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Abstract. The position and rotational errors —also called pose errors—
of the end-effector of a robotic mechanical system are partly due to its
joints clearances, which are the play between their pairing elements. In
this paper, we model the prediction of those errors by formulating two
continuous constrained optimization problems that turn out to be NP-
hard. We show that techniques based on numerical constraint program-
ming can handle globally and rigorously those hard optimization prob-
lems. In particular, we present preliminary experiments where our global
optimizer is very competitive compared to the best-performing methods
presented in the literature, while providing more robust results.

1 Introduction

The accuracy of a robotic mechanical system is a crucial feature for the real-
ization of high-precision operations. However, this accuracy can negatively be
affected by position and/or orientation errors, also called pose errors, of the ma-
nipulator end-effector. A main source of pose errors is the joints clearances that
introduce extra degree-of-freedom displacements between the pairing elements
of the manipulator joints. It appears that the lower those displacements, the
higher the manufacturing cost and the more difficult the mechanism assembly.
Currently, handling this concern is a major research trend in robotics [7, 9, 14].
A way to deal with joints clearances is to predict their impact on the pose errors.
To this end, the involved displacements together with a set of system parame-
ters can be modeled as two continuous constrained optimization problems, whose
global maximum characterize the maximum pose error. It is therefore manda-
tory to obtain a rigorous upper bound of this global maximum, which disqualifies
the usage of local optimizers. This model can be seen as a sequence of variables



lying in a continuous domain, a set of constraints, and an objective function. It
turns out that such a model is computationally hard to solve: Computing time
may increase exponentially with respect to the problem size, which in this case
depends on the number of manipulator joints.

There exists some research works dealing with joint clearances modeling and
error prediction due to joint clearances [7, 9]. However, few of them deal with
the solving techniques [14], and no work exists related to the use of constraint
programming, a powerful modeling and solving approach. In this paper, we in-
vestigate the use of constraint programming for solving such problems. In partic-
ular, we combine the classic branch-and-bound algorithm with interval analysis
and powerful pruning techniques. The branch-and-bound algorithm allows us
to handle the optimization part of the problem, while computing time can be
reduced thanks to the pruning techniques. Moreover, the reliability of the pro-
cess is guaranteed by the use of interval analysis, which is mandatory for the
application presented in this paper. The experiments demonstrate the efficiency
of the proposed approach w.r.t. state-of-the-art solvers GAMS/BARON [1] and
ECLiPSe [18].

The remaining of this paper is organized as follows. Section 2 presents an ex-
ample of robot manipulator with the associated model for predicting the impact
of the joints clearances on the end-effector pose. A presentation of constraint
programming including the implemented approach is given in Sect. 3. The ex-
periments are presented in Sect. 4, followed by the conclusion and future work.

2 Optimization Problem Formulation

In the scope of this paper, we consider serial manipulators composed of n revo-
lute joints, n links and an end-effector. Figure 1 illustrates such a manipulator
composed of two joints, named RR-manipulator, as well as a clearance-affected
revolute joint. Let us assume that joint clearances appear due to manufacturing
errors. Accordingly, the optimization problem aims to find the maximal posi-
tional and rotational errors of the manipulator end-effector for a given manipu-
lator configuration.

2.1 End-Effector Pose Without Joint Clearance

In order to describe uniquely the manipulator architecture, i.e. the relative lo-
cation and orientation of its neighboring joints axes, the Denavit-Hartenberg
nomenclature is used [6]. To this end, links are numbered 0, 1, . . . , n, the jth
joint being defined as that coupling the (j − 1)st link with the jth link. Hence,
the manipulator is assumed to be composed of n + 1 links and n joints; where
0 is the fixed base, while link n is the end-effector. Next, a coordinate frame
Fj is defined with origin Oj and axes Xj , Yj , Zj. This frame is attached to the
(j − 1)st link for j = 1, . . . , n + 1. The following screw takes Fj onto Fj+1:

Sj =

[

Rj tj

0T
3 1

]

, (1)



Fig. 1. Left: A serial manipulator composed of two revolute joints. Right: Clearance-
affected revolute joint.

where Rj is a 3 × 3 rotation matrix; tj ∈ R
3 points from the origin of Fj to

that of Fj+1; and 03 is the three-dimensional zero vector. Moreover, Sj may be
expressed as:

Sj =









cos θj − sin θj cosαj sin θj sin αj aj cos θj

sin θj cos θj cosαj − cos θj sin αj aj sin θj

0 sin αj cosαj bj
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where αj , aj , bj and θj represent respectively the link twist, the link length, the
link offset, and the joint angle. Let us notice that a1, b1, a2 and b2 are depicted
in Fig. 1 for the corresponding manipulator whereas α1 and α2 are null as the
revolute joints axes are parallel.

Provided that the joints are perfectly rigid in all directions but one, that there
is no joint clearance, that the links are perfectly rigid and that the geometry
of the robotic manipulator is known exactly, the pose of the end-effector with
respect to the fixed frame F1 is expressed as:

P =
n
∏

j=1

Sj , (3)

However, if we consider joint clearances, we must include small errors in
Eq. (3).



2.2 Joint-clearance Errors

Taking into account joint clearances, the frame Fj associated with link j − 1 is
shifted to F ′

j . Provided it is small, this error on the pose of joint j with respect
to joint j − 1 may be represented by the small-displacement screw depicted in
Eq. (4):

δsj ≡

[

δrj

δtj

]

∈ R
6, (4) δSj =

[

δRj δtj

0T
3 0

]

, (5)

where δrj ∈ R
3 represents the small rotation taking frame Fj onto F ′

j, while

δtj ∈ R
3 points from the origin of Fj to that of F ′

j . It will be useful to represent
δsj as the 4 × 4 matrix given with Eq. (5) where δRj ≡ ∂(δrj × x)/∂x is the
cross-product matrix of δrj . Intuitively, clearances in a joint are best modeled
by bounding its associated errors below and above. Assuming that the lower and
upper bounds are the same, this generally yields six parameters that bound the
error screw δsj . Accordingly, the error bounds are written as:

δr2
j,X + δr2

j,Y ≤ δβ2
j,XY , (6)

δr2
j,Z ≤ δβ2

j,Z , (7)

δt2j,X + δt2j,Y ≤ δb2
j,XY , (8)

δt2j,Z ≤ δb2
j,Z , (9)

where δrj ≡ [δrj,X δrj,Y δrj,Z ]
T

and δtj ≡ [δtj,X δtj,Y δtj,Z ]
T
.

2.3 End-Effector Pose With Joint Clearances

Because of joints clearances, the end-effector frame Fn+1 is shifted to F ′
n+1.

From [16], the displacement taking frame Fj onto F ′
j is given by the matrix

exponential of δSj , eδSj . As a result, the screw that represents the pose of the
shifted end-effector may be computed through the kinematic chain as:

P′ =
n
∏

j=1

eδSjSj , (10)

where screw P′ takes frame F1 onto F ′
n+1 when taking errors into account.

2.4 The End-Effector Pose Error Modeling

In order to measure the error on the pose of the moving platform, we compute the
screw ∆P that takes its nominal pose Fn+1 onto its shifted pose F ′

n+1 through
the kinematic chain, namely:

∆P = P−1P′ =

1
∏

j=n

S−1

j

n
∏

j=1

(

eδSjSj

)

. (11)



From [4], it turns out that ∆P may as well be represented as a small-
displacement screw δp in a vector form, namely,

δp =
n
∑

j=1

(

j
∏

k=n

adj(Sk)−1

)

δsj, with adj(Sj) ≡

[

Rj O3×3

TjRj Rj

]

being the adjoint map of screw Sj and Tj ≡ ∂(tj × x)/∂x the cross-product
matrix of tj .

2.5 The Maximum End-Effector Pose Error

Let δp be expressed as [δpr δpt]
T

with δpr ≡ [δpr,X δpr,Y δpr,Z ]
T

and δpt ≡

[δpt,X δpt,Y δpt,Z ]
T

characterizing the rotational and translational errors of the
manipulator end-effector, respectively. In order to find the maximal pose errors
of the end-effector for a given manipulator configuration, we need to solve two
optimization problems:

max ‖δpr‖2, (12)

s.t. δr2
j,X + δr2

j,Y − δβ2
j,XY ≤ 0,

δr2
j,Z − δβ2

j,Z ≤ 0,

j = 1, . . . , n

max ‖δpt‖2, (13)

s.t. δr2
j,X + δr2

j,Y − δβ2
j,XY ≤ 0,

δr2
j,Z − δβ2

j,Z ≤ 0,

δt2j,X + δt2j,Y − δb2
j,XY ≤ 0,

δt2j,Z − δb2
j,Z ≤ 0,

j = 1, . . . , n

where ‖.‖2 denotes the 2-norm. The maximum rotational error due to joint
clearances is obtained by solving problem (12). Likewise, the maximum point-
displacement due to joint clearances is obtained by solving problem (13). It
is noteworthy that the constraints of the foregoing problems are defined with
Eqs. (6)–(9). Moreover, it appears that those problems are nonconvex quadrati-
cally constrained quadratic (QCQPs). Although their feasible sets are convex—
all the constraints of both problems are convex—their objectives are convex,
making the computation of their global maximum NP-Hard.

3 Constraint Programming

3.1 Definitions

Constraint Programming (CP) is a programming paradigm that allows one to
solve problems by formulating them as a Constraint Satisfaction Problem (CSP).
We are mainly interested in Numerical CSP (NCSP) whose variables belong to
continuous domains. This formulation consists of a sequence of variables lying in
a domain and a set of constraints that restrict the values that the variables can
take. The goal is to find a variable-value assignment that satisfies the whole set
of constraints. Formally, a NCSP P is defined by a triple P = 〈X , [x], C〉 where:



– X is a vector of variables (x1, x2, . . . , xn).
– [x] is a vector of real intervals ([x1], [x2], . . . , [xn]) such that [xi] is the domain

of xi.
– C is a set of constraints {c1, c2, . . . , cm}. In the scope of this paper, we focus

on inequality constraints, i.e., c(x) ⇐⇒ g(x) ≤ 0 where g : R
n → R is

assumed to be a differentiable function.

A solution of a CSP is a real vector x ∈ [x] that satisfies each constraint,
i.e. ∀c ∈ C, c(x). The set of solutions of the CSP P is denoted by sol(P). This
definition can be extended to support optimization problems by also considering
a cost function f . Then we want to find the element of sol(P) that minimizes or
maximizes the cost function.

3.2 Interval Analysis

The modern interval analysis was born in the 60’s with [15] (see [17, 10] and
references therein). Since, it has been widely developed and is today one central
tool in the rigorous resolution of NCSPs (see [3] and extensive references).

Intervals, interval vectors and interval matrices are denoted using brackets.
Their sets are denoted respectively by IR, IR

n and IR
n×m. The elementary func-

tions are extended to intervals in the following way: Let ◦ ∈ {+,−,×, /} then
[x] ◦ [y] = {x ◦ y : x ∈ [x], y ∈ [y]} (division is defined only for denominators that
do not contain zero). E.g. [a, b] + [c, d] = [a + c, b + d]. Also, continuous func-
tions f(x) with one variable are extended to intervals using the same definition:
f([x]) = {f(x) : x ∈ [x]}, which turns to be an interval as f is continuous. When
numbers are represented with a finite precision, the previous operations cannot
be computed in general. The outer rounding is then used so as to keep valid
the interpretations. For example, [1, 2] + [2, 3] would be equal to [2.999, 5.001] if
rounded with a three decimal accuracy.

Then, an expression which contains intervals can be evaluated using this
interval arithmetic. The main property of interval analysis is that such an interval
evaluation gives rise to a superset of the image through the function of the
interval arguments. For example, the interval evaluation of expression x(y − x)
is [x] × ([y] − [x]) and contains {x(y − x) : x ∈ [x], y ∈ [y]}. In some cases
(e.g. when the expression contains only one occurrence of each variable), this
enclosure is optimal.

Given an n-ary constraint c and a box [x] ∈ R
n, a contractor for c will

contract the box [x] without losing any solution of c. Some widely used con-
tractors are based on the 2B-consistency (also called hull-consistency) or the
box consistency [12, 2], which are pruning methods similar to the well known
arc-consistency [13] in the context of discrete CSPs. They are both applied to
one constraint at a time, hence suffering of the usual drawbacks of the locality
of their application. We encapsulate this notion in the function ContractC([x])
which uses the constraints C to prune the box [x]. Thus, the result is a new box
[x′] ⊆ [x] that satisfies x ∈ [x] ∧ (∀c ∈ C, c(x)) ⇒ x ∈ [x′], i.e. no solution was
lost during the pruning. This property, rigorously achieved thanks to the correct



rounding of interval arithmetic, allows the CP framework to provide rigorous
proofs of mathematical statements.

3.3 The Branch and Bound Algorithm

NCSPs are usually solved using a branch and prune algorithm. A basic branch
and prune algorithm is described by Algorithm 1. Its input is a set of constraints
and an initial box domain. It interleaves pruning (Line 4) and branching (Line 5)
to output a set of boxes that sharply covers the solution set: Due to the property
satisfied by the function ContractC([x]), Algorithm 1 obviously maintain the
property x ∈ [x]∧(∀c ∈ C, c(x)) ⇒ x ∈ ∪L. The stopping criterion is usually the
size of the boxes in L, the algorithm stopping when every box got smaller than
a fixed precision. We have used the branch and prune algorithm implemented in
RealPaver [8] which basically proceeds as Algorithm 1 does.

A branch and prune algorithm can be modified to a branch and bound algo-
rithm that handles minimization problems (maximization problems are handled
similarly). Such a simple branch and bound algorithm is described by Algo-
rithm 2. The cost function is an additional input, and maintains an upper bound
on the global minimum in the variable m (which is initialized to +∞ at the be-
ginning of the search at Line 2). This upper bound is used to discard parts of
the search space whose cost is larger than it by adding the constraint f(x) ≤ m
to the set of constraints (Line 5). Finally, the upper bound is updated at Line 6
by searching for feasible points inside the current box [x] and when such points
are found, by evaluating the cost function at these points. In our current imple-
mentation, some random points are generated inside [x] and the constraints are
rigorously checked using interval arithmetic before updating the upper bound5.
The branch and bound algorithm maintains an enclosure of the global minimum,
that converges to the global minimum provided that feasible points are found
during the search (which is guaranteed in the case of inequality constraints that
are not singular).

An efficient implementation of the branch and bound algorithm requires the
list of boxes L to be carefully handled: It has to be maintained sorted w.r.t. a
lower bound of the objective evaluated for each box. So, each time a box [x] is
inserted into L, the interval evaluation of the objective f([x]) is computed and
the lower bound of this interval evaluation is used to maintain the list sorted.
Then, Line 4 extracts the first box of L so that most promising regions of the
search space are explored first, leading to drastic improvements. Another advan-
tage of maintaining L sorted is that its first box contains the lowest objective
value over all boxes. Therefore, we use this value and check its distance to the
current upper bound m and stop the algorithm when the absolute precision of
the global minimum has reached a prescribed value.

5 More elaborated branch and prune algorithms usually use a local search to find good
feasible points, but preliminary experiments presented in Section 4 and performed
using this simple random generation of potential feasible points already showed good
performances.



Algorithm 1

Input: C = {c1, . . . , cm}, [x]
1 L ← {[x]}
2 While L 6= ∅ and ¬stop criteria do

3 ([x],L)←Extract(L)
4 [x]←ContractC([x])
5 {[x′], [x′′]} ←Split([x])
6 L = L ∪ {[x′], [x′′]}
7 End While

8 Return(L)

Algorithm 2

Input: f , C = {c1, . . . , cm}, [x]
1 L ← {[x]}
2 m← +∞
3 While L 6= ∅ and ¬stop criteria do

4 ([x],L)←Extract(L)
5 [x]←ContractC∪{f(x)≤m}([x])
6 m←Update([x], f)
7 {[x′], [x′′]} ←Split([x])
8 L = L ∪ {[x′], [x′′]}
9 End While

10 Return(L, m)

Fig. 2. Left: The branch and prune algorithm. Right: The branch and bound algorithm

The branch and bound algorithm described above has been implemented on
top of RealPaver [8]. This implementation is used for the experiments presented
in the next section.

4 Experiments

We have performed a set of experiments to analyze the performance of our
approach solving the pose error problem. We compare it with GAMS/BARON [1]
and ECLiPSe [18]. GAMS/BARON is a widely used system for mathematical
programming and optimization6 and ECLiPSe is one of the few CP systems
supporting continuous optimization problems.

We have tested 8 models, 4 translations (T) and 4 rotation (R) models. For
both types of model we consider from 2 to 5 joints. Table 1 depicts the results
obtained. Columns 1 and 2 show the number of joints and the type of problem.
Columns 3 to 5 depict relevant data about the problem size (number of variables,
number of constraints, and number of arithmetic operations in the objective
function). Columns 5 to 10 depict the solving times using GAMS, RealPaver
(including 2 different filtering techniques), and ECLiPSe. Experiments were run
on a 3 Ghz Pentium D with 2 GB of RAM running Ubuntu 9.04. All solving
times are the best of five runs.

The results show that our approach is faster in almost all cases. In smaller
problems such as 2R, 2T, 3R and 3T, RealPaver exhibits great performance.
It can even be 100 times faster than GAMS. Such a faster convergence can be
explained on one hand by the efficient work done by the filtering techniques
HC4 and BC4 (based on hull and box consistencies respectively) and on the
other hand by the fact that there is no need for an accurate computation for
this particular problem. In fact, we do not have to go beyond a precision of
10−2, making the interval computations less costly than usual. Moreover, the

6 In our version, LP and NLP solving are respectively done by CPLEX and MINOS.



Table 1. Solving times (seconds)

#joints Type
Problem Size

GAMS
RealPaver

ECLiPSe

#var #ctr #op HC4 BC4

2 T 12 8 28 0.08 0.004 0.004 >60
2 R 6 4 18 0.124 0.004 0.004 >60

3 T 18 12 135 0.124 0.008 0.016 t.o.
3 R 9 6 90 0.952 0.004 0.008 t.o.

4 T 24 16 374 0.144 0.152 0.168 t.o.
4 R 12 8 205 2.584 0.02 0.02 t.o.

5 T 30 20 1073 0.708 >60 >60 t.o.
5 R 15 10 480 9.241 0.26 0.436 t.o.

impact on the solving time of the used consistency is not surprising: using HC4
is faster than BC4, as expected when dealing with constraints having variables
not occurring multiple times [5].

In bigger problems such as 4R and 5R, RealPaver remains faster. However,
when the problem size arises, in particular when the number of variables exceeds
20, the convergence starts to be slow. This is a common phenomenon we can
explain thanks both to the exponential in problem size complexity of this kind of
branch-and-bound solving algorithms and to the fact that the objective function
itself grows exponentially with the number of variables it involves. Nevertheless,
we believe that solving times are reasonable with regard to the complexity and
size of the problems as well as the techniques used. But solving times may
actually not be the point to emphasize here: on the contrary, it may rather be
important to discuss the reliability of the solutions given by GAMS/BARON. It
was already noted in [11] that BARON is not reliable in general. We have also
verified using RealPaver that the optimum enclosure computed by BARON is
unfeasible.

Finally, it is worth noticing that although RealPaver as well as ECLiPSe use
CP techniques, ECLiPSe is completely outperformed even for the smallest of
our instances. It is not surprising, given that RealPaver was designed to solve
problems of this kind whereas ECLiPSe is a more generic and extensible tool.

5 Conclusion and Future Work

In this paper we have shown how to efficiently solve the pose error problem by
using constraint programming. We have modeled the problem as a NCSP, and
then shown how to turn a CP classical branch-and-prune resolution scheme into a
branch-and-bound algorithm, dedicated to the solving of continuous constrained
optimization problems. Finally, we presented experimental results for several
instances of the problem, and showed that our approach was very competitive
with respect to some state-of-the-art CP and optimization tools.



It is important to notice that this approach is not specific to robotics, it is
indeed applicable to any problem where rigorous computation and numerical
reliability are required. Moreover, in the future we should be able to design
new pruning criteria in order to accelerate the convergence of the optimization
process. This way, we should tackle the scalability issue and thus be able to solve
faster the large instances of the problem.
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