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The Smooth-Lasso and other ℓ1 + ℓ2-penalized methods

Mohamed Hebiri and Sara van de Geer

Abstract

We consider the linear regression problem in the high dimensional setting, i.e., the
number p of covariates can be much larger than the sample size n. In such a situation
one often assumes sparsity of the regression vector, i.e., that it contains many zero com-
ponents. We propose a Lasso-type estimator β̂Quad (where ‘Quad’ stands for quadratic),
which is based on two penalty terms. The first one is the ℓ1 norm of the regression co-
efficients used to exploit the sparsity of the regression as done by the Lasso estimator,
whereas the second is a quadratic penalty term introduced to capture some additional
information on the setting of the problem. We detail two special cases: the Elastic-Net
β̂EN , introduced in [31], deals with sparse problems where correlations between variables

may exist; and the S-Lasso1 β̂SL, which responds to sparse problems where successive
regression coefficients are known to vary slowly (in some situations, this can also be inter-
preted in terms of correlations between successive coefficients). From a theoretical point

of view, we establish variable selection consistency results and show that β̂Quad achieves
a Sparsity Inequality, i.e., a bound in terms of the number of non-zero components of the
‘true’ regression vector. These results are provided under a weaker assumption on the
Gram matrix than the one used by the Lasso. In some (bad) situations this guarantees a
significant improvement over the Lasso. Furthermore, a simulation study is conducted and
shows that when we consider the estimation accuracy, the S-Lasso β̂SL performs better
than known methods as the Lasso, the Elastic-Net β̂EN , and the Fused-Lasso (introduced
in [23]), specifically when the regression vector is ‘smooth’, i.e., when the variations be-
tween successive coefficients of the unknown parameter of the regression are small. The
study also reveals that the theoretical calibration of the tuning parameters imply a S-
Lasso solution with close performance to the S-Lasso when the tuning parameters are
chosen by 10 fold cross validation.
Keywords: Lasso, Elastic-Net, LARS, Sparsity, Variable selection, Restricted eigenval-
ues, High-dimensional data.
AMS 2000 subject classifications: Primary 62J05, 62J07; Secondary 62H20, 62F12.

1 Introduction

We focus on the usual linear regression model:

yi = xiβ
∗ + εi, i = 1, . . . , n, (1)

where the design xi = (xi,1, . . . , xi,p) ∈ Rp is deterministic, β∗ = (β∗
1 , . . . , β

∗
p)

′ ∈ Rp is the
unknown parameter and ε1, . . . , εn, are independent identically distributed (i.i.d.) centered
Gaussian random variables with known variance σ2. We wish to estimate β∗ in the sparse

1The S-Lasso estimator has initially been introduced in the paper titled Regularization with the Smooth-
Lasso procedure, in [12]. Results can be found there for the this method which are not provided here, such as
the theoretical performance when p ≤ n and a simulation study from a variable selection point of view.
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case, that is when many of its unknown components equal zero. Thus only a subset of
the design covariates (Xj)j is truly of interest where Xj = (x1,j , . . . , xn,j)

′, j = 1, . . . , p.
Moreover we are interested in the high dimensional problem where p ≫ n, so that we can
consider p depending on n. In such a framework, two main issues arise: i) the interpretability
of the resulting prediction; ii) the control of the variance in the estimation. Regularization is
therefore needed. For this purpose we use selection type procedures of the following form:

β̃ = Argmin
β∈Rp

{
‖Y −Xβ‖2n + pen(β)

}
, (2)

where X = (x′1, . . . , x
′
n)

′, Y = (y1, . . . , yn)
′ and pen : Rp → R is a positive convex func-

tion called the penalty. For any vector a = (a1, . . . , an)
′, we have adopted the notation

‖a‖2n = n−1
∑n

i=1 |ai|2 (we denote by < ·, · >n the corresponding inner product in Rn). The
choice of the penalty appears to be crucial. Although well-suited for variable selection pur-
pose, concave-type penalties (see for instance [8, 11, 24]) are often computationally hard to
optimize. Lasso-type procedures (modifications of the ℓ1 penalized least square (Lasso) esti-
mator introduced by [22]) have been extensively studied during the last few years. Between
many others, see [2, 3, 6, 29] and references inside. Such procedures seem to respond to our
objective as they perform both regression parameters estimation and variable selection with
low computational cost. We will explore this type of procedures in our study.

In this paper, we propose a novel estimator, denoted by β̂Quad, which is modification of the
Lasso. It is defined as the solution of the optimization problem (2) when the penalty function is
a combination of the Lasso penalty (i.e.,

∑p
j=1 |βj |) and the quadratic penalty β′J′Jβ for some

p×mmatrix J (m ∈ N∗). We add this second term to the Lasso procedure for two major issues.
First we exploit this second penalty in order to take into account some prior information on
the data or the regression vector that the Lasso may not (as correlation between variables or
a specified structure on the regression vector). Second the quadratic penalty is introduced
to overcome (or to reduce) theoretical problems observed by the Lasso estimator. Indeed,
in several works ([2, 3, 14, 17, 26, 28, 29, 30] among others) conditions to guarantee good
performance in prediction, estimation or variable selection for the Lasso procedure are given.
See also [25] for an overview of the conditions used to establish the theoretical results according
to the Lasso. It was shown that the Lasso does not ensure good performance when high
correlations exist between the covariates. We establish theoretical results for β̂Quad that
states that this estimator guarantees good performance under a weaker assumption than the
Lasso estimator. The improvement is specifically observed when the Lasso achieves poor
results. Two particular cases of the estimator β̂Quad are mainly considered: the Elastic-
Net, introduced in [31] to deal with problems where correlations between variables exist. It
is defined with the quadratic penalty term

∑p
j=1 β

2
j . The second and novel procedure is

called the Smooth-lasso (S-lasso) estimator. It is defined with the ℓ2-fusion penalty, i.e.,∑p
j=2 (βj − βj−1)

2. The ℓ2-fusion penalty was first introduced in [13]. This term helps to
tackle situations where correlations between successive variables exist or the regression vector
is structured such that its coefficients vary slowly. Let us say in this case that the regression
vector is ‘smooth’. Note however that our theoretical study takes into account a large amount
of procedures such as the closely related procedure ‘Weighted Fusion’ introduced in [9], as
detailed in Remark 1.

From a practical point of view, some problems are also encountered when we solve the
Lasso criterion (for instance with the LARS algorithm [10]). Indeed this algorithm fails to
select a complete group of correlated covariates. Two major lacks follow. First the Lasso is
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not consistent neither in variable selection nor in estimation (bad reconstitution of β∗). In
this paper we focus on the estimation issue. We consider the case where the regression vector
β∗ is structured. We invoke the S-lasso estimator to respond to such problems where the
covariates are ranked so that the regression vector is ‘smooth’ (i.e., the vector β∗ consists
in small variations in its successive components). We will see through simulations that such
situations support the use of the S-lasso estimator. This estimator is inspired by the Fused-
Lasso ([23]). Both S-Lasso and Fused-Lasso combine a ℓ1-penalty with a fusion term ([13]).
The fusion term is suggested to make successive coefficients as close as possible to each other.
The main difference between the two procedures is that we use the ℓ2 distance between
the successive coefficients (i.e., the ℓ2-fusion penalty) whereas the Fused-Lasso uses the ℓ1
distance (i.e., the ℓ1-fusion penalty:

∑p
j=2 |βj −βj−1|). Hence, compared to the Fused-Lasso,

we sacrifice sparsity in changes between successive coefficients in the estimation of β∗ in favor
of an easier optimization due to the strict convexity of the ℓ2 distance. This implies a large
reduction of computational cost. However, sparsity is yet ensured by the Lasso penalty. The
ℓ2-fusion penalty helps to provide ‘smooth’ solutions. Consequently, even if there is no perfect
match between successive coefficients our results are still interpretable. From a theoretical
point of view, the ℓ2 distance also helps us to provide theoretical properties for the S-Lasso
which in some situations appears to outperform the Lasso and the Elastic-Net ([31]), another
Lasso-type procedure. Let us mention that variable selection consistency of the Fused-Lasso
and the corresponding Fused adaptive Lasso has also been studied in [20] but in a different
context from the one in the present paper. The results obtained in [20] are established not
only under the sparsity assumption, but the model is also supposed to be blocky, that is the
non-zero coefficients are represented in a block fashion with equal values inside each block.

Many techniques have been proposed to solve the weaknesses of the Lasso. The Fused-
Lasso procedure is one of them and we give here some of the most popular methods; the
Adaptive Lasso was introduced by [30], which is similar to the Lasso but with adaptive weights
used to penalize each regression coefficient separately. This procedure reaches under certain
(strong) conditions, ‘Oracles Properties’ (i.e., consistency in variable selection and asymptotic
normality. See [30]). Another approach in the Relaxed Lasso ([16]), which aims to doubly-
control the Lasso estimate: one parameter to control variable selection and the other to
control shrinkage of the selected coefficients. To overcome the problem due to the correlation
between covariates, group variable selection has been proposed by [27] with the Group-Lasso
procedure which selects groups of correlated covariates instead of single covariates at each
step. A first step to the variable selection consistency study has been proposed in [1] and
Sparsity Inequalities were given in [7, 15]. Another choice of penalty has been proposed
with the Elastic-Net ([31]). It is in a unified fashion that we shall treat the S-Lasso and the
Elastic-Net from a theoretical point of view.

The rest of the paper is organized as follows. In the next section, we introduce the
estimator β̂Quad defined with the Lasso penalty on one hand and a quadratic penalty on the
other hand. We also provide a way to solve the β̂Quad problem with the attractive property of
piecewise linearity of its regularization path. Consistency in estimation and variable selection
in the high dimensional case are considered in Section 3. We finally give experimental results
in Section 4 which display the S-Lasso performance against some popular methods. All proofs
are postponed to the Appendix section.
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2 The S-Lasso procedure

As described above, we define the S-Lasso estimator β̂SL as the solution of the optimization
problem (2) when the penalty function is:

pen(β) = λ|β|1 + µ

p∑

j=2

(βj − βj−1)
2 , (3)

where λ and µ are two positive parameters that control on one hand the sparsity of our
estimator and its smoothness on the other hand. For any vector a = (a1, . . . , ap)

′, we have
used the notation |a|1 =

∑p
j=1 |aj|. Note that when µ = 0, the solution is the Lasso estimator

so that it appears as a special case of the S-Lasso estimator. In a more general point of view
we consider the following penalty

pen(β) = λ|β|1 + µβ′J′Jβ, (4)

where J is any p × p matrix. This penalty is a combination of the Lasso penalty and a
quadratic penalty. Let us call β̂Quad the solution of the minimization problem (2)-(4). Note
that the S-Lasso penalty can be seen as a particular case of the penalty (4) with J defined by

J =




0 0 0 . . . 0

1 −1
. . .

. . .
...

0 1 −1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 −1




, (5)

and that the Elastic-Net corresponds to the case where J is the identity matrix.

Remark 1. For any j, k ∈ {1, . . . , p}, denote by sj,k = sign
(
X′

jXk

n

)
the sign of the sample

correlation between predictor variables j and k. Denote also by wj,k ≥ 0 some predictor corre-
lation driven weights. Given this notation, the Weighted Fusion introduced in [9] corresponds
to the case where the k-th diagonal terms of J equals wj,k and (J)k,j = (J)j,k = −sj,kwj,k for
j 6= k.

Now we deal with the solution β̂Quad of (2)-(4) and its computational cost. The following
lemma shows that the S-Lasso criterion can be expressed as a Lasso criterion by augmenting
the data artificially.

Lemma 1. Given the dataset (X,Y ) and the tuning parameters (λ, µ). Define the extended
dataset (X̃, Ỹ ) and ε̃ by

X̃ =

(
X√
nµJ

)
, and Ỹ =

(
Y
0

)
, and ε̃ =

(
ε

−√
nµJβ∗

)
,

where 0 is a vector of size p containing only zeros, ε = (ε1, . . . , εn)
′ is the noise vector

and J is the p × p matrix given by the penalty (4) (J is given by (5) in the case of the
S-Lasso estimator). Then we have Ỹ = X̃β∗ + ε̃, and the estimator β̂Quad, solution of the
minimization problem (2) with the penalty given by (4) (in the case of the S-Lasso, the penalty
is given by (3)), is also the minimizer of the following Lasso-criterion

1

n

∣∣∣Ỹ − X̃β
∣∣∣
2

2
+ λ|β|1. (6)
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This result is a consequence of simple algebra. It motivates the following comments on
the estimator β̂Quad.

Remark 2 (Regularization paths). LARS is an iterative algorithm introduced in [10]. A
modification of LARS can be used to construct β̂Quad. For a fixed µ (appearing in (3)),
it constructs at each step an estimator based on the correlation between covariates and the
current residual. Each step corresponds to a value of λ. Then for a fixed µ, we get the
evolution of the coefficients values of β̂Quad when λ varies. This evolution describes the
regularization paths of β̂Quad which are piecewise linear ([21]). This property implies that
(again for fixed µ) the S-Lasso problem can be solved with the same computational cost as the
ordinary least square (OLS) estimate using the LARS algorithm.

Remark 3 (Implementation). The number of covariates that the LARS algorithm and its
Lasso version can select is limited by the number n of rows in the matrix X. Applied to the
augmented data (X̃, Ỹ ) introduced in Lemma 1, the Lasso modification of the LARS algorithm
is able to select all the p covariates. Then we are no longer limited by the sample size as for
the Lasso ([10]).

3 Theoretical results when dimension p is larger than sample

size n

In this section, we study the performance of the estimator β̂Quad in the high dimensional case.
In particular, we provide a non-asymptotic bound on the squared risk. We also provide a
bound on the ℓ2 estimation error of β̂Quad. This last result implies in particular the variable
consistency of β̂Quad. The results of this section are proved in Appendix B. These theoretical
contributions rely partly on Lemma 1. Moreover, the tuning parameters λ and µ will actually
be chosen depending on the sample size n. We emphasize this dependency by adding a
subscript n to these parameters.

3.1 Sparsity Inequality

Now we establish a Sparsity Inequality (SI) achieved by the estimator β̂Quad, that is a bound
on the squared risk that takes into account the sparsity of the regression vector β∗. More pre-
cisely, we prove that the rate of convergence of β̂Quad is |A∗| log(n)/n, where A∗ is the sparsity
set A∗ = {j : β∗

j 6= 0}. This is the same rate as the one for the Lasso. Nevertheless, using

the estimator β̂Quad is attractive compared to using the Lasso since the main assumption,
associated to β̂Quad, on the Gram matrix Ψn := n−1X ′X is weaker than the Lasso one.

The general case: The first result we establish here considers the case where the matrix

J̃ = J′J

is any p × p matrix. Let us first establish the assumptions needed, and the setup of this
contribution. We define the regularization parameters λn and µn in the following way:

λn = κσ

√
log(p)

n
, and µn = λn

1

4|J̃β∗|∞
, (7)

where κ > 8
√
2.
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Remark 4. The tuning parameter µn, given by (7), depends on the unknown regression vector
β∗. In practice, we deal with the calibration of this parameter thanks to a validation criterion
such as cross validation.

Our assumption on the Gram matrix Ψn involves the symmetric p× p matrix Kn defined
by Kn = Ψn + µnJ̃ . Given the augmented dataset defined in Lemma 1, we note that Kn =
n−1X̃ ′X̃, which can be seen as an augmented Gram matrix. Let Θ ⊂ {1, . . . , p} a set of
indices. Using this notation, we formulate the following assumption:

Assumption B(Θ): There is a constant φ > 0 such that, for any ∆ ∈ Rp that satisfies
∑

j /∈Θ |∆j| ≤ 4
√

|Θ|
√∑

j∈Θ∆2
j , we have

∆′Kn∆ ≥ φ
∑

j∈Θ
∆2

j . (8)

First of all, we note that Assumption B(Θ) is inspired by the Restricted Eigenvalue Assump-
tion introduced in [2]. The main difference is that in that paper, the authors consider the
case where Kn = Ψn, which matches with the Lasso estimator (that is µn = 0 in our setting).
Another minor difference is that the set on which the assumption should hold is larger in As-
sumption B(Θ) than in the Restricted Eigenvalue Assumption. Indeed, in Assumption B(Θ),

the considered vectors ∆ should be such that
∑

j /∈Θ |∆j| ≤ cst ·
√

|Θ|
√∑

j∈Θ∆2
j , whereas

in [2], the authors only need to consider vectors ∆ such that
∑

j /∈Θ |∆j | ≤ cst ·∑j∈Θ |∆j |
(see also [25]). Finally, let us mention that only small subsets of indices Θ are considered in
Assumption B(Θ). In particular we will consider Θ = A∗, the true sparsity set or Θ = B, a
set of indices which strictly includes A∗ and which is not much larger. That is |B| ≤ cst · |A∗|.
Let us now explain briefly the meaning of this hypothesis. In the case, where Kn is invertible,
the condition (8) is always satisfied for any ∆ ∈ Rp with φ larger than the smallest eigenvalue
of Kn. In the sequel, the established theoretical results will involve this quantity φ, and the
smaller φ, the worse will be the performance of the method. For the Lasso estimator, which
corresponds to the case Kn = Ψn (that is µn = 0), φ may be very small. In Assumption B(Θ),
φ can be set larger thanks to a good calibration of µn. This helps to improve the performance
of the method. Hence, larger values for µn are desired, in order to control suitably the eigen-
values of Kn.
Let us first provide the main result on the general case.

Theorem 1. Let A∗ be the sparsity set and let the tuning parameters (λn, µn) be defined as
in (7). Suppose that p ≥ n. If Assumption B(A∗) holds, then with probability greater than
1− un,p, we have ∥∥∥Xβ∗ −Xβ̂Quad

∥∥∥
2

n
≤ 16

3φ
λ2
n|A∗|,

(β∗ − β̂Quad)′J̃(β∗ − β̂Quad) ≤ 64|J̃β∗|∞
3φ

λn|A∗|,

and

|β∗ − β̂Quad|1 ≤
16√
3φ

λn|A∗|,

where un,p = p1−κ2/128 with κ, the constant appearing in (7).
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The proof of Theorem 1 is based on the ‘argmin’ definition of the estimator β̂Quad and
some technical concentration inequalities. It provides bounds on the prediction and the ℓ1
estimation errors with high probability. Similar bounds were provided for the Lasso estimator
by [2]. Let us mention that the constants are not optimal. We focused our attention on the
dependency on n (and then on p and |A∗|). It turns out that our results are near optimal. For

instance, for the ℓ2 risk, the S-Lasso estimator reaches nearly the optimal rate |A∗|
n log( p

|A∗|+1)

up to a logarithmic factor ([5, Theorem 5.1]). Moreover, Theorem 1 states a control on an error
which is linked to the expected prior information which suggested the use of the estimator
β̂Quad. Further details are given at the end of this section when we deal with the special
cases: the Elastic-Net and the S-Lasso.

Remark 5. Theorem 1 improves the performance of the Lasso thanks to the quantity φ intro-
duced in Assumption B(A∗). Let us denote by φ0 the φ obtained when µn = 0 (corresponding
to the Assumption B(A∗) in the Lasso case). Since this quantity appears in the bound of the
squared error, we observe that the improvement using β̂Quad is significant in particular when
φ0 is very small (much smaller that µn). Indeed, let us consider the clearer case, where J̃ is
diagonal (for instance the identity matrix corresponding to the Elastic-Net estimator). Then,
Assumption B(A∗) guaranties that φ is at least µn = cst · λn and then, for instance, the
prediction error ‖Xβ∗ −Xβ̂Quad‖2n is bounded by cst ·

√
log(p)/n|A∗|. Although not optimal,

this bound is much better than to one achieved by the Lasso.

Sparse matrix J̃: Theorem 1 takes into account the case of general matrices J̃ = J′J. We

can improve the results whenever J̃ is sparse. This includes the Elastic-Net (where J̃ is the
identity matrix) and the S-Lasso (where J̃ is non-zero only on its diagonal and its upper and
lower diagonals) as detailed below. Indeed, the above paragraph reveals the importance of
the quantity φ in the performance of the considered estimator. In particular, we want φ be
as large as possible. This can be established by increasing µn.In this sparse case, we define
the tuning parameters by

λn = κσ

√
log(p)

n
, and µn = λn

√
|A∗|

|J̃β∗|2
, (9)

with here κ > 4
√
2. Thanks to this calibration of the tuning parameters, it turns out that a

better error control can be obtained, for instance when we deal with diagonal matrix J̃ . This
is the statement of Theorem 2 below. The result also needs to consider a set of indices Θ
larger than A∗ in Assumption B(Θ). For this purpose, let B ⊂ {1, . . . , p} be a set of indices
such that it includes A∗, the true sparsity set. This set depends on J̃ and on A∗. More
precisely B contains the indices of components which interferes in the product β∗′ J̃u for a
given u ∈ Rp. This set is not too large compared to A∗ when we consider the case where J̃
is sparse. For instance, in the case of the Elastic-Net, B = A∗, and in the case of the S-Lasso
(that we will detail later), the set B is such that |B| ≤ 3|A∗|. Of course, the definition of
B depends on A∗, but here we are only interested in the magnitude of |B|. Thanks to the
sparsity of J̃ , we can assume that there exists a constant c

J̃
≥ 1 such that |B| ≤ c

J̃
|A∗|.

Given this new notation we can establish the results for sparse matrices J̃ :

Theorem 2 (J̃ sparse). Let A∗ be the sparsity set and consider the augmented dataset (X̃, Ỹ )
defined in Lemma 1. Let the tuning parameters (λn, µn) be defined as in (9). Suppose that

7



p ≥ n. Suppose that Assumption B(B) is satisfied with a set B ⊃ A∗ such that |B| ≤ cJ̃ |A∗|
for a given constant c

J̃
≥ 1. Then with probability greater than 1− un,p, we have

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
≤ 16

3φ
λ2
n|A∗|,

(β∗ − β̂Quad)′J̃(β∗ − β̂Quad) ≤ 16|J̃β∗|2
3φ

λn

√
|A∗|, (10)

and

|β∗ − β̂Quad|1 ≤
16√
3φ

λn|A∗|,

where un,p = p1−κ2/32 with κ, the constant appearing in (9).

Theorem 2 states that β̂Quad achieves the same SI as in Theorem 1 with a value of the

tuning parameter µn of the form µn = cst ·
√

log(p)
n |A∗|. This rate for µn is the one of the

general case times
√

|A∗|. Let us consider the situation where the Lasso estimator has bad

performance (that is φ0 is very small; cf. Remark 5) and let β̂Quad be the Elastic-Net to
simplify. Then we have φ ≥ µn and the bound of the squared error in Theorem 2 becomes

cst ·
√

log(p)
n |A∗|. Here, β̂Quad does not reach the optimal rate but it outperforms the Lasso.

Moreover exploiting the sparsity of J̃ , it also improves to previous results obtained in Theo-
rem 1. Apart from the considerations on the quantity φ, we observe a changing in the bound
of (β∗ − β̂Quad)′J̃(β∗ − β̂Quad) in Theorem 2. Indeed, the bound in Theorem 2 involves the
term |J̃β∗|2

√
|A∗| whereas in Theorem 1 appears |J̃β∗|∞|A∗| which is obviously larger. We

then have a better control on this error exploiting the sparsity of the matrix J̃ . Let us now
consider two special cases of these results:

Elastic-Net: Corresponding to the case where J̃ equals the identity matrix, the Elastic-Net
satisfies a Sparsity Inequality with B = A∗. Then we observe that it achieves this SI
with a weaker assumption on the Gram matrix than the Lasso. Indeed, the Elastic-
Net involves a perturbation on the diagonal term of the Gram matrix of order µn.
This makes Assumption B(A∗) to be satisfied with a better constant φ. These results
improve the results obtained in [4], where both of the Elastic-Net and the Lasso impose
the same assumption on the Gram matrix. However, let us mention that the theoretical
study does not show that the Elastic-Net is particularly useful when correlation between
variables exist. Finally, we observe that in this case, Equation (10) is nothing but a SI on
the ℓ2 estimation error |β∗−β̂Quad|22. Note that the rate λn

√
|A∗| is not optimal, but has

the advantage to not requiring a more restrictive assumption than Assumption B(A∗).
Imposing Assumption B(B) to be satisfied with a set B larger A∗, a better rate can be
reached.

S-Lasso: In this case, |J̃β∗|2 is intuitively small since the S-Lasso essentially responds to
problems where the regression vector is expected to be ‘smooth’. This means that the
successive regression coefficients are close and then |Jβ∗|2 = β∗′ J̃β∗ =

∑p
j=2(β

∗
j −β∗

j−1)
2

is obviously small (we have the following worst case relation: |J̃β∗|2 ≤ 2
√
10|Jβ∗|2 ≤
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7|Jβ∗|2). Note also that in this case Assumption B(Θ) is satisfied with a set Θ = B less
than three times larger than A∗. This set can be expressed by

B = {j ∈ {2, . . . , p− 1} : β∗
j 6= 0, β∗

j−1 6= 0 or β∗
j+1 6= 0},

and Theorem 2 holds with cJ̃ = 3. Moreover, Equation (10) can be seen as a control
on the ‘smoothness’ error

∑p
j=2(δj − δj−1)

2, where δj is the components difference

β∗
j − β̂Quad

j .

Remark 6. For the S-Lasso, the matrix J̃ is tridiagonal with its off-diagonal terms equal
to −1. If we do not consider the diagonal terms, we remark that Ψn and Kn differ only
in the terms on the second diagonals (i.e., (Kn)j−1,j 6= (Ψn)j−1,j for j = 2, . . . , p as soon
as µn 6= 0). Terms in the second diagonals of Ψn correspond to correlations between
successive covariates. When high correlations exist between successive covariates, a
suitable choice of µn makes Assumption B(B) satisfied. Hence, this assumption fits
well with the setup where correlations between successive variables interfere. In many
situations, we expect that the variables are ranked, such that not only the regression
vector is ‘smooth’, but also successive covariates are correlated. In this case the S-Lasso
estimator is particularly useful. We also observe how the ‘smoothness’ of the regression
vector influences the control of the correlation on one hand (see Assumption B(B)), and
the prediction and the estimation errors on the other hand (as φ depends on |Jβ∗|2).
Similarly to the Elastic-Net, the S-Lasso improves the Lasso results, but here specifically
in problems where correlations are considered between successive variables.

Remark 7. In situations where one can expect some structure on the regression vector, the
second term of the penalty attempts to catch this structure. As a consequence the case where
J̃ is sparse is promising since the value of the tuning parameter µn is larger.

Remark 8. From the proofs of Theorems 1 and 2, the value of the tuning constant κ in
the definition of λn can be taken respectively larger that 4

√
2 and 2

√
2 instead of 8

√
2 and

4
√
2. Such tuning is possible if we consider only the prediction error

∥∥∥Xβ∗ −Xβ̂Quad
∥∥∥
2

n
.

In the sequel, a bound on the ℓ2 estimation error |β∗ − β̂Quad|2 can be obtained thanks to
Assumption B(Θ), which has to hold with a slightly larger set Θ than the ones considered in
the above theorems.

3.2 Variable selection

Now we deal with variable selection. Let us first mention that a big amount of work has
been done on the topic of variable selection of the Lasso. One important observation is that
one has to make a compromise between identifying low signal level (that is, small in absolute
value coefficients β∗

j , j ∈ A∗) and imposing a large restriction on the Gram matrix Ψn, which
sometimes seems to be not realistic. Moreover, the question of the identifiability of β∗ has also
to be considered. Our approach consists in the choice of the middle road, that is, involving
the less restrictive assumption on the Gram matrix that permit us to recover reasonably low
signal level. For this purpose we first provide a bound on the sup-norm |β∗

A∗ − β̂Quad
A∗ |∞,

where for any p-dimensional vector a and subset Θ ⊂ {1, . . . , p}, the notation aθ means that
(aΘ)j = aj for any j ∈ Θ and zero otherwise. Thanks to the theorems stated in the previous
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section, one can easily use the ℓ1 estimation error |β∗ − β̂Quad|1 to get a bound on the sup-
norm error. Nevertheless, this implies that only ‘high’ levels of signal can be reconstituted,
i.e., coefficients β∗

j , j ∈ A∗ such that |β∗
j | ≥ cst · λn|A∗|. For this reason, we present a result

on the ℓ2 estimation error |β∗ − β̂Quad|2 which by the sequel ables us to recover signals such
|β∗

j | ≥ cst · λn

√
|A∗| with the same Restricted Eigenvalue assumption. Let us mention that

λn

√
|A∗| is not the best level which can be recovered. One can also get rid of the term

√
|A∗|

through a quite restrictive assumption on the correlations between variables such as Mutual
Coherence assumption: maxj∈A∗ maxk∈{1,...,p}

k 6=j

|(Kn)j,k| ≤ t
|A∗| , where t is a small constant.

Let us first state the assumption on the regression parameter.

Assumption C: The true regression vector β∗ is such that

min
j∈A∗

|β∗
j | > c̃λn

√
|A|,

where c̃ = 4√
3φ

and φ is the constant appearing in Assumption B(A∗).

Note that the constant c̃ is the same as the one used in Proposition 1 below. Here again, we
observe how important the quantity φ is. We want it to be as large as possible.

Proposition 1. Let us consider the same setting as in Theorem 1: consider the linear regres-
sion model (1). Let λn = κσ

√
log(p)/n and µn = λn/(4|J̃β∗|∞) with κ > 8

√
2. Suppose that

p ≥ n. Under Assumptions B(A∗)-C, and with probability larger than 1− p1−
κ2

128 , we have

|β∗
A − β̂Quad

A |∞ ≤ |β∗
A − β̂Quad

A |2 ≤ c̃λn

√
|A|,

where c̃ = 4√
3φ

and φ is the constant appearing in Assumption B(A∗). Moreover, we have

P
(
Sgn(β̂Quad

A ) 6= Sgn(β∗
A)
)
≤ p1−κ2/128.

Proposition 1 is a trivial consequence of Theorem 1. A small proof is given in the Appendix
section. The previous proposition directly underlines that under the Restrictive Eigenvalue
Assumption B(A∗), all non-zero components of β∗ are detected by β̂Quad. Actually, in the
setting of Proposition 1, β̂Quad contains too many non-zero components. More restrictions are
needed in order to ensure the variable selection consistency of β̂Quad. Here is an additional
assumption on the Gram matrix which controls the correlations between the truly relevant
variables and those which are not.

Assumption D: We assume that

max
j∈A∗

max
k/∈A∗

|(Kn)j,k| ≤
t

|A∗| ,

where t is a positive term smaller than
√
3φ

128 .

This assumption is quite close to the Mutual Coherence assumption which involves the Gram
matrix Φn instead of Kn. In addition, the Mutual Coherence assumption makes a restriction
on correlations between all covariates.

10



Theorem 3. Let consider the linear regression model (1). Let λn = κσ
√

log(p)/n and

µn = λn/(4|J̃β∗|∞) with κ > 16. Suppose that p ≥ n. Under Assumptions B(A∗)-C and also
Assumption D, we have

P(Â * A∗) ≤ 2p2−κ2/128,

and then
P
(
Sgn(β̂Quad) 6= Sgn(β∗)

)
≤ 2p2−κ2/128.

The second point is a consequence of the first and of Proposition 1. There are essentially
two differences between the setting of Theorem 3 and Proposition 1. First, we need a more
restrictive assumption on the correlations between variables. However, this restriction is only
between relevant variables and irrelevant ones. This is a ‘quite’ reasonable assumption to
identify the relevant variables, that is, the non-zero components of the vector β∗. Second, the
minimal value of λn is larger in this last theorem. This suggests that we need a larger value
of this tuning parameter to set to zero the irrelevant components.

Remark 9. The results of Theorem 3 can also be obtained under the more restrictive Mutual
Coherence assumption: maxj∈A∗ maxk∈{1,...,p}

k 6=j

|(Kn)j,k| ≤ t̃
|A∗| . Here even the correlations

between relevant variables are restricted but this restriction makes possible to recover even
smaller signal. That is, we can detect coefficients of β∗ such that |β∗

j | ≥ cst ·
√

log(p)/n.

Remark 10. We presented in Theorem 3 a variable selection result under an assumption
on the perturbed Gram matrix Kn, which is a combination of the Restricted Eigenvalue and
the Mutual Coherence assumptions. However, the above results do not allow large value of
the tuning parameter µn. Indeed, we recall that when J̃ is sparse, the rate of µn can reach√

log(p)
n |A∗|. Let us mention that such a rate can be calibrated here to obtain variable selection

consistency if we use a hard thresholded version of β̂Quad. That is, we set to zero components
of β̂Quad which are smaller in absolute value to a threshold, obtained thanks to the bound on
the ℓ2 estimator |β̂Quad − β∗|2. We get such a bound without Assumption D, but paying the
price of a little more restrictive version of the Restricted Eigenvalue Assumption B(Θ) (that
is, Θ must be larger).

4 Experimental Results

In this section we present the experimental performance of the estimator β̂Quad. In particular,
we focus on two special cases: the Elastic-Net and the S-Lasso defined respectively with
the penalties penEN(β) = λ|β|1 + µ|β|22 and penSL(β) = λ|β|1 + µ

∑p
j=2(βj − βj−1)

2. The
Elastic-Net is useful when high correlations between variables appears, whereas the S-Lasso
is devoted to problems where the regression vector β∗ is ‘smooth’ (small variations in the
values of the successive components of β∗). We essentially are interested in the performance
of these estimators w.r.t. their estimation accuracy, i.e., in terms of the estimation error
|β̂−β∗|2, when β∗ is known (simulated data). Indeed, the introduction of β̂Quad is motivated
by a priori knowledge on the structure of the parameter β∗, or on the correlation between
variables, and the purpose here is to see how this information can be taken into account
to improve the reconstruction of the vector β∗. As benchmarks, we use the Lasso and the
Fused-Lasso estimators, since the first is the reference method and the second is close in
spirit to the S-Lasso estimator. Indeed, it is designed to produce solutions with equal values
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of the successive components of β∗ (‘blocky’) [23]. Note also that in the pioneer paper of
the Elastic-Net, a ‘corrected’ version of this estimator is proposed [31]. There is as yet no
theoretical support for this method. Moreover, it outperforms the ‘non-corrected’ Elastic-
Net (this ‘non-corrected’ Elastic-Net is denoted by naive in [31]) in only a very few of the
situations we consider in this paper. We omitted the results for these ‘corrected’ versions to
avoid digressions.
Except for the Fused-Lasso solution, all of the Lasso, the S-Lasso and the Elastic-Net solutions
can be computed thanks to the LARS algorithm (cf. Lemma 1). However, we will not use
this LARS algorithm in this study. Indeed, in order to be fair with all the methods, we used
the same algorithm for all of them. We exploit an algorithm2 which is an implementation of
a general convex program given by [19].
In all our experiments, the tuning parameters are chosen based on the 10 fold cross validation
criterion, but we also display the results obtained based on the theoretical values. Note that
for the Fused-Lasso, we considered the same theoretical values of the tuning parameters as
for the S-Lasso as they are motivated by similar applications (this choice seems arbitrary but
to our knowledge, no precise study has been made for the Fused-Lasso in the context we are
considering). On the other hand, both Elastic-Net and the S-Lasso involve a sparse matrix J̃
in the definition of the estimator β̂Quad. Then the theoretical values of the tuning parameters
are λ = κσ

√
log(p)/n and µ = λ

√
A∗/|J̃β∗|2, for a positive constant κ, in accordance with

the second part of Section 3.1. These quantities depend on unknown parameters. They can be
used only in the simulation study, and otherwise one needs to estimate |J̃β∗|2. Note moreover
that the constant κ is fixed equal to 2

√
2 in all the simulations (cf. Remark 8).

The different methods are applied to several simulation examples. They also have been applied
to a pseudo-real dataset generated from the riboflavin dataset.

4.1 Synthetic data

There are several parameters: the dimension p, the sample size n and the noise level σ. They
will be specified during the experiments. The first one is classical and has been introduced in
the original paper of the Lasso [22]. The second one comes from the paper by [31]. Here we
are interested to observe the performance of the procedures when groups of variables appear.
The last two studies aim to determine the behavior of the methods when the regression vector
is ‘smooth’.

Example (a) [σ/ρ]: No particularities. We fix p = 8 and n = 20. Here only β1, β2 and β5 are
nonzero and equal respectively 3, 1.5, 2. Moreover, the design correlation matrix Σ is
defined by Σj,k = ρ−|j−k| for (j, k) ∈ {15, . . . , 35}2 and Σj,k = I(j = k) otherwise where
ρ ∈]0, 1[ and I(·) is the indicator function.

Example (b) [p/n/σ]: Groups. We have βj = 3 for j ∈ {1, . . . , 15} and zero otherwise. We
construct three groups of correlated variables: Σj,j = 1 for every j ∈ {1, . . . , p}; for
j 6= k, Σj,k ≈ 1 (actually Σj,k = 1

1+0.01 , due to an extra noise variable) when (j, k)

belongs to {1, . . . , 5}2, {6, . . . , 10}2 and {11, . . . , 15}2 and zero otherwise.

2provided by J. Mairal: http://www.di.ens.fr/∼mairal/index.php
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Figure 1: Performance of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL) and the Elastic-
Net (EN) applied to Example (a) and based on 500 replications. The tuning parameters are chosen
based on the theoretical study. Left: Evaluation of the prediction error ‖Ytest − Xtestβ̂‖

2
n, in

comparison with the performance of the truth (T), i.e., ‖Ytest − Xtestβ
∗‖2n. Right: Evaluation of

the ℓ2 estimation error |β̂ − β∗|2.

Example (c) [p/n/σ]: Smooth regression vector. The regression vector is given by βj =
(3 − 0.2j)2 for j = 1, . . . , 15 and zero otherwise. Moreover, the correlations are de-
scribed by Σj,k = exp(−|j − k|) for (j, k) ∈ {1, . . . , p}2.

Example (d) [p/n/σ]: High sparsity index and smooth regression vector. The regression vec-
tor is such that βj = (4 + 0.1j)2 for j ∈ {1, . . . , 40} and zero otherwise, and the
correlations are the same as in Example (c).

Except when p = 500 where we run only 100 replications, we based all the experiments on
500 replications.

Results. The performance of the estimator β̂ (which can be the Lasso, the S-Lasso, the
Elastic-Net or the Fused-Lasso) in terms of the prediction error ‖Ytest −Xtestβ̂‖2n (on a test
set (Ytest,Xtest) of size n) and the ℓ2 estimation error |β̂ − β∗|2 are illustrated by boxplots
in Figure 1 to Figure 4. For some of these experiments, the corresponding computational
cost (in seconds) of each method are reported in Table 1. In what follows, we first compare
the methods to each other in terms of their accuracy. Then we compare them in terms of
their computational costs. Finally we provide some numerical justifications to the theoretical
calibration of the tuning parameters of the S-Lasso procedure.

Methods comparison in terms of performance: Let us consider the different examples sepa-
rately.
− Example (a): when we consider the procedures induced by the cross validation criterion
(for the choice of the tuning parameter), we notice that none of them outperforms the others
even when ρ = 0.9 (quite large correlation between successive variables). This is observed for
both prediction and estimation errors. It is essentially due to the good behavior of the Lasso
in such a situation where the regression vector is sparse but without any particular struc-
ture. Actually, this conclusion holds in almost all the cases even when the tuning parameters
are chosen based on the theoretical study. However, two observations can be made. First,
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Figure 2: Performance of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL) and the Elastic-
Net (EN) applied to Example (b) and based on 500 replications. The tuning parameters are chosen
based on the theoretical study in the first two plots. and by 10 fold cross validation in the third.
Left: Evaluation of the prediction error ‖Ytest −Xtestβ̂‖

2
n, in comparison with the performance of

the truth (T), i.e., ‖Ytest−Xtestβ
∗‖2n. Center-Right: Evaluation of the ℓ2 estimation error |β̂−β∗|2.

when both of ρ and σ are small, the Lasso estimator performs slightly better than the other
methods, Moreover when ρ is large, a small improvement can be observed using the Lasso
modification methods when we care about the estimation error. This is illustrated in Fig-
ure 1 (left and right respectively) where we display the performance of the methods in terms
of the prediction error in Example (a) [1/0.1] (left) and in terms of the estimation error in
Example (a) [3/0.9] (right). For this example, the Lasso seems to be the best method since it
involves only one tuning parameter. It moreover has a lower (mean) computational cost equal
to 0.18 seconds for the Lasso (based on the cross validation criterion) as displayed in Table 1.
The S-Lasso, the Elastic-Net and the Fused-Lasso computational costs are respectively 3.7,
3.6 and 4.2 seconds.
− Example (b): with Example (a), this example is the less favorable for the S-Lasso. Indeed,
here the fifteen first coefficients equal 3. Then the value of the coefficients drops down directly
to 0. There is a breaking point in the ‘smoothness’ in the true regression vector. Figure 5
displays the best reconstitution of the regression vector β∗ using the S-Lasso solution (which
minimizes the ℓ2 estimation error since β∗ is known). We observe the borders problems
(breaking point in the ‘smoothness’) that the S-Lasso can meet due to the ℓ2 fusion penalty
term. However, even in this case, it seems that all the procedures perform in a similar way
when the tuning parameters are chosen by cross validation. When the noise level is large
(σ = 15), let us nevertheless mention a (very) small improvement using the corrected versions
of the S-Lasso and the Elastic-Net. Figure 2 (right) illustrates the performance of the methods
in terms of the estimation error when they are applied to Example (b) [40/50/15]. The Fused-
Lasso outperforms a little the other methods in this example (with this noise level) when we
deal with the estimation performance.
On the other hand, when the methods are based on the theoretical calibration of the tuning
parameters, two observations can be made regardless the noise level (1 ≤ σ ≤ 15): the
S-Lasso and the Lasso perform better than the other methods in terms of the prediction
error; the S-Lasso and the Elastic-Net provide good results whereas the Lasso guarantees
poor performance in terms of estimation error. This is illustrated in Figure 2 (left and center
respectively) when the methods are applied to Example (b) [40/50/3]. Note moreover that
a similar illustration is also obtained when p = 100 and n = 40. Then the behavior of the
different methods seems to be stable with the parameters p, n and σ. This example is quite
interesting since it points out that a good method for the prediction objective can be less
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Figure 3: Evaluation of the ℓ2 estimation error |β̂ − β∗|2 of the Lasso (L), the S-Lasso (SL), the
Fused-Lasso (FL) and the Elastic-Net (EN) applied to Example (c) and based on 500 replications.
Left: The tuning parameters are chosen by 10 fold cross validation. Right: The tuning parameters
are chosen based on the theoretical study.

efficient for the estimation objective (see the performance of the Lasso and the Elastic-Net).
− Example (c): we consider several values of the sample size n and the dimension p. It turns
out that here again, when p < n all the methods behave in the same way when the tuning
parameters are chosen by cross validation (the S-Lasso induces just a small improvement).
However when p > n the S-Lasso is by far better than the other methods. This is illustrated
by Figure 3 (left) where ℓ2 estimation error of each method applied to Example (c) [100/30/3]
is displayed. The same plot is obtained for the prediction error.
Moreover when the tuning parameters are calibrated according to the theoretical study, the
S-Lasso performs the best and the Fused-Lasso the worst. This appears to be true whatever
the values of the parameters p, n and σ. See for instance Figure 3 (right) where the different
methods are applied to Example (c) [100/30/3] and for the estimation task (the same is ob-
tained for the prediction objective).
Note that in this example, the Fused-Lasso and the Elastic-Net appear to be useless.
− Example (d): this is with Example (c) the most favorable situation for the S-Lasso estima-
tor where the regression vector is ‘smooth’ with a large amount of non-zero components. The
S-Lasso estimator seems to dominate its opponents in all the cases, and regardless of the sam-
ple size n, the dimension p or the noise level σ. This observation holds for the ℓ2 estimation
and the prediction errors. Note that when the tuning parameters are chosen by cross valida-
tion, the Lasso, the Fused-Lasso and the Elastic-Net have quite close performance. Figure 4
illustrates this fact when p < n for the estimation error (left: cross validation; center-left:
theory). Moreover, Figure 4 (center-right and right) displays the performance of the methods
when p > n when the tuning parameters are based on the theoretical study (note that ranking
of the methods does not change from the case p < n when the tuning parameters are chosen
by cross validation). Here an interesting observation follows from the experiments on Exam-
ple (d) [100/30/3] (Figure 4-left) . Indeed, here the sparsity index |A∗| = 40 and it is then
larger than the sample size n = 30. In this case, the Lasso has poor performance. However,
the S-Lasso is still good. Moreover, there even exists a pair (λ, µ) (the pair minimizing the ℓ2
estimation error since β∗ is known) such that we have a good reconstitution on the regression
vector β∗ (see Figure 5-right).

Methods comparison in terms of computational cost: Table 1 displays the computational cost
(in seconds) of each method on several examples. First note that the Fused-Lasso has the
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Figure 4: Evaluation of the ℓ2 estimation error |β̂ − β∗|2 of the Lasso (L), the S-Lasso (SL), the
Fused-Lasso (FL) and the Elastic-Net (EN) applied to Example (c) and based on 500 replications.
Left: The tuning parameters are chosen by 10 fold cross validation. Center-left; Center-right; Right:
The tuning parameters are chosen based on the theoretical study.
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Figure 5: Best reconstitution of the regression vector β∗ (black curve) by the SL-Lasso esti-
mator (red curve). Left: Application to Example (b) [40/50/15]. Right: Application to Exam-
ple (d) [100/30/3].

largest computational cost in all the simulations whereas the Lasso has the smallest. The
Elastic-Net and the S-Lasso have intermediate computational costs but stay reasonable com-
pared to the Fused-Lasso. More precisely, when the tuning parameters are chosen by cross
validation, we remark that the computational costs of the S-Lasso and the Elastic-Net are
about 30 times larger than the Lasso. This is partly explained by the number of values ex-
plored for the tuning parameter µ (a grid with 20 elements). Actually, even for fixed λ and
µ, the computation cost of the Lasso is (a little) smaller than the computation costs of the
S-Lasso and the Elastic-Net. This is observed for instance when we consider the solutions
computed when the tuning parameters are chosen based on the theoretical study. The rea-
son is that the S-Lasso and the Elastic-Net are solved thanks to a Lasso program applied to
augmented data (cf. Lemma 1). Except on Example (a) where the increase of computational
cost using the S-Lasso and the Elastic-Net is not justified (since the improvement using the
Lasso-type methods is quite small), in most of the considered situations it is quite interesting
to use the Elastic-Net and even more interesting to use the S-Lasso estimator. This is due to
the ‘smoothness’ of the true regression vector.
On the other hand, the Fused-Lasso has a large computation cost due to the ℓ1-fusion penalty
which is not strictly convex. Moreover, it does not improve enough the Lasso estimator in
the situation we considered in this paper (as observed in the previous part).
In view of the computational costs related to Example (a) (the first two columns in Table 1),
let us finally remark that these costs increase with ρ, the correlation level between variables,
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Table 1: Computation costs in seconds of the Lasso (L), the S-Lasso (SL), the Fused-Lasso
(FL) and the Elastic-Net (EN) on the examples illustrated in Figure 1. The parameter
Tuning = Th or Tuning = Cv depending on whether we consider the methods with the
tuning parameters based on the theoretical issue or on the 10 fold cross validation respectively.

Meth. Tuning Ex.(a) [1/0.1] Ex.(a) [3/0.9] Ex.(b) [40/50/15] Ex.(c) [30/50/3] Ex.(d) [30/50/3]

L
Th · 10−4 1.1 ± 0.1 8 ± 41 5 ± 2 33 ± 64 457 ± 243

Cv 0.18 ± 0.01 0.5 ± 0.2 0.5 ± 0.1 1.1 ± 0.3 12.3 ± 4.9

SL
Th · 10−4 5.1 ± 6.4 8 ± 28 6 ± 6 48 ± 81 967 ± 441

Cv 3.7 ± 0.1 11.1 ± 1.3 10.2 ± 2.0 36.2 ± 9.1 648.3 ± 219.2

FL
Th · 10−4 2.6 ± 0.3 10.0 ± 30.0 20 ± 12 518 ± 271 5996 ± 2019

Cv 4.2 ± 0.2 14.1 ± 1.6 38.3 ± 5.8 245.6 ± 64.3 ≃ 3 · 103

EN
Th · 10−4 4.7 ± 3.5 9 ± 43 5 ± 3 41 ± 60 1022 ± 432

Cv 3.6 ± 0.2 11.0 ± 1.3 10.2 ± 2.0 35.2 ± 8.9 637.3 ± 214.0

and σ, the noise level. We observe for instance that the mean computational cost of the
Lasso estimator (when the tuning parameter is chosen by cross validation) is 1.1 seconds
when ρ = 0.1 and σ = 1 and increases to 8 seconds when ρ = 0.9 and σ = 3.

S-Lasso; theory vs. cross validation: Figure 6 resumes the comparison between the S-Lasso

based on a theoretical choice of the tuning parameters (denoted by this part S-LassoTh) and
the S-Lasso where the tuning parameters are based on 10 fold cross validation (denoted here by
S-LassoCv). First we can observe that the performance of both S-LassoTh and S-LassoCv are
close. Moreover given the results in the part ‘Methods comparison in terms of performance’,
they both perform in a good way. However, it seems that S-LassoCv outperforms S-LassoTh

when we deal with the prediction task. This seems quite intuitive since by definition, the
cross validation criterion attempts to provide good estimator for the prediction objective.
According to the ℓ2 estimation goal, we cannot conclude the superiority of one of the estimator
on the other. Nevertheless, in the high dimensional setting Example (d) [500/100/σ], it seems
that S-LassoCv begins to become better.

Hence it turns out that the theoretical choice for µ (µ = λ
√
A∗

|J̃β∗|2
) provides good performance

both in terms of ℓ2 estimation error and test error. Moreover, they are often close to the
performance of the S-Lasso estimator based on the cross validation criterion. This is quite
interesting since the computational cost of S-LassoTh is much smaller than S-LassoCv. This
study is actually more a verification of our theoretical choices of the tuning parameters than
a rule to apply in practice. Indeed, since the theoretical choice of µ depends on β∗, the
corresponding estimator S-LassoTh is unusable in real data problems.

Conclusion of the experimental results. The S-Lasso has good performance when the
regression vector is ‘smooth’ (Examples (c)-(d)). Nevertheless, even in situations made in
favor of the Elastic-Net and the Fused-Lasso (Examples (b)), the S-Lasso performs similarly
to the other methods when the tuning parameters are chosen based on the cross validation
criterion. The S-Lasso is even better in these examples when the methods are constructed
based on the theoretical considerations.
Moreover all the results according to the procedures for which the tuning parameters are
chosen based on the theoretical study is a little unfair in disfavor of the Fused-Lasso. Indeed
the rates of the tuning parameters have been calibrated based on a study made for the
estimator β̂Quad (the Elastic-Net and the S-Lasso are two particular cases of this estimator).
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Figure 6: Evaluation of the ℓ2 estimation error |β̂ − β∗|2 of the Lasso (L), the S-Lasso (SL), the
Fused-Lasso (FL) and the Elastic-Net (EN) based on 500 replications. Left: The tuning parameters
are chosen by 10 fold cross validation. That is the mean values are λ = for all the methods, µ = for
the S-Lasso and the Fused-Lasso and finally µ = for the Elastic-Net. Right: The tuning parameters
are chosen based on the theoretical study. That is the mean values are λ = for all the methods,
µ = for the S-Lasso and the Fused-Lasso and finally µ = for the Elastic-Net.

For the Lasso estimator, we also used the usual rate for λ. Even if the Fused-Lasso seems to
be close to the S-Lasso, it turns out that similar choices for the tuning parameters lead to
the worst results for the Fused-Lasso.
Based on results on Examples (c)-(d) it seems that the Fused-Lasso and the Elastic-Net imply
a large bias when the regression vector is smooth for large values of µ (also observed in [9]).
They do not improve sufficiently the performance of the Lasso estimator in such situations.
Even the ‘corrected’ Elastic-Net does not provide better results since the artificial correction
seems to work for a small number of pairs (λ, µ) that have to be chosen very carefully.

4.2 Pseudo-real dataset

We apply all the methods we previously studied on artificially dataset generated from the
riboflavin data. These data are about riboflavin (vitamin B2) production by B. subtilis. They
kindly have been provided to us by DSM Nutritional Products (Switzerland). In the original
data, the real-valued response variable is the logarithm of the riboflavin production rate, and
there are p = 4088 covariates measuring the logarithm of the expression level of 4088 genes
that cover essentially the whole genome of Bacillus subtilis. The sample size is n = 71.
Here we are not interested in the riboflavin production, but only in a covariates matrix X
coming from a real application. We use this design matrix to generate an artificial response
vector thanks to a ‘smooth’ regression vector as in Equation (1). Let us mention that this trick
to generate pseudo-real datasets has already been used in [18]. In what follows, we consider
two different applications based on the real covariates matrix provided by the riboflavin
dataset. In the first application, says Application 1, let us define X as the 1023 first covariates
of the riboflavin dataset. Moreover let us define the regression vector β∗, such that β∗

j =

10 · exp− 1
1−((j−125)/125.1)2

for j = 1, . . . , 250 (cf. Figure 8), and the noise level σ = 3. Hence

n = 71 and p = 1023 and then this is a high-dimensional setting with p ≫ n, where the number
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Figure 7: Evaluation of the ℓ2 estimation error |β̂−β∗|2 and the prediction error ‖Ytest−Xtestβ̂‖
2
n

of the Lasso (L), the S-Lasso (SL), the Fused-Lasso (FL) and the Elastic-Net (EN) applied to
Example (c) and based on 20 replications of Application 2. Left; Center-left: The tuning parameters
are chosen by 10 fold cross validation. Center-right; Right: The tuning parameters minimize the
estimation error.
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Figure 8: Best reconstitution of the regression vector β∗ (black curve) by the SL-Lasso estimator
(red curve). Left: On Application 2. Right: On Application 1.

of non-zero components (the sparsity index A∗) is larger than the sample size n. According
to the second application, says Application 2, we restrict X to the 300 first covariates of the
riboflavin dataset. The regression vector β∗ is such that β∗

j = 10 · exp− 1
1−((j−25)/25.1)2

for

j = 1, . . . , 50 (cf. Figure 8), and the noise level σ = 3. This is a more usual high-dimensional
case where the sparsity index A∗ is smaller than the sample size n.

Let us now detail the obtained results for different experiences. First we mention that,
with the exception of the S-Lasso, all the methods provides an estimation of the regression
vector which is characterized by large variations in the values of the successive components
when µ is small (for the Elastic-Net and the Fused-Lasso), and by large bias when µ is large.
Hence we focus here on the S-Lasso estimator. Nevertheless, we display the comparison of all
the methods in terms of accuracy in Figures 7 when the methods are applied to Application 2.
Even though the S-Lasso estimator is outperformed when the tuning parameter is chosen by
cross validation (by the Fused-Lasso for the estimation error and by all the methods for the
prediction; cf. Figures 7 (left and center-left)), it turns out that we can disclose a S-Lasso
solution which performs better than the other methods as displayed in Figures 7 (center-right
and right). One of the best solution of the S-Lasso estimator in this Application 2 can also
be seen in Figure 8 (left). We observe how the S-Lasso succeed to reconstruct the ‘smooth’
regression vector β∗.
Finally, let us consider Application 1, and let’s recall that the sparsity index is here larger than
the sample size. Figure 8 (right) displays the best reconstitution of the regression vector on
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this much difficult problem. We observe that the S-Lasso succeed only partly to reconstruct
the true regression vector. On the simulation study, we met a similar close situation in
Example (d) [100/30/3] (cf Figure 5), where the S-Lasso perfectly estimated β∗. However,
the situation here is even more difficult since the sparsity index is much larger than the
sample size and since many high and negative correlations appear between the covariates in
the riboflavin dataset.

5 Conclusion

In this paper, we introduced the Lasso-type estimator β̂Quad which consists in two penalty
terms: the ℓ1 penalty which ensures sparsity; and a quadratic penalty which captures some
structure in the regression vector. We showed that this estimator satisfies good theoretical
performance specifically when the Lasso estimator might fail. As particular cases we consid-
ered the Elastic-Net and the S-Lasso. We pointed the interest to use such methods respectively
when correlations between variables exist and when the regression vector is ‘smooth’.
In practice, we considered the performance of the S-Lasso estimator compared to the Lasso,
the Elastic-Net and the Fused-Lasso in terms of prediction and estimation accuracy. We
illustrated the superiority of the S-Lasso in several simulation experiments where the regres-
sion vector has a particular structure. We also observed that the theoretical calibration of
the tuning parameters provides close performance as when they are chosen by 10 fold cross
validation. The methods have also been applied to pseudo real examples where based on the
riboflavin dataset.

According to some simulation studies (as in Example (d) [100/30/σ]), an interesting point
would be whether the S-Lasso satisfies Sparsity Inequalities which can take into account the
‘smoothness’ of the regression vector β∗ (if such an assumption is made). This is the topic of
future works.

6 Proofs

We first provide a concentration result:

Lemma 2. Let 0 < τ < 1, be a real number. Let Λn,p be the random event defined by
Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn} where Vj = n−1

∑n
i=1 xi,jεi. Let us choose a κ > 2

√
2/τ and

λn = κσ
√

n−1 log(p). Then

P

(
max

j=1,...,p
2|Vj | ≤ τλn

)
≥ 1− p1−κ2τ2/8.

Proof. Since Vj ∼ N (0, n−1σ2) for any j ∈ {1, . . . , p}, an elementary Gaussian inequality
gives

P

(
max

j=1,...,p
|Vj| ≥ τλn/2

)
≤ p max

j=1,...,p
P (|Vj| ≥ τλn/2)

≤ p exp

(
− n

2σ2

(
τλn

2

)2
)

= p1−κ2τ2/8.

This ends the proof.
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Proof of Theorem 1. We provide a first result which may help the legibility of the paper. For
any vector b ∈ Rp, let bA be the vector in Rp such that (bA)j = bj if j ∈ A and zero otherwise.
Then the following proposition states that the squared risk and the ℓ1-estimation error are
controlled by the restricted ℓ2-estimation error |β∗

A∗ − β̂SL
A∗ |2.

Proposition 2. Let β̂Quad be the estimator defined by (2)-(4). Let λn = κσ
√

log(p)
n and

µn = λn
4|Jβ∗|∞ , with A > 2

√
2. Let 0 < τ < 1 be a real number. On the event Λn,p =

{maxj=1,...,p 2|Vj | ≤ τλn} with Vj = n−1
∑n

i=1 xi,jεi, if τ = 1/4 we have

n+ p

n

∥∥∥X̃β∗ − X̃β̂SL
∥∥∥
2

n+p
+

λn

2
|β∗ − β̂SL|1 ≤ 2λn

√
|A∗||β∗

A∗ − β̂SL
A∗ |2. (11)

Proof. Let first X̃, Ỹ and ε̃ be the augmented dataset defined by

X̃ =

(
X√
nµnJ

)
, and Ỹ =

(
Y
0

)
, and ε̃ =

(
ε

−√
nµnJβ

∗

)
,

where 0 is a vector of size p containing only zeros and J is the p×p matrix given by (5). Then
we have Ỹ = X̃β∗ + ε̃, and the estimator β̂Quad, solution of the minimization problem (2)
with the penalty given by (4), is also the minimizer of

n+ p

n

∥∥∥Ỹ − X̃β
∥∥∥
2

n+p
+ λn|β|1.

Hence, by definition of the estimator β̂Quad we can write

n+p
n

∥∥∥Ỹ − X̃β̂Quad
∥∥∥
2

n+p
+ λn|β̂Quad|1 ≤ n+p

n

∥∥∥Ỹ − X̃β∗
∥∥∥
2

n+p
+ λn|β∗|1

⇐⇒ n+p
n

∥∥∥X̃β∗ − X̃β̂Quad + ε̃
∥∥∥
2

n+p
− n+p

n ‖ε̃‖2n+p ≤ λn|β∗|1 − λn|β̂Quad|1

⇐⇒ n+p
n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+ 2

n ε̃
′X̃(β∗ − β̂Quad).

Let us now consider the term 2
n ε̃

′X̃(β∗ − β̂Quad). By the definition of X̃ and ε̃, we have the

decomposition 1
n ε̃

′X̃(β∗− β̂Quad) = 1
nε

′X(β∗− β̂Quad)−µnβ
∗′J′J(β∗− β̂Quad). The first term

in this decomposition is quite common in the literature and we treat it using arguments which
can be found for instance in [6]. We then need to adapt those arguments in order to deals
with the second term of the decomposition µnβ

∗′J′J(β∗ − β̂Quad) in the same time. Recall
that A = A∗ = {j : β∗

j 6= 0} and that J′J = J̃ . Let 0 < τ < 1 be a real number. Then, on

the event Λn,p = {maxj=1,...,p 2|Vj | ≤ τλn} with Vj = n−1
∑n

i=1 xi,jεi, we have

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+ τλn|β∗ − β̂Quad|1

−µnβ
∗′J̃(β∗ − β̂Quad). (12)

The remainder of this prove is linked to the way we choose to treat the term µnβ
∗′J̃(β∗−β̂Quad)

and in particular in the way we choose to link the RHS of Inequality (12) to the quantity

|β∗
A − β̂Quad

A |2, where A is the true sparsity set. Note that

−µnβ
∗′J̃(β∗ − β̂Quad) ≤ µn|J̃β∗|∞|β∗ − β̂Quad|1.
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Then, if we set τ = 1
4 and the tuning parameter µn = λn

4|J̃β∗|∞
Inequality (12) becomes

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
≤ λn

[
|β∗|1 − |β̂Quad|1

]
+

λn

2
|β∗ − β̂Quad|1.

Add 2−1λn|β∗ − β̂Quad|1 to both sides of the previous inequality and then thanks to the fact

that |β∗
j − β̂Quad

j | + |β∗
j | − |β̂Quad

j | = 0 for any j /∈ A and to the triangular inequality, the
above inequality implies that

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
+

λn

2
|β∗ − β̂Quad|1 ≤ 2λn

√
|A||β∗

A − β̂Quad
A |2.

Let us now proof the main theorem. Thank to Inequality (11) in Proposition 2, we easily
obtain that

|β∗ − β̂Quad|1 ≤ 4
√

|A| |β∗
A − β̂Quad

A |2. (13)

and the vector β∗
A− β̂Quad

A is an admissible vector ∆ in Assumption B(A). As a consequence,
using this assumption in Equation (11), we get on one hand

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
≤ 2λn

√
|A|√

φ

√
n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
n+p

,

and then, thanks to the trivial inequality 2αβ ≤ α2/4 + 4β2 (for α, β ∈ R), we obtain

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
≤ 16

3φ
λ2
n|A|. (14)

This provides the first part of the result. On the other hand, Inequality (13), combined to
Assumption B(A) and Inequality (14), implies that

|β∗ − β̂Quad|1 ≤
16√
3φ

λn|A|, (15)

which is the desired bound on the ℓ1 estimation error given in Theorem 1. The proof is
completed when we use Lemma 2 with τ = 1/4 to control the probability of the event
Λn,p.

Proof of Theorem 2. We consider now the case where J̃ is very sparse. The S-Lasso and the
Elastic-Net can be considered as a special case. Most of the proof is inspired from the one
of Theorem 1. Then a similar reasoning leads to (12) and the only different occurs when we
deal with the term −µnβ

∗′J̃(β∗ − β̂Quad). We obviously can write

−µnβ
∗′J̃(β∗ − β̂Quad) = −µnβ

∗
B
′J̃(β∗

B − β̂Quad
B ) ≤ µn|J̃β∗|2|β∗

B − β̂Quad
B |2,
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and we recall that the set B includes A, the true sparsity set and is not much larger. In this

case we defined µn by µn =
λn

√
|A∗|

|J̃β∗|2
. Let also τ = 1/2 such that (12) implies

n+ p

n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
2

n+p
+

λn

2
|β∗ − β̂Quad|1 ≤ λn

∑

j∈A

∣∣∣β∗
j − β̂Quad

j

∣∣∣

+µn|J̃β∗|2|β∗
B − β̂Quad

B |2
≤ τ̃n|β∗

B − β̂Quad
B |2,

where τ̃n = λn

√
|A|+µn|J̃β∗|2, since |β∗

A−β̂Quad
A |1 ≤

√
|A||β∗

A−β̂Quad
A |2 ≤

√
|A||β∗

B−β̂Quad
B |2.

This above intermediate result is the analogous of Proposition 2 in the case where J̃ is sparse.

In particular, if we choose µn equal to
λn

√
|A|

|J̃β∗|2
, the quantity τ̃n becomes equal to 2λn

√
|A|,

and we get a similar bound but depending on |β∗
B − β̂Quad

B |2 instead of |β∗
A − β̂Quad

A |2. Taking
into account this changing, we use a similar resoning as in the proof of Theorem 1 and get
the desired result.

Proof of Proposition 1. Recall the short notation A = A∗. Theorem 1 states a bounds on
the prediction error and on the ℓ1 estimation error under Assumption B(A). Thanks to (13)
we can use Assumption B(A), which directly implies that the following inequality holds

|β∗
A − β̂Quad

A |2 ≤
√

φ−1
√

n+p
n

∥∥∥X̃β∗ − X̃β̂Quad
∥∥∥
n+p

. Combining this inequality with (14), we

easily get

|β∗
A − β̂Quad

A |2 ≤
4√
3φ

λn

√
|A|, (16)

and this completes the proof of the first part of the Proposition. We now show that A = A∗ ⊂
Â with high probability. Thanks to (16), we have with high probability |β∗

A − β̂Quad
A |∞ ≤ U

where we used U = 4√
3φ
λn

√
|A| for short. But

|β̂Quad
A − β∗

A|∞ ≤ U ⇔ β∗
j − U ≤ β̂Quad

j ≤ β∗
j + U ∀j ∈ A.

Note that by Assumption C, we have |β∗
j | > U, ∀j ∈ A. Then if we distinguish the case

β∗
j > 0 and the case β∗

j < 0, we easily conclude that β∗
j > 0 implies β̂Quad

j > 0 and β∗
j < 0

implies β̂Quad
j < 0. This ables us to write

P(Sgn(β̂Quad
A ) = Sgn(β∗

A)) ≤ P(|β̂Quad
A − β∗

A|∞ ≤ U) ≤ p1−κ2/128,

and this naturally implies the that A ⊂ Â with high probability.

Proof of Theorem 3. We now show that Â ⊂ A∗ with high probability. This proof is quite
inspired by the one by Bunea [4]. First of all, note that we can write the KKT conditions of
the minimization problem (6) as

|Kn(β̂
Quad − β∗)− X ′ε

n
+ µnJ̃β

∗|∞ ≤ λn

2
. (17)
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Then all the solutions of the criterion (6) share the same active set

Â =

{
j ∈ {1, . . . , p} : |(Kn(β̂

Quad − β∗))j −
X ′

jε

n
+ µn(J̃β

∗)j| =
λn

2

}
.

That is, all these solutions have non-zero components at the same positions. We now use this
property to show that the estimator β̂Quad has non-zero components at the same positions as a
well-controlled (but uncomputable) estimator on an event which occurs with high probability.
For this purpose, let us consider the criterion

F (b) = ‖Y −
∑

j∈A∗

Xjbj‖2n + λn

∑

j∈A∗

|bj |+ µnb
′
A∗J′

A∗JA∗bA∗ ,

where recall that for any p-dimensional vector a and any set Θ ⊂ {1, . . . , p}, the notation aΘ
means that (aΘ)j = aj ,∀j ∈ Θ and 0 otherwise. Moreover, JA∗ is such that (JA∗)j,k = Jj,k if
j, k ∈ (A∗)2 and 0 otherwise. For now on let us note A for A∗ for short. Define the estimator

b̂ = Argmin
b∈Rp: bAc=0p

F (b),

where 0p is the zero in Rp. Since we restricted b̂ to be zero when β∗ is zero and that this is
an information we do not have access to, we mention that the vector is not computable. Let
us denote by Γ the following event

Γ =
⋂

k/∈A





∣∣∣∣∣∣

∑

j∈A
(Kn)j,k(b̂j − β∗

j )−
X ′

kε

n
+ µn

∑

j∈A
J̃j,kβ

∗
j

∣∣∣∣∣∣
<

λn

2



 .

Observe how the event Γ is inspired by the KKT conditions (17). Actually, on the event Γ,
the components b̂k with k /∈ A equals zero as they do not saturate KKT conditions. This
makes the minimization of F (b) over b ∈ Rp : bAc = 0p coincide with the minimization of

the criterion (6) on Γ. That is, the estimator b̂ turns out to be also solution of the original
criterion (6) on Γ. But β̂Quad is also solution of (6) and then, as we already pointed, this
implies that on Γ, both of β̂Quad and b̂ have non-zero components at the same positions and
then, b̂ has non-zero components at components j ∈ Â. Add the fact that by construction
b̂Ac , then Â ⊂ A on the event Γ. It then remains to prove that the event Γ occurs with high
probability. We have

P(Â * A) ≤ P(Γc)

≤
∑

k/∈A
P




∣∣∣∣∣∣

∑

j∈A
(Kn)j,k(b̂j − β∗

j )−
X ′

kε

n
+ µn

∑

j∈A
J̃j,kβ

∗
j

∣∣∣∣∣∣
≥ λn

2




≤
∑

k/∈A
P




∣∣∣∣∣∣

∑

j∈A
(Kn)j,k(b̂j − β∗

j )−
X ′

kε

n

∣∣∣∣∣∣
≥ λn

2
− µn|J̃β∗|∞




≤
∑

k/∈A
P




∣∣∣∣∣∣

∑

j∈A
(Kn)j,k(b̂j − β∗

j )−
X ′

kε

n

∣∣∣∣∣∣
≥ λn

4




≤
∑

k/∈A
P


|
∑

j∈A
(Kn)j,k(b̂j − β∗

j )| ≥
λn

8


+

∑

k/∈A
P

(
|X

′
kε

n
| ≥ λn

8

)
(18)
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where we used the fact that for real number a and b, we have |a| + |b| ≥ |a + b| in the
third inequality and the fact that µn = λn

4|J̃β∗|∞
in the forth one. Let us consider the last

two terms in the last display separately. i) First, thanks to Lemma 2 with τ = 4−1, we

obtain
∑

k/∈AP
(
|X

′
kε
n | ≥ λn

8

)
≤ p1−κ2/128. This imposes that the parameter κ have to be

chosen larger than 8
√
2; ii) according to

∑
k/∈AP

(
|∑j∈A(Kn)j,k(b̂j − β∗

j )| ≥ λn
8

)
, we need

to control |∑j∈A(Kn)j,k(b̂j − β∗
j )|. On one hand, Assumption B2 implies that

|
∑

j∈A
(Kn)j,k(b̂j − β∗

j )| ≤
∑

j∈A
|b̂j − β∗

j |t/|A|. (19)

By definition of b̂, we just have to repeat the proof of Theorem 1 but with b̂ instead of β̂Quad

and only on the true sparsity setA. We get that on the event Λn,A =
{
maxj∈A |X ′

jε| ≤ λn/8
}
,

which is the same that Λn,p but using A instead of {1, . . . , p},
∑

j∈A
|b̂j − β∗

j | ≤
16√
3φ

λn|A|.

Moreover, similar reasoning as in Lemma 2 leads to P
(
Λc
n,A

)
≤ |A|p−κ2/8 ≤ p1−κ2/8. Com-

bine this result with (19) and to get

∑

k/∈A
P


|
∑

j∈A
(Kn)j,k(b̂j − β∗

j )| ≥
λn

8


 ≤ pP



∑

j∈A
|b̂j − β∗

j | ≥
|A|λn

8t




≤ pP



∑

j∈A
|b̂j − β∗

j | ≥
16√
3φ

λn|A|




≤ pP
(
Λc
n,A
)
≤ p2−κ2/128,

provided that t ≤
√
3φ

128 . We finally conclude by this last inequality, (18) that P(Â * A) ≤
p2−κ2/128 + p1−κ2/128 ≤ 2p2−κ2/128. Note that with our choice of λn = κσ

√
log(p)/n with κ ≥

16
√
2, we guaranty that this probability goes to zero exponentially fast and as a consequence,

we get the desired result.
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