvious

sense. Note that our terminology differs a little from that of [5], where the term
“F -divided” is used only when F is the actual Frobenius in characteristic p, and the
term “Φ-divided” is used instead in a lifted situation of mixed characteristics. Other
terminologies can be found in the literature; I hope the terminology used here will
not cause any confusion.

We will assume that X is a smooth S-scheme, so that we can consider the sheaf of
differential operators on X relative to S, as defined by Grothendieck in [8, 16.8]. We

will denote this sheaf by D
(∞)
X , and we recall that, if f : X → Y is an S-morphism be-

tween two smooth S-schemes, the usual inverse image f∗F in the sense of O-modules

of a D
(∞)
Y -module F has a canonical structure of D

(∞)
X -module (see for example [2,

2.1.1], which is valid for D
(∞)
X -modules). Since X(i) is smooth over S for all i, we

can introduce the notion of F -divided D
(∞)
X -module as being a family (Ei, αi)i≥0 of

D
(∞)

X(i)-modules Ei, endowed with D
(∞)

X(i)-linear isomorphisms αi : F
∗Ei+1

∼
−→ Ei.

The main result of this section is the following:

Theorem 1.2. Under the previous hypotheses, the obvious forgetful functor

(1.2.1) ΩS : {F -divided D
(∞)
X -modules} −→ {F -divided OX-modules}

is an equivalence of categories.

More precisely, given an F -divided OX -module (Ei, αi), there exists on each Ei a

unique structure of D
(∞)

X(i)-module such that the isomorphisms αi are D
(∞)

X(i)-linear,
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and each morphism of F -divided OX -modules is then a family of D
(∞)

X(i)-linear maps.

Endowing each Ei with this D
(∞)

X(i)-module structure provides a quasi-inverse functor
to ΩS.

We will prove this statement in subsection 1.10, after a few preliminary results.
We first fix notations. If A is a commutative ring, I ⊂ A an ideal, and j ≥ 0 an

integer, we denote by I(j) ⊂ A the ideal generated by the elements ap
j

, when a varies
in I. Assuming that another ideal a ⊂ A has been fixed, we define for each i ≥ 0

(1.2.2) Ĩ(i) := I(i) + aI(i−1) + · · · + a
i−jI(j) + · · ·+ a

iI.

We will use similar notations for sheaves of ideals.

Lemma 1.3. With the previous notations, assume that p ∈ a, and let x ∈ Ĩ(i). Then

xp belongs to Ĩ(i+1).

Proof. We can write x as x = yi + · · · + y0, with yj ∈ a
i−jI(j). Therefore,

xp ∈ (ypi , . . . , y
p
0) + p(yi, . . . , y0).

On the one hand, we have

pyj ∈ pa
i−jI(j) ⊂ a

i−j+1I(j) ⊂ Ĩ(i+1).

On the other hand, for each j such that 0 ≤ j ≤ i, we can write yj as a sum

yj =
∑rj

k=1 aj,kz
pj

j,k, with aj,k ∈ a
i−j and zj,k ∈ I. We deduce

ypj =

rj∑

k=1

apj,kz
pj+1

j,k +
∑

n1+···+nrj
=p

∀k, 0≤nk 6=p

(
p

n1, . . . , nrj

) rj∏

k=1

ank

j,kz
nkp

j

j,k .

Each term of the first sum belongs to a
i−jI(p

j+1) ⊂ Ĩ(i+1). In each term of the second
sum, the multinomial coefficient is divisible by p ∈ a, and the product belongs to

a
i−jI(j). So the second sum too belongs to Ĩ(i+1). �

Lemma 1.4. Under the hypotheses of 1.1, let r ≥ 0 be an integer, and let Ir ⊂
OX(r)×X(r) be the ideal defining the diagonal immersion X(r) →֒ X(r)×SX

(r). Then,
for i ≤ r, we have

(1.4.1) (F i × F i)∗(Ir) ⊂ Ĩ
(i)
r−i.

Proof. The ideal Ir is generated by sections of the form ξ′ = 1⊗ x′ − x′ ⊗ 1, where
x′ is a section of OX(r) , and we may assume that x′ = 1⊗ x, where x is a section of
OX(r−i) . Let ξ = 1⊗ x− x⊗ 1 ∈ OX(r−i)×X(r−i) .

For i = 1, the morphism F : X(r−1) → X(r) is a lifting over S of the relative
Frobenius morphism of X(r−1). So we can write

F ∗(x′) = xp +
∑

k

akyk,
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with ak ∈ a, yk ∈ OX(r−1) . It follows that

(F × F )∗(ξ′) = 1⊗ xp − xp ⊗ 1 +
∑

k

ak(1⊗ yk − yk ⊗ 1)

= (ξ + x⊗ 1)p − xp ⊗ 1 +
∑

k

ak(1⊗ yk − yk ⊗ 1)

= ξp +

p−1∑

k=1

(
p

k

)
(xp−k ⊗ 1)ξk +

∑

k

ak(1⊗ yk − yk ⊗ 1).

Since p ∈ a, both sums belong to aIr−1, and we get that (F × F )∗(ξ′) belongs to

I
(1)
r−1 + aIr−1 = Ĩ

(1)
r−1 as wanted.

We can then argue by induction on i. Assuming the lemma for i − 1, it suffices
to prove that

(1.4.2) (F × F )∗(
˜
I
(i−1)
r−i+1) ⊂ Ĩ

(i)
r−i.

Since ai−j−1˜I
(j+1)
r−i ⊂ Ĩ

(i)
r−i, it suffices to show that, for any η ∈ Ir−i+1 and any j ≥ 0,

(F × F )∗(ηp
j

) ∈
˜
I
(j+1)
r−i . But (F × F )∗(ηp

j

) = ((F × F )∗(η))p
j

, and we have seen

that (F × F )∗(η) ∈ Ĩ
(1)
r−i. Applying repeatedly Lemma 1.3, the claim follows. �

1.5. We now recall briefly some notions about arithmetic D-modules; readers look-
ing for an introduction with more details can refer to [3].

On an open subset where X has a set of local coordinates t1, . . . , td relative to S,

the ring D
(∞)
X is a free OX -module which admits as basis a set of operators ∂[k], for

k = (k1, . . . , kd) ∈ Nd, satisfying the following properties:

(i) If k = (0, . . . , 0), then ∂[k] = 1.

(ii) If ki = 1, and kj = 0 for j 6= i, then ∂[k] is the derivation ∂/∂ti from the
dual basis to the basis of 1-forms (dtj).

(iii) For all k, k′ ∈ Nd, we have ∂[k]∂[k
′] =

(k+k′

k

)
∂[k+k′].

The last property shows that the operators ∂[k] behave “as 1
k!

∏
i(∂/∂ti)

ki in char-

acteteristic 0”. It also shows that, outside characteristic 0, prescribing the action of

the derivations ∂/∂ti does not suffice to define an action of D
(∞)
X . It is well known

that such an action is determined by the action of the operators (∂/∂ti)
[pj ] for all i

and all j ∈ N. In particular, prescribing an action of D
(∞)
X on an OX -module is a

process of infinite nature.

When the integers prime to p are invertible on the base scheme (as in our situ-
ation), one way to do it is to use the “rings of differential operators of finite level”
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D
(m)
X , for m ∈ N [1]: these form a direct system of rings such that

(1.5.1) lim
−→
m

D
(m)
X

∼
−→ D

(∞)
X .

In a local situation as above, D
(m)
X is a free OX-module. It has a basis of operators

∂〈k〉(m) such that ∂〈k〉(m) maps to q!∂[k], where q = (q1, . . . , qd) is defined by

(1.5.2) ∀i, ki = pmqi + ri, 0 ≤ ri < pm.

In particular, the homomorphism D
(m)
X → D

(∞)
X is not injective when p is nilpotent

on S, but it induces an isomorphism of OX -modules between the subsheaves of dif-

ferential operators of order < pm+1 (note in particular that, for j ≤ m, (∂/∂ti)
〈pj〉(m)

maps to (∂/∂ti)
[pj ] in D

(∞)
X ). An important difference between the sheaves D

(m)
X and

D
(∞)
X is that an action of D

(m)
X on an OX -module is known when the action of the

operators (∂/∂ti)
〈pj〉(m) is known for j ≤ m (this is a consequence of the decompo-

sition of the operators ∂〈k〉(m) [1, (2.2.5.1)]). Thus prescribing an action of D
(m)
X is a

process of finite nature, and this will be illustrated by Proposition 1.7 below.

To define the action of differential operators of order > 1, we will have to use the

notion of stratification in the case of D
(∞)
X -modules (see [4, 2.10]) and its divided

power variants in the case of D
(m)
X -modules (see [4, 4.3] and its level m generalization

[1, 2.3]). If I is the ideal defining the diagonal immersion X →֒ X ×S X, we
will denote by Pn

X the sheaf OX×X/I
n+1 (sheaf of principal parts of order n on

X), by PX,(m) the m-PD-envelope of I [1, Prop. 1.4.1], by I the canonical m-PD-

ideal defined by I in PX,(m), and by Pn
X,(m) the quotient PX,(m)/I

{n+1}(m) , where

I
{n+1}(m) is the m-th step of the m-PD-adic filtration (as defined in [2, App., A.3]).

We recall that a stratification (resp. an m-PD-stratification) on an OX -module E is
a family of linear isomorphisms

εn : Pn
X ⊗OX

E
∼
−→ E ⊗OX

Pn
X(1.5.3)

(resp. εn : Pn
X,(m) ⊗OX

E
∼
−→ E ⊗OX

Pn
X,(m)),(1.5.4)

compatible when n varies, such that ε0 = Id, and satisfying a cocycle relation on
the triple product X ×S X ×S X (the OX -algebra structures used on Pn

X for the
source and target of εn are defined respectively by the second and first projections

X ×S X → X). Then the datum of a structure of left D
(∞)
X -module (resp. D

(m)
X -

module) on an OX -module E , extending its OX -module structure, is equivalent
to the datum of a stratification [4, Prop. 2.11] (resp. an m-PD-stratification [1,
Prop. 2.3.2]). The relation between these two types of data is made explicit by the
“Taylor formula”, which describes the isomorphisms εn in local coordinates,

(1.5.5) ∀x ∈ E , εn(1⊗ x) =
∑

|k|≤n

(∂[k]x⊗ 1)τ k,
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and by its analogue for D
(m)
X -modules [1, 2.3.2] (here, we have set τi = 1⊗ ti− ti⊗1,

and |k| = k1 + · · · + kd).

Proposition 1.6. Under the hypotheses of 1.1, let r ≥ 1 be an integer such that
a
r = 0, and let m ∈ N be another integer.

(i) There exists a (unique) ring homomorphism ϕm,r : OX(m+r) → PX,(m) such
that the diagram

(1.6.1) OX(m+r)

Fm+r ∗

��

//
// OX(m+r)×X(m+r)

(Fm+r×Fm+r)∗

��

// PX(m+r),(m)

(Fm+r×Fm+r)∗

��

// // OX(m+r)

ϕm,r

xxqq
qq

q
q
qq

q
q
q

Fm+r ∗

��

OX
//
// OX×X

// PX,(m) // // OX

commutes.

(ii) If m′ ≥ m, the square

(1.6.2) OX(m′+r)

Fm′
−m ∗

��

ϕm′,r
// PX,(m′)

can

��

OX(m+r)

ϕm,r
// PX,(m),

where the right vertical arrow is the canonical homomorphism [1, 1.4.7], is commu-
tative.

(iii) If s ≥ r, then the homomorphisms ϕm,r ◦ F
s−r ∗ : OX(m+s) → OX(m+r) →

PX,(m) and (F s−r × F s−r)∗ ◦ ϕm,r : OX(m+s) → PX(s−r),(m) → PX,(m) are both equal
to ϕm,s.

Proof. The kernel of the homomorphism PX(m+r),(m) ։ OX(m+r) is the m-PD-ideal

generated by Im+r. Since (F
m+r×Fm+r)∗ is an m-PD-morphism, the factorization

ϕm,r exists if and only if the image of Im+r in PX,(m) is 0. Using Lemma 1.4, it

suffices to prove that the image of Ĩ(m+r) in PX,(m) is 0.

An element x ∈ Ĩ(m+r) can be written x =
∑m+r

j=0

∑
k aj,kz

pj

j,k, with aj,k ∈

a
m+r−jOX and zj,k ∈ I. Since a

r = 0, aj,k = 0 for j ≤ m. On the other hand, I is

mapped by construction to the m-PD-ideal I ⊂ PX,(m). Such an ideal is equipped

with partial divided power operations z 7→ z{k}(m) , k ∈ N, such that zk = q!z{k}(m)

where q is the quotient of k by pm as in (1.5.2) [1, 1.3.5]. For j > m, we obtain

zp
j

j,k = pj−m!z
{k}(m)

j,k . Since p ∈ a, aj,kz
pj

j,k maps to a
m+r−j+j−mPX,(m) = 0. This

shows the first assertion.

To prove the second one, it suffices to show that the square commutes after
composing with the surjection OX(m′+r)×X(m′+r) ։ OX(m′+r) . Thanks to (1.6.1), the
composition of this surjection with can ◦ ϕm′,r is equal to

OX(m′+r)×X(m′+r)

(Fm′+r×Fm′+r)∗
−−−−−−−−−−−→ OX×X −→ PX,(m),
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while its composition with ϕm,r ◦ F
m′−m ∗ is equal to

(1.6.3) OX(m′+r)×X(m′+r)

(Fm′
−m×Fm′

−m)∗
−−−−−−−−−−−−→ OX(m+r)×X(m+r)

(Fm+r×Fm+r)∗

−−−−−−−−−−→ OX×X −→ PX,(m).

The assertion follows, and the third one is proved similarly. �

Proposition 1.7. Under the hypotheses of 1.1, let r ≥ 1 be an integer such that
a
r = 0, and let m ∈ N be another integer.

(i) For any OX(m+r)-module F , there exists on Fm+r ∗F a canonical D
(m)
X -

module structure extending its OX -module structure. This structure is functorial
with respect to F , and the functor Φm,r defined in this way from the category of

OX(m+r)-modules to the category of D
(m)
X -modules fits in a commutative diagram of

functors

(1.7.1) {OX(m+r)-modules}
Fm+r ∗

//

Φm,r

**UUUUUUUUUUUUUUUUU

{OX -modules}

{D
(m)

X(m+r)-modules}
Fm+r ∗

//

forget

OO

{D
(m)
X -modules}.

forget

OO

(ii) If m′ ≥ m, the diagram of functors

(1.7.2) {OX(m′+r)-modules}
Φm′,r

//

Fm′
−m ∗

��

{D
(m′)
X -modules}

restr
��

{OX(m+r)-modules}
Φm,r

// {D
(m)
X -modules}

commutes up to canonical isomorphism.

(iii) If s ≥ r, then Φm,s ≃ Φm,r ◦ F
s−r ∗ ≃ F s−r ∗ ◦ Φm,r, where the last functor

F s−r ∗ is the inverse image functor for D
(m)

X(s−r)-modules.

Proof. To define a D
(m)
X -module structure on Fm+r ∗F , we endow it with an m-PD-

stratification as follows.

For each i ≥ 0, let PX(i),(m) = SpecPX(i),(m), and let p0, p1 : PX(i),(m) → X(i)

be the morphisms induced by the two projections X(i) × X(i) → X(i). Using the
morphism φm,r : PX,(m) → X(m+r) defined by the homomorphism ϕm,r provided by

Proposition 1.6, and denoting ∆ : X(i) →֒ PX(i),(m) the factorizations of the diagonal

immersions (defined by PX(i),(m) ։ OX(i)), we obtain isomorphisms

(1.7.3) p∗1(F
m+r ∗F)

∼
−→ (Fm+r × Fm+r)∗p∗1F

∼
−→ φ∗m,r∆

∗p∗1F
∼
−→ φ∗m,rF ,

and similarly for p∗0(F
m+r ∗F). Composing and reducing mod I

{n+1}(m) for all n,

we obtain a compatible family of isomorphisms εn : p∗1(F
m+r ∗F)

∼
−→ p∗0(F

m+r ∗F)
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as in (1.5.4). To prove that they define an m-PD-stratification, one must check the
cocycle condition. This is formal, once one has checked that Proposition 1.6 (i) can
be generalized to the product X ×S X ×S X. Since the argument is the same than
for the proof of 1.6 (i), we omit the details.

This m-PD-stratification is clearly functorial in F . Endowing Fm+r ∗F with

the corresponding D
(m)
X -module structure defines the functor Φm,r, and the upper

triangle in (1.7.1) commutes by construction. To prove that the lower one com-

mutes, one must check that, if F has a D
(m)

X(m+r)-module structure corresponding to

an m-PD-stratification (δn)n≥0, the m-PD-stratification on Fm+r ∗F deduced from
(δn) by scalar extension via the homomorphisms Pn

X(m+r),(m)
→ Pn

X,(m) defined by

Fm+r × Fm+r coincides with (εn). This is a consequence of the commutativity of
diagram (1.6.1).

If m′ ≥ m, an m′-PD-stratification defines an m-PD-stratification by scalar ex-
tension via the canonical homomorphisms Pn

(m′) → P
n
(m). From the point of view

of D-module structures, this corresponds to scalar restriction from D(m′) to D(m)

(this can be easily checked using the corresponding Taylor formulas for D(m) and

D(m′)-modules). Therefore, the commutativity of (1.6.2) implies the commutativity
of (1.7.2).

Finally, the third statement follows immediately from Proposition 1.6 (iii), using

the definition of the inverse image functor for D(m)-modules in terms of m-PD-
stratifications [2, 2.1.1]. �

Corollary 1.8. Under the hypotheses of 1.1, let r ≥ 1 be an integer such that ar = 0.
If F is any OX(r)-module, F r ∗F is endowed with a canonical integrable connexion,
functorial in F . If F itself is endowed with an integrable connexion ∇, the inverse
image of ∇ by F r is the canonical connexion of F r ∗F .

Proof. Since the datum of an integrable conexion is equivalent to the datum of a
D(0)-module structure [4, Th. 4.8], this is the particular case of Proposition 1.7 (i)
obtained for m = 0. �

Example 1.9. Assume that a = 0, so that S is a characteristic p scheme, and F is
the relative Frobenius morphism FX/S . Then we may take r = 1, and the corollary
gives the classical connexion on the pull-back by FX/S of any OX(1)-module [11,
Th. 5.1] (see also [2, 2.6]). Note that, in this case, Cartier’s theorem provides a
characterization of the essential image of F ∗

X/S as being the subcategory of the

category of OX -modules with integrable connexion such that the connexion has p-
curvature 0. It would be interesting to have a similar characterization of the essential
image of F r ∗ in the more general situation of Corollary 1.8, at least in the case where
S is flat over Z/prZ, and a = pOS .

Assuming again that a = 0, but for arbitrary m, Proposition 1.7 is then a conse-
quence of the combination of the previous remark with [2, Prop. 2.2.3], which grants
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that, for any m, s ≥ 0, the inverse image of a D
(m)

X(s)-module by F s
X/S has a canonical

structure of D
(m+s)
X -module.

1.10. Proof of Theorem 1.2. We fix an integer r such that ar = 0.

(i) Unicity. Let (Ei, αi) be an F -divided D
(∞)
X -module. To prove that the

D
(∞)

X(i)-module structure of each Ei is determined by the family (Ei, αi) viewed as an

F -divided OX -module, we can use the isomorphism (1.5.1) to reduce to proving the,

for each m and each i, the underlying D
(m)

X(i)-module structure of Ei is determined by

the F -divided OX-module (Ei, αi).

Composing the isomorphisms αi, one gets a D
(m)

X(i)-linear isomorphism ψm,r,i :

Fm+r ∗Ei+m+r
∼
−→ Ei. By Proposition 1.7 (i), theD

(m)

X(i)-module structure of Fm+r ∗Ei+m+r

does not depend on the D
(m)

X(i+m+r)-module structure of Ei+m+r, and is equal to the

canonical structure we have defined on the inverse image by Fm+r of an O-module.
This proves the unicity.

(ii) Existence. We can again use the isomorphism (1.5.1) to reduce to defining

for all i and m a D
(m)

X(i)-module structure on Ei so that αi is D
(m)

X(i)-linear, and so that,

for m′ ≥ m, the D
(m)

X(i)-module structure is induced by the D
(m′)

X(i) -module structure.

To statisfy the first condition, it suffices to endow Ei with the D
(m)

X(i)-module struc-

ture deduced by transport via ψm,r,i from the canonical structure of Fm+r ∗Ei+m+r:

the fact that, with this definition, αi is D
(m)

X(i)-linear follows then from Proposition

1.7 (iii). As to the second condition, it is a consequence of Proposition 1.7 (ii). �

Remarks 1.11. (i) Assuming that S is affine, the same result holds when X is
the spectrum of a localization of some smooth Γ(S,OS)-algebra.

(ii) One can also construct directly the D
(∞)

X(i)-module structure of Ei by observ-
ing that Lemma 1.4 implies that

(Fm+r × Fm+r)∗ : OX(i+m+r)×X(i+m+r)/I
pm+1

i+m+r → OX(i)×X(i)/I
pm+1

i

can be factorized through OX(i+m+r) as in the construction of ϕm,r. Arguing as in
the proof of Proposition 1.7, one gets the isomorphisms εn of the stratification of Ei
for n < pm+1. Letting m go tend to infinity, one gets the whole stratification. This

allows to prove Theorem 1.2 without using D
(m)
X -module structures as intermediates.

However, this method does not provide informations on the differential structure of
pull-backs by a finite iteration of F similar to those provided by Proposition 1.7.

1.12. We end this section with a result showing how to compute explicitly the

D
(m)
X -module structure defined by Proposition 1.7 on Fm+r ∗F , for an arbitrary
OX(m+r)-module F .
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Let E be a D
(m)
X -module, and let x be a section of E . We will say that x is

horizontal if, for all n ≥ 0, we have

(1.12.1) εn(1⊗ x) = x⊗ 1,

where (εn)n≥0 is the m-PD-stratification corresponding to the D
(m)
X -module struc-

ture on E . On an open subset endowed with local coordinates, this condition can
be expressed using the basis of operators ∂〈k〉(m) : it follows from the Taylor formula
that x is horizontal if and only if

(1.12.2) ∀k 6= 0, ∂〈k〉(m) · x = 0.

Thanks to the decomposition formula [1, 2.2.5.1], this is equivalent to the condition

(1.12.3) ∀i, ∀j ≤ m, ∂
〈pj〉(m)

i · x = 0.

Proposition 1.13. Under the assumptions of Proposition 1.7, let F be an OX(m+r)-
module. Then the extension of scalars F → Fm+r ∗F maps the sections of F to
horizontal sections of Fm+r ∗F = Φm,r(F).

Proof. Let x′ be a section of F , and x = Fm+r ∗(x′) ∈ Fm+r ∗F . Then, if (εn) is the

m-PD-stratification of Fm+r ∗F , εn is the reduction mod I
{n+1}

of the composition
of (1.7.3) with the inverse of the analog of (1.7.3) starting from p∗0(F

m+r ∗F). Via
(1.7.3), 1 ⊗ x maps to φ∗m,r(x

′), and the same holds for the image of x ⊗ 1 via the

inverse of the analog of (1.7.3) for p∗0(F
m+r ∗F). Therefore, εn(1⊗x) = x⊗1, which

proves the proposition. �

Remarks 1.14. (i) Locally, a section of Fm+r ∗F can be written as x =
∑

i ai⊗
x′i, where ai ∈ OX and x′i ∈ F . Together with the Leibniz formula [1, Prop. 2.2.4,

(iv)], the previous proposition implies that, for any operator P ∈ D
(m)
X , the action

of P on x is given by

(1.14.1) P · x =
∑

i

P (ai)xi,

with xi = Fm+r ∗(x′i).

(ii) We can apply the previous proposition to F = OX(m+r) , and this shows

that the homomorphism OX(m+r) → OX → D
(m)
X maps OX(m+r) to the center of

D
(m)
X . So, for any operator P ∈ D

(m)
X , we can let P operate on Fm+r ∗F by P ⊗ IdF .

Formula (1.14.1) shows that the D
(m)
X -module structure obtained in this way on

Fm+r ∗F is the one defined by Proposition 1.7.

When a = 0 and m = 0, the homomorphism F → E := F ∗F identifies F with the
subsheaf E∇ of horizontal sections of E [11, Th. 5.1]. This is no longer true in general.
For example, let k be a perfect field of characteristic p, S = SpecWr(k), endowed
with its natural Frobenius action, and a = pOS . If X is a smooth S-scheme, and
m = 0, O∇

X = Ker(d : OX → Ω1
X) can be identified with the sheaf WrOX0 of Witt
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vectors of length r on X0 [10, III, 1.5], thanks to the map

(x0, . . . , xr−1) 7→ x̃p
r

0 + · · ·+ pr−1x̃pr−1,

where x̃i is any section OX lifting xi. In particular, if dim(X/S) ≥ 1 and r ≥ 2, O∇
X

is not flat over S, hence cannot be identified with OX(r) .

2. Frobenius descent

We now apply the theory of Frobenius descent developed in [2] to the case of

D
(∞)
X -modules.

Theorem 2.1. Under the hypothese of 1.1, the functor F ∗ defines an equivalence of

categories between the category of D
(∞)

X(1)-modules and the category of D
(∞)
X -modules.

Proof. Using (1.5.1), we can again view a D
(∞)
X -module as an OX -module endowed

for all m ∈ N with a structure of D
(m)
X -module extending its OX -module structure,

in a compatible way when m varies.

Let r be such that ar = 0, and let m0 be an integer such that pm0 ≥ r. We endow
the ideal pOS ⊂ a with its canonical PD-structure. Because any section a ∈ a is
such that ap

m0 = 0, and pa ⊂ pOX , the PD-ideal pOX defines for all m ≥ m0 an m-
PD-structure on a (called the trivial m-PD-structure, see [1, 1.3.1, Ex. (ii)]). So we
can apply the Frobenius descent theorem [2, Th. 2.3.6], and we obtain that, for each
m ≥ m0, the functor F ∗ defines an equivalence of categories between the category

of D
(m)

X(1)-modules and the category of D
(m+1)
X -modules. Moreover, for m′ ≥ m, the

remark of [2, Prop. 2.2.3] implies that these equivalences commute with restrictions

of scalars from D
(m′)

X(1) to D
(m)

X(1) , and from D
(m′+1)
X to D

(m+1)
X . The theorem follows

formally. �

Remark 2.2. Instead of deducing Theorem 2.1 from the Frobenius descent theorem

for D
(m)
X -modules, one could also prove it directly by repeating for stratifications the

arguments developed in the proof of [2, Th. 2.3.6] for m-PD-stratifications. Let us
recall that the proof builds upon the fact that F is a finite locally free morphism, as
are the morphisms induced between appropriate infinitesimal neighbourhoods of X
and X(1) in their products over S. Then one shows that the stratification induces a
descent datum from X to X(1), which allows to descend the OX -module underlying

a D
(∞)
X -module as an OX(1)-module. The same type of argument allows to descend

the isomorphisms εn defining the stratification corresponding to the D
(∞)
X -module

structure. Finally, using fppf descent again, one shows that the cocycle condition
for the εn’s implies the cocycle condition for the descended isomorphisms.

Corollary 2.3. Under the hypotheses of 1.1, the functor

(2.3.1) {F -divided D
(∞)
X -modules} −→ {D

(∞)
X -modules}, (Ei, αi) 7→ E0,

is an equivalence of categories.
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Proof. It suffices to apply repeatedly Theorem 2.1. �

Theorem 2.4. Under the hypotheses of 1.1, there exists an equivalence of categories

(2.4.1) ∆S : {F -divided OX -modules}
≈
−−→ {D

(∞)
X -modules}

which satisfies the following properties:

(i) If (Ei, αi) is an F -divided OX -module, the OX -module underlying ∆S(Ei, αi)
is E0.

(ii) ∆S is exact, OS-linear, and commutes with tensor products in both cate-
gories.

(iii) If (S′, a′, σ′) statisfies the conditions of 1.1, if u : (S′, a′, σ′)→ (S, a, σ) is a
morphism commuting with σ and σ′, and such that u−1(a) → a

′, then ∆S and ∆S′

commute with base change by u.

(iv) If S = Spec k, where k is a perfect field of characteristic p, ∆S is the
equivalence defined by Gieseker in [6, Th. 1.3].

Proof. We define the equivalence ∆S by composing the quasi-inverse to the forgetful
functor ΩS defined in 1.2 with the equivalence (2.3.1). Each of these is clearly exact
and OS-linear. As for the compatibility with tensor products, it follows from the fact

that the D-module structure on the tensor product over OX of two D
(m)
X -modules

is defined by the tensor product of the corresponding m-PD-stratifications.

To check the commutation with base change, one uses again the description of

the D
(m)
X -module structures in terms of m-PD-stratifications. Then this property

follows from the fact that the construction of the homomorphism ϕm,r defined in
Proposition 1.6 commutes with base change.

The last assertion follows from (1.14.1) and from the definition given in [6], p. 4, l. -

12, thanks to the fact that the homomorphisms D
(m)
X → D

(∞)
X induce isomorphisms

between the submodules of operators of order < pm+1. �

2.5. Theorem 2.4 implies a similar result on adic formal schemes. We now consider
the following setup. Let S be a locally noetherian adic formal scheme, and let
a ⊂ OS be an ideal of definition of S. For each r ≥ 0, we denote by Sr the closed
subscheme of S defined by a

r+1. We assume that p ∈ a, and that we are given an
endomorphism σ : S → S lifting the absolute Frobenius endomorphism of S0.

Let X → S be an a-adic formal scheme over S, with reduction Xr → Sr mod
a
r+1. We assume that X is smooth over S, i.e., that Xr is smooth over Sr for all r.
For all i ≥ 0, we denote again by X (i) the pull-back of X by σi in the category of
a-adic formal schemes, and we assume that we are given a morphism F : X → X (1)

lifting the relative Frobenius morphism FX0/S0
. We extend the notation as in 1.1

to define F : X (i) → X (i+1) for all i. Note that, in a neighbourhood of some point
x ∈ X , the relative dimension d of Xr over Sr does not depend on r. Then each Xr

is finite locally free of rank pd over X
(1)
r in a neighbourhood of x. By taking inverse
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limits, we get that OX is a finite locally free over OX (1) , and similarly for each OX (i)

over OX (i+1) .

We will say that an OX -module E is separated and complete if E
∼
−→ lim
←−r
E/arE .

Note that this is a local condition which depends only on the underlying OS -module,
and that a finite direct sum of OX -modules is separated and complete if and only if
each factor is separated and complete. It follows that anOX (i)-module F is separated
and complete if and only if F ∗F is separated and complete. Coherent OX -modules
are separated and complete.

As in 1.1, we define F -divided OX -modules as being families (Ei, αi)i≥0 of OX (i)-

modules endowed with OX (i)-linear isomorphisms αi : F
∗Ei+1

∼
−→ Ei. We will say

that an F -divided module is separated and complete if each Ei is separated and
complete.

Let D
(∞)
X = ∪n(lim←−r

D
(∞)
Xr,n

), where D
(∞)
Xr,n

is the subsheaf of differential operators

of order ≤ n on Xr. We will say that a D
(∞)
X -module is separated and complete if

the underlying OX -module is separated and complete.

Theorem 2.6. Under the hypotheses of 2.5, there exists an equivalence of categories

(2.6.1) ∆S : {Separated and complete F -divided OX -modules}

≈
−−→ {Separated and complete D

(∞)
X -modules}

which satisfies the following properties:

(i) If (Ei, αi) is a separated and complete F -divided OX -module, the OX -module
underlying ∆S(Ei, αi) is E0.

(ii) ∆S is OS-linear, preserves exactness for exact sequences of separated and
complete modules, and is compatible with completed tensor products.

(iii) For each r, ∆S induces the equivalence ∆Sr between the subcategories of
objects annihilited by a

r.

(iv) If S = Spf V, where V is a complete discrete valuation ring of mixed char-
acteristics, a is the maximal ideal of V, and X is affine over S with local coordinates,
then ∆S is the equivalence described in [5, 3.2.2] (introduced by Matzat in the context
of local differential modules over 1-dimensional local differential rings [12]).

Proof. Let Fr : Xr → X
(1)
r be the reduction of F modulo a

r+1. Using the Fr’s,
Theorem 2.4 provides for each r an equivalence between the category of F -divisible

OXr - modules and the category of D
(∞)
Xr

-modules. Moreover, these equivalences are
compatible when r varies, thanks to 2.4 (ii). So, starting from a separated and com-
plete F -divided OX -module (Ei, αi), we obtain an inverse systeme of F -divided OXr -
modules (Ei/a

r+1Ei, αi mod a
r+1), from which we deduce compatible structures of

D
(∞)
Xr

-modules on the quotients E0/a
r+1E0. Viewing these as comptatible structures

of D
(∞)
X -modules, they define a structure of D

(∞)
X -module on E0

∼
−→ lim
←−r
E0/a

r+1E0.

This defines the functor ∆S , and property (i) is satisfied.
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Conversely, given a separated and complete D
(∞)
X -module E , the inverse system

(E/ar+1E) defines an inverse system of F -divided OXr -modules (Ei,r, αi,r) such that

E0,r = E/ar+1E . Since a D
(∞)

X (i)-module F is separated and complete if and only if

F ∗F is separated and complete, and F ∗ lim
←−r
Fr

∼
−→ lim
←−r

F ∗
r Fr for any inverse system

of O
X

(i)
r
-modules (Fr), we obtain by taking inverse limits a separated and complete

F -divided OX -module (Ei, αi) such that E0 = E . .

The OS -linearity and the compatibility with completed tensor products are also
clear from the definition of ∆S , as is assertion (iii). Compatibility with exact se-

quences follows from (i), since, on the one hand a sequence of D
(∞)
X -modules is exact

if and only if it is exact as a sequence of OX -modules, on the other hand a sequence
of F -divided modules is exact if and only if the sequence of terms of index 0 is exact
(as F is finite locally free).

To prove the last assertion, we apply the description given in (1.14.1) for the
action of differential operators on the reduction mod a

r+1, for all r. Indeed, let
us fix an integer r and a multi-index k, and let m be such that |k| ≤ pm. Then

the homomorphism D
(m)
Xr
→ D

(∞)
Xr

maps ∂〈k〉(m) to ∂[k]. Let (Ei, αi) be an F -

divided OX -module, and let ψm,r+1 : Fm+r+1 ∗Em+r+1
∼
−→ E0 be the isomorphism

defined by the αi’s. If x is a section of E0, we can write locally x as a finite com-
bination x = ψm,r+1(

∑
j ar,j ⊗ x′r,j), where ar,j ∈ OX and x′r,j ∈ Em+r+1. Let

xr,j = ψm,r+1(F
m+r+1 ∗(x′r,j)) ∈ E0. As the image of xr,j in E0/a

r+1E0 is hor-

izontal for the structure of D
(m)
Xr

-module, thanks to Proposition 1.13, we obtain

that, for any k′ 6= 0, ∂[k
′]xr,j ∈ a

r+1E0. Thus the Leibnitz formula implies that

∂[k]x ≡
∑

j ∂
[k](ar,j)xr,j mod a

r+1E0. If we let r tend to infinity, we obtain

(2.6.2) ∂[k]x = lim
r→∞

∑

j

∂[k](ar,j)xr,j.

This shows that the D
(∞)
X -module structure defined by ∆S on E0 coincides with the

one defined in [5, 3.2.2] (see also [12, Cor. 1.5]). �
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