
HAL Id: hal-00462954
https://hal.science/hal-00462954

Submitted on 10 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Holomorphic Morse inequalities and asymptotic
cohomology groups: a tribute to Bernhard Riemann

Jean-Pierre Demailly

To cite this version:
Jean-Pierre Demailly. Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute
to Bernhard Riemann. Riemann International School of Mathematics: Advances in Number Theory
and Geometry, Apr 2009, Verbania, Italy. 14 p. �hal-00462954�

https://hal.science/hal-00462954
https://hal.archives-ouvertes.fr


Holomorphic Morse inequalities

and asymptotic cohomology groups:

a tribute to Bernhard Riemann

Jean-Pierre Demailly
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Abstract. The goal of this note is to present the potential relationships between
certain Monge-Ampère integrals appearing in holomorphic Morse inequalities, and
asymptotic cohomology estimates for tensor powers of line bundles, as recently
introduced by algebraic geometers. The expected most general statements are still
conjectural and owe a debt to Riemann’s pioneering work, which led to the concept
of Hilbert polynomials and to the Hirzebruch-Riemann-Roch formula during the
XX-th century.

Résumé. Le but de cette note est de présenter les relations potentielles qui doivent
exister entre certaines intégrales de Monge-Ampère et les estimations asympto-
tiques de cohomologie introduites récemment par les géomètres algébristes. Les
énoncés les plus généraux espérés sont encore conjecturaux, et ne peuvent être
formulés sans faire référence aux travaux pionniers de Riemann, qui ont conduit
au concept de polynôme de Hilbert et à la formule de Hirzebruch-Riemann-Roch
au cours du XXe siècle.
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1. Main results

Throughout the paper, X will denote a compact complex manifold and
n = dimCX its complex dimension. Hirzebruch’s Riemann-Roch formula [Hir54,
Hir56] expresses the Euler characteristic

(1.1) χ(X,F) =
n∑

j=0

(−1)jhj(X,F)

of any coherent analytic sheaf F over X as an explicit topological invariant
computed by the integral

(1.2)

∫

X

Ch(F) Todd(TX)

in terms of the Chern character of F and the Todd class of TX . In the special
case where F = O(L⊗k) is the k-th tensor power of a holomorphic line bundle, the
formula produces the Hilbert polynomial

(1.3) χ(X,L⊗k) = P (k)

which is a polynomial of degree n which leading term kn

n! c1(L)
n. Moreover, if h

is a hermitian metric on L and ΘL,h = i
2πD

2
h is the (1, 1) Chern curvature tensor

of (L, h), the top Chern class intersection number is given by

(1.4) c1(L)
n =

kn

n!

∫

X

Θn
L,h.

However, the Hilbert polynomial just gives access to the alternate sum of dimen-
sions; in order to estimate the growth of the individual cohomology groups, it is in-
teresting to consider appropriate “asymptotic cohomology functions”. We mostly
follow here notation and concepts introduced by A. Küronya [Kur06, FKL07],
which extend in a natural way the concept of volume of a line bundle (cf. [DEL00],
[Bou02], [Laz04]).

However, as we insist here on being able to deal with arbitrary compact complex
manifolds, we are led to introduce appropriate variants of the original definitions.
Recall that the Bott-Chern cohomology group Hp,q

BC(X,C) is the quotient of d-
closed (p, q)-forms by ∂∂-exact (p, q)-forms. Then

⊕
p,qH

p,q
BC(X,C) is a bigraded

finite dimensional algebra. When X is Kähler, this algebra is isomorphic to the
usual Hodge-De Rham cohomology algebra by the well-known ∂∂-lemma, but in
general we only have canonical morphisms

Hp,q
BC(X,C) → Hp,q(X,C),

⊕

p+q=k

Hp,q
BC(X,C) → Hk

DR(X,C)

to Dolbeault and de Rham cohomology groups, which need not be isomorphisms.
The Bott-Chern cohomology algebra carries a natural conjugation, and we can



1. Main results 3

thus look at real elements Hp,p
BC(X,R) of type (p, p). The first Chern class

of a holomorphic line bundle L → X yields a well defined Bott-Chern class
c1(L) ∈ H1,1

BC(X,R) and conversely, by a well known lemma due to A. Weil,
such classes correspond to a holomorphic line bundle if and only if they are
integral, i.e. in the image of H2(X,Z) → H2(X,R) under the canonical morphism
H1,1

BC(X,R) → H2(X,R).

We consider the real Neron-Severi subspace NSR(X) ⊂ H1,1
BC(X,R) generated

by real combinations of all Chern classes c1(L) (i.e., from what we said, by integral
(1, 1) classes). Given a cohomology class α ∈ NSR(X) there is always a sequence
of Q-line bundles 1

kν
Lkν

∈ PicQ(X) = Pic(X)⊗ZQ such that 1
kν
c1(Lkν

) converges
to α in NSR(X). We will simply write 1

k c1(L) → α to express the fact that 1
k c1(L)

is close to α in the finite dimensional vector space NSR(X) ⊂ H1,1
BC(X,R), with its

natural Hausdorff topology.

(1.5) Definition. Let X be a compact complex manifold. One defines the

asymptotic (analytic) q-cohomology function on NSR(X) to be

ĥq(X,α) = lim sup
k→+∞, 1

k
c1(L)→α

n!

kn
hq(X,L)

= inf
ε>0, k0>0

sup
k>k0,‖

1

k
c1(L)−α‖6ε

n!

kn
hq(X,L).

where the pair (k, L) runs over N∗ × Pic(X).

From the very definition, ĥq is an upper semi-continuous function on NSR(X)
and it is positively homogeneous of degree n, namely

(1.6) ĥq(X, λα) = λnĥq(X,α)

for all α ∈ NSR(X) and all λ > 0. In the general case of compact complex

manifolds, the fact that ĥq(X,α) is finite follows from spectral theory estimates
for the complex Laplace-Beltrami operators (this will become quite clear from the
discussions below).

For a line bundle L, we simply denote ĥq(X,L) = ĥq(X, c1(L)). In this case,
things become a little bit simpler, and especially, for q = 0, one recovers the usual
concept of volume of a line bundle.

(1.7) Proposition. If X is projective algebraic or q = 0, then

ĥq(X,L) = lim sup
k→+∞

n!

kn
hq(X,L⊗k) = lim

k→+∞

n!

kn
hq(X,L⊗k).

Moreover, in these cases, the map α 7→ ĥq(X,α) is (locally) Lipschitz continuous

on NSR(X).
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The proof is derived from arguments quite similar to those already developed
in [Kur05]. Actually, let us introduce DNSR(X) ⊂ NSR(X) to be the subspace
generated by classes of integral divisors D on X (“divisorial Neron-Severi group”).
If X is projective algebraic then DNSR(X) = NSR(X), but the inclusion can be
strict in general (e.g. on complex 2-tori which only have indefinite integral (1, 1)-
classes, cf. [BL04]). If D =

∑
pjDj is an integral divisor, we define its norm to be

‖D‖ =
∑ |pj |Volω(Dj), where the volume of an irreducible divisor is computed

by means of a given hermitian metric ω on X ; in other words, this is precisely
the mass of the current of integration [D] with respect to ω. Clearly, since X is
compact, we get equivalent norms for all choices of hermitian metrics ω on X . We
can also use ω to fix a normalized metric on H1,1

BC(X,R). Elementary properties
of potential theory show that ‖c1(O(D))‖ 6 C‖D‖ for some constant C > 0 (but
the converse inequality is of course wrong in most cases). Proposition 1.7 is a
simple consequence of the following more precise cohomology estimates which will
be proved in section 2.

(1.8) Theorem. Let X be a compact complex manifold. Fix a finitely generated

subgroup Γ of the group of Z-divisors on X. Then there are constants C, C′

depending only on X, its hermitian metric ω and the subgroup Γ, satisfying the

following properties.

(a) Let L and L′ = L⊗ O(D) be holomorphic line bundles on X, where D ∈ Γ is

an integral divisor. Then

∣∣hq(X,L′)− hq(X,L)
∣∣ 6 C(‖c1(L)‖+ ‖D‖)n−1‖D‖.

(b) On the subspace DNSR(X), the asymptotic q-cohomology function ĥq satisfies

a global estimate

∣∣ĥq(X, β)− ĥq(X,α)
∣∣ 6 C′(‖α‖+ ‖β‖)n−1‖β − α‖.

In particular (without any further assumption on X), ĥq is locally Lipschitz

continuous on DNSR(X).

Our ambition is to extend the function ĥq in a natural way to the full cohomology
group H1,1

BC(X,R). The main trouble, already when X is projective algebraic,
is that the Picard number ρ(X) = dimR NSR(X) may be much smaller than
dimRH

1,1
BC(X,R), namely, there can be rather few integral classes of type (1, 1)

on X . It is well known for instance that ρ(X) = 0 for a generic complex torus a
dimension n > 2, while dimRH

1,1
BC(X,R) = n2. However, if we look at the natural

morphism
H1,1

BC(X,R) → H2
DR(X,R) ≃ H2(X,R)

to de Rham cohomology, then H2(X,Q) is dense in H2(X,R). Therefore, given
a class α ∈ H1,1

BC(X,R) and a smooth d-closed (1, 1)-form u in α, we can find
an infinite sequence 1

k
Lk (k ∈ S ⊂ N) of topological Q-line bundles, equipped
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with hermitian metrics hk and compatible connections ∇k such that the curvature
forms 1

kΘ∇k
converge to u. By using Kronecker’s approximation with respect

to the integral lattice H2(X,Z)/torsion ⊂ H2(X,R), we can even achieve a fast
diophantine approximation

(1.9) ‖Θ∇k
− ku‖ 6 Ck−1/b2

for a suitable infinite subset k ∈ S ⊂ N of multipliers. Then in particular

‖Θ0,2
∇k

‖ = ‖Θ0,2
∇k

− u0,2‖ 6 Ck−1/b2 ,

and we see that (Lk, hk,∇k) is a C∞ hermitian line bundle which is extremely
close to being holomorphic, since (∇0,1

k )2 = Θ0,2
∇k

is very small. We introduce the
complex Laplace-Beltrami operator

k = (∇0,1
k )(∇0,1

k )∗ + (∇0,1
k )∗(∇0,1

k )

and look at its eigenspaces in L2(X,Λ0,qT ⋆X ⊗ Lk) with the metric induced by
ω on X and hk on Lk. In the holomorphic case, Hodge theory tells us that the
0-eigenspace is isomorphic to Hq(X,O(Lk)), but in the “almost holomorphic case”
the 0-eigenvalues deviate from 0, essentially by a shift of the order of magnitude
of ‖Θ0,2

∇k
‖ ∼ k−1/b2 (see [Lae02], chapter 4). It is thus natural to introduce in this

case

(1.10) Definition. Let X be a compact complex manifold and α ∈ H1,1
BC(X,R)

an arbitrary Bott-Chern (1, 1)-class. We define the “transcendental” asymptotic

q-cohomology function to be

ĥqtr(X,α) = inf
u∈α

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1

k
Θ∇k

→u

n!

kn
N( k, kε)

where the lim sup runs over all 5-tuples (ε, k, Lk, hk,∇k), and where N( k, kε)
denotes the sum of dimensions of all eigenspaces of eigenvalues at most equal to

kε for the Laplace-Beltrami operator k associated with (Lk, hk,∇k) and the base

hermitian metric ω.

The word “transcendental” refers here to the fact that we deal with classes
α of type (1, 1) which are not algebraic or even analytic. Of course, in the
definition, we could have restricted the limsup to families satisfying a better
approximation property ‖ 1

k
Θ∇k

− u‖ 6 Ck−1−1/b2 for some large constant C
(this would lead a priori to a smaller limsup, but there is enough stability in the
parameter dependence of the spectrum for making such a change irrelevant). The
minimax principle easily shows that definition 1.10 does not depend on ω, as the
eigenvalues are at most multiplied or divided by constants under a change of base
metric. When α ∈ NSR(X), by restricting our families {(ε, k, Lk, hk,∇k)} to the
case of holomorphic line bundles only, we get the obvious inequality

(1.11) ĥq(X,α) 6 ĥqtr(X,α), ∀α ∈ NSR(X).
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It is natural to raise the question whether this is always an equality. Hopefully, the
calculation of the quantities lim sup n!

knN( k, kε) is a problem of spectral theory
which is completely understood since a long time. In fact, as a consequence of the
techniques of [Dem85, Dem91, Lae02], one gets

(1.12) Theorem. With the above notations and assumptions, one has

lim sup
ε→0, k→+∞, Lk, hk,∇k,

1

k
Θ∇k

→u

n!

kn
N( k, kε) =

∫

X(u,q)

(−1)qun,

where X(u, q) is the open set of points x ∈ X where u(x) has signature (n− q, q).
Therefore

ĥqtr(X,α) = inf
u∈α

∫

X(u,q)

(−1)qun (u smooth).

The first equality follows mainly from Theorems 2.16 and 3.14 of [Dem85], which
even yield explicitly the limit for any given ε outside a countable set (the limit as
ε→ 0 is then obtained from the calculations of page 224 after Cor. 4.3). One has to
observe, in the case of sequences of “almost holomorphic line bundles” considered
here, that the perturbation indeed goes to 0, and also that all constants involved
in the calculations of [Dem85] are uniformly bounded; see [Dem91] and [Lae02] for
more details on this. Therefore, we can reformulate more explicitly our previous
question in the following terms.

(1.13) Question. For every α ∈ NSR(X), is it true that

ĥq(X,α) = inf
u∈α

∫

X(u,q)

(−1)qun (u smooth) ?

(Note: it is known, from the holomorphic Morse inequalities proved in [Dem85],
that the inequality 6 always holds true).

In general, equality (1.13) seems rather hard to prove. In some sense, this
would be an asymptotic converse of the Andreotti-Grauert theorem [AG62] :
under a suitable q-convexity assumption, the latter asserts the vanishing of related
cohomology groups in degree q; here, conversely, assuming a known growth of these
groups in degree q, we expect to be able to say something about the q-index sets
of suitable hermitian metrics on the line bundles under consideration.

For degree q = 0, however, we deal with sections rather than with cohomology
classes, and complex pluripotential theory makes things much easier. In the case
q = 0, there are for instance some well known methods to compute the volume
Vol(α) of a transcendental class α ∈ H1,1

BC(X,R).

(1.14) Definition. Let X be a compact complex n-fold. We denote by

(a) EX ⊂ H1,1
BC(X,R) the pseudoeffective cone of X, namely the cone of classes

of closed positive (1, 1)-currents; this is a closed convex cone ;
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(b) E
+
X ⊂ EX the cone consisting of classes of Kähler currents, i.e. positive

currents which admit a positive lower bound T > εω where ω is a smooth

positive (1, 1)-form on X and ε > 0 ; this is an open convex cone.

Given a class α ∈ H1,1
BC(X,R), we set Vol(α) = 0 if α /∈ E

+
X . Otherwise, if

α ∈ E
+
X , the main approximation theorem of [Dem92] shows that the class α

contains Kähler currents T with analytic singularities, i.e. such that their local
potentials ϕ of T have singularities of the form ϕ = 1

k
log |∑j |gj,k|2 mod C∞, for

suitable local holomorphic functions (gj,k). Then there exists a blow-up µ : X̃ → X
of X such that µ∗T = [E] + β, where E is a divisor supported on µ−1(

⋂
g−1
j,k(0))

and β a smooth closed positive (1, 1)-form on X̃ (cf. [BDPP04]). One can define

Vol(T ) =

∫

Xrsing(T )

Tn =

∫

X̃

βn,(1.15)

Vol(α) = sup
εω6T∈α

Vol(T ),(1.16)

where the supremum is taken over all Kähler currents with analytic singularities in
the class α. By definition, the volume function is identically zero unless X carries
Kähler currents, and by [DP04] the latter property is equivalent to X being in the
Fujiki class C of manifolds bimeromorphic to Kähler. The results of S. Boucksom
[Bou02] yield:

(1.17) Theorem ([Bou02]). If X is compact complex manifold and α ∈ NSR(X),
then

Vol(α) = ĥ0(X,α).

In other words, the growth of sections of multiples of a line bundle L can be

calculated as the sup of volumes of Kähler currents T ∈ c1(L) as defined above.

In section 3, we use the results of [BDPP04] and [BD09] to derive a proof of
the following theorem, which, in combination with Boucksom’s theorem, yields a
positive answer to question (1.13) when q = 0 and X is a projective surface.

(1.18) Theorem. Let (X,ω) be a compact complex n-fold. Then for every class

α ∈ H1,1(X,R) we have

(a) Vol(α) 6 ĥ0tr(X,α) = inf
u∈α

∫

X(u,0)

un,

where the infimum runs over all smooth closed (1, 1)-forms u contained in the

class α.

(b) Equality holds if X is a projective surface and α ∈ NSR(X).

It would be interesting to knwow whether equality always holds without restric-
tions on X or on α. In the general setting of compact complex manifolds, we also
hope for the following “transcendental” case of holomorphic Morse inequalities.
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(1.19) Conjecture. Let X be a compact complex n-fold and α an arbitrary

cohomology class in H1,1
BC(X,R). Then

Vol(α) > sup
u∈α

∫

X(u,0)∪X(u,1)

un.

In particular, if the right hand side is positive, then α contains a Kähler current

and X must be in the Fujiki class C.

By [Dem85], Conjecture (1.19) holds true in case α is an integral class. Our
hope is that the general case can be attained by the diophantine approximation
technique described earlier; there are however major hurdles, see [Lae02] for a few
hints on these issues.

The author wishes to thank the organizers of the Riemann International School
of Mathematics held in Verbania in April 2009, for the opportunity of publishing
these notes in the RISM Proceedings volume.

2. Variation of asymptotic cohomology groups

We give here a proof a Theorem 1.8 in the context of general compact complex
manifolds X . All norms occurring below are computed with respect to a fixed
hermitian metric ω on X .

(2.1) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf

F on X, there is a constant CF > 0 such that for every holomorphic line bundle L
on X we have

hq(X,F ⊗ OX(L)) 6 CF(‖c1(L)‖+ 1)p

where p = dimSuppF.

Proof. We prove the result by induction on p ; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H0(X,F ⊗ OX (L))
does not depend on L when F has finite support. Let us consider the support
Y of F and a resolution of singularity µ : Ŷ → Y of the corresponding (reduced)
analytic space. Then F is an OY -module for some non necessarily reduced complex
structure OY = OX/J on J . We can look at the reduced structure OY,red = OX/I,
I =

√
J, and filter F by IkF, k > 0. Since IkF/Ik+1F is a coherent OY,red-module,

we can easily reduce the situation to the case where Y is reduced and F is an OY -
module. In that case the cohomology Hq(X,F ⊗ OX(L)) = Hq(Y,F ⊗ OY (L|Y ))
just lives on the reduced space Y .

Now, we have an injective sheaf morphism F → µ⋆µ
∗F whose cokernel G has

support in dimension < p. By induction on p, we conclude from the exact sequence
that

∣∣hq(X,F ⊗ OX(L))− hq(X, µ⋆µ
∗F ⊗ OX(L))

∣∣ 6 C1(‖c1(L)‖+ 1)p−1.



2. Variation of asymptotic cohomology groups 9

The fonctorial morphisms

µ∗ : Hq(Y,F ⊗ OY (L|Y )) → Hq(Ŷ , µ⋆F ⊗ O
Ŷ
(µ∗L)|Y ),

µ∗ : Hq(Ŷ , µ⋆
F ⊗ O

Ŷ
(µ∗L)|Y ) → Hq(Y, µ∗µ

⋆
F ⊗ OY (L|Y ))

yield a composition

µ∗ ◦ µ∗ : Hq(Y,F ⊗ OY (L|Y )) → Hq(Y, µ∗µ
⋆F ⊗ OY (L|Y ))

induced by the natural injection F → µ⋆µ
∗F. This implies

hq(Y,F ⊗ OY (L|Y )) 6 hq(Ŷ , µ⋆F ⊗ O
Ŷ
(µ∗L|Y )) + C1(‖c1(L)‖+ 1)p−1.

By taking a suitable modification µ′ : Y ′ → Y of the desingularization Ŷ , we
can assume that (µ′)∗F is locally free modulo torsion. Then we are reduced to
the case where F′ = (µ′)∗F is a locally free sheaf on a smooth manifold Y ′, and
L′ = (µ′)∗L|Y . In this case, we apply standard analysis (e.g. [Dem85]) to conclude
that hq(Y ′,F′ ⊗ OY ′(L′)) 6 C2(‖c1(L′)‖ + 1)p. Since ‖c1(L′)‖ 6 C3‖c1(L)‖ by
pulling-back, the statement follows easily.

(2.2) Corollary. For every irreducible divisor D on X, there exists a constant

CD such that

hq(D,OD(L|D)) 6 CD(‖c1(L)‖+ 1)n−1

Proof. It is enough to apply Lemma 2.1 with F = (iD)∗OD where iD : D → X is
the injection.

(2.3) Remark. It is very likely that one can get an “elementary” proof of
Lemma 2.1 without invoking resolutions of singularities, e.g. by combining the
Cartan-Serre finiteness argument along with the standard Serre-Siegel proof based
ultimately on the Schwarz lemma. In this context, one would invoke L2 estimates
to get explicit bounds for the homotopy operators between Čech complexes relative
to two coverings U = (B(xj, rj)), U

′ = (B(xj, rj/2)) of X by concentric balls. By
exercising enough care in the estimates, it is likely that one could reach an explicit
dependence CD 6 C′‖D‖ for the constant CD of Corollary 2.2. The proof would
of course become much more technical than the rather naive brute force approach
we have used.

(2.4) Proof of Theorem 1.8.

(a) We want to compare the cohomology of L and L′ = L ⊗ O(D) on X . For
this we write D = D+ − D−, and compare the cohomology of the pairs L and
L1 = L ⊗ O(−D−) one one hand, and of L′ and L1 = L′ ⊗ O(−D+) on the other
hand. Since ‖c1(O(D))‖ 6 C‖D‖ by elementary potential theory, we see that is
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is enough to consider the case of a negative divisor, i.e. L′ = L ⊗ O(−D), D > 0.
If D is an irreducible divisor, we use the exact sequence

0 → L⊗ O(−D) → L→ OD ⊗ L|D → 0

and conclude by Corollary 2.2 that

∣∣hq(X,L⊗ O(−D)) − hq(X,L)
∣∣ 6 hq(D,OD ⊗ L|D) + hq−1(D,OD ⊗ L|D)

6 2CD(‖c1(L)‖+ 1)n−1.

For D =
∑
pjDj > 0, we easily get by induction

∣∣hq(X,L⊗ O(−D)) − hq(X,L)
∣∣ 6 2

∑

j

pjCDj

(
‖c1(L)‖+

∑

k

pk‖∇k‖+ 1
)n−1

If we knew that CD 6 C′‖D‖ as expected in Remark 2.3, then the argument would
be complete without any restriction on D. The trouble disappears if we fix D in
a finitely generated subgroup Γ of divisors, because only finitely many irreducible
components appear in that case, and so we have to deal with only finitely many
constants CDj

. Property (1.8 a) is proved.

(b) Fix once for all a finite set of divisors (∆j)16j6t providing a basis of

DNSR(X) ⊂ H1,1
BC(X,R). Take two elements α and β in DNSR(X), and fix ε > 0.

Then β − α can be ε-approximated by a Q-divisor
∑
λjDj , λj ∈ Q, and we

can find a pair (k, L) with k arbitrary large such that 1
k c1(L) is ε-close to α

and n!/knhq(X,L) approaches ĥq(X,α) by ε. Then 1
kL +

∑
λj∆j approaches β

as closely as we want. When approximating β − α, we can arrange that kλj is
an integer by taking k large enough. Then β is approximated by 1

k c1(L
′) with

L′ = L⊗ O(
∑
kλj∆j). Property (a) implies

hq(X,L′)− hq(X,L) > −C
(
‖c1(L)‖+

∥∥∥
∑

kλj∆j

∥∥∥
)n−1∥∥∥

∑
kλj∆j

∥∥∥

> −Ckn
(
‖α‖+ ε+ ‖β − α‖+ ε)n−1(‖β − α‖+ ε).

We multiply the previous inequality by n!/kn and get in this way

n!

kn
hq(X,L′) > ĥq(X,α)− ε− C′

(
‖α‖+ ‖β‖+ ε)n−1(‖β − α‖+ ε).

By taking the limsup and letting ε→ 0, we finally obtain

ĥq(X, β)− ĥq(X,α) > −C′
(
‖α‖+ ‖β‖)n−1‖β − α‖.

Property (1.8 b) follows by exchanging the roles of α and β.
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3. Monge-Ampère volume formula

The main goal of this section is to address the volume formula problem, namely
whether

(3.1) Vol(α) = inf
u∈α

∫

X(u,0)

un (u smooth)

for every class α ∈ H1,1
BC(X,R) on a compact complex n-fold (X,ω).

(3.2) Proof of the inequality 6 (without restrictions)

If X does not admit any Kähler current, then the volume of every class α is 0
and the inequality is trivially true. Therefore we can assume that X is in the
Fujiki class C. Then there exists a Kähler modification µ : X̃ → X . Assume that
we have a proof for the Kähler case. Then

Vol(α) = Vol(µ∗α) 6 inf
v∈µ∗α

∫

X̃(v,0)

vn 6 inf
u∈α

∫

X(u,0)

un

by restricting the inf to v = µ∗u. This shows that it is enough to consider the case
when X is Kähler. We have something to prove only when α ∈ E

+
X , i.e. when α

contains a Kähler current (a so-called “big class”). Fix a (1, 1)-form u ∈ α. We
can then introduce

(3.3) ϕ(x) := sup
{
ψ(x) ; ψ 6 0 and u+ i∂∂ψ > 0 on X

}
,

where the supremum is taken over all quasi-psh functions ψ satisfying the given
conditions ψ 6 0 and u+ i∂∂ψ > 0. The following properties have been proved in
[BD09] (cf. Theorem 1.4 and Corollary 2.5).

(3.4) Lemma. Let Z0 be the analytic set of poles of any Kähler current T0 ∈ α.
Then T = u + i∂∂ϕ > 0 and ϕ is continuous with locally bounded second

derivatives ∂2/∂zj∂zk on X r Z0. Moreover, if S is the set of points z ∈ X r Z0

where ϕ(z) = 0, then S ⊂ {z ; u(z) > 0} and

Vol(α) =

∫

S

un =

∫

XrZ0

(u+ i∂∂ϕ)n.

Since S ⊂ {z ; u(z) > 0}, we immediately conclude from these equalities that

Vol(α) 6

∫

{z ;u(z)>0}

un =

∫

{z ;u(z)>0}

un =

∫

X(u,0)

un.

(3.5) Proof of the volume formula for α ∈ NSR(X) on a projective surface.

By definition, the volume Vol(α) is obtained as the supremum of
∫
Xrsing(T )

Tn

for Kähler currents with analytic singularities in α. By [Dem92] and [BDPP04],
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there exists a blow-up µ : X̃ → X such that µ∗T = [E] + β where E is a normal

crossing divisor on X̃ and β > 0 smooth. Until now, this is valid for an arbitrary
compact complex manifold X . If moreover X is projective and α ∈ NSR(X), it is
shown in [BDPP04] that we have the “orthogonality property”

(3.6) [E] · βn−1 =

∫

E

βn−1
6 C

(
Vol(α)− βn

)1/2
,

in other words, E and β become “more and more orthogonal” as βn approaches the
volume. Our method consists of approaching [E]+β by smooth closed (1, 1)-forms
uε in the same ∂∂-cohomology class as [E] + β, in such a way that

∫

X̃(uε,0)

unε

will not be substantially larger than the volume
∫
X̃
βn. For this, we select a

hermitian metric h on O(E) and put

(3.7) uε =
i

2π
∂∂ log(|σE |2h + ε2) + ΘO(E),h + β

where σE ∈ H0(X̃,O(E)) is the canonical section and ΘO(E),h the Chern curvature
form. Clearly,by the Lelong-Poincaré equation, uε converges to [E]+β in the weak
topology as ε→ 0. Straightforward calculations yield

uε =
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which is
close to ΘE,h near E, converges pointwise everywhere to 0 on X̃ r E. A simple
asymptotic analysis shows that

( i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h

)p

→ [E] ∧Θp−1
E,h

in the weak topology for p > 1, hence

(3.8) lim
ε→0

unε = βn +

n∑

p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p.

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure limunε . However, when n = 2, we
get the simpler formula

lim
ε→0

u2ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.
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In this case, E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles of T ). Hence the matrix
(Ej · Ek) is negative definite and we can find a hermitian metric h on O(E) such
that (ΘE,h)|E < 0. Then [E] ∧ΘE,h, which is the limit of the product of the first
two terms in u2ε, contributes negatively to the limit; all other terms are nonnegative
or have a mass converging to 0. From this, one can easily infer by (3.6) that

lim sup
ε→0

∫

X̃(uε,0)

u2ε 6

∫

X̃

β2 + 2[E] ∧ β 6 Vol(α) + 2C(Vol(α)− β2)1/2.

This is arbitrary close to Vol(α) when β2 approaches the volume, and so property
(1.18 b) is proved in dimension 2. Obviously the n-dimensional case would require
a deeper analysis of “higher order” orthogonality relations.
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