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2 J.-P. CONZE, K. FR�CZEKAppendix B. Possible values of θ2/θ1 36Appendix C. Deviation of orreted funtions 37Appendix D. Example of non-regular step oyle 43Referenes 441. IntrodutionLet T : (X,B, µ) → (X,B, µ) be an ergodi automorphism of a standard Borelprobability spae and G be a loally ompat abelian group with identity elementdenoted by 0. We will onsider essentially the ase G = Rℓ, for ℓ ≥ 1.Eah measurable funtion ϕ : X → G determines a oyle ϕ( · ) : Z × X → Gfor T by the formula
ϕ(n)(x) =






ϕ(x) + ϕ(Tx) + . . .+ ϕ(T n−1x), if n > 0
0, if n = 0,

−(ϕ(T nx) + ϕ(T n+1x) + . . .+ ϕ(T−1x)), if n < 0.We onsider the assoiated skew produt
Tϕ : (X ×G,B × BG, µ×mG) → (X ×G,B × BG, µ×mG),

Tϕ(x, g) = (Tx, g + ϕ(x)),(1.1)where BG denotes the σ-algebra of Borel subsets and mG the Haar measure of G.The oyle (ϕ( · )) an be viewed as a "stationary" walk in G over the dynamialsystem (X,µ, T ). We say that it is reurrent if (ϕ(n)(x)) returns for a.e. x in�nitelyoften in any neighborhood of the identity element. The transformation Tϕ is thenonservative for the invariant σ-�nite measure µ × mG. If moreover the system
(X×G,µ×mG, Tϕ) is ergodi, we say that the oyle ϕ( · ) is ergodi. For simpliity,the expression "oyle ϕ" refers to the oyle (ϕ( · )) generated by ϕ over thedynamial system (X,B, µ, T ).A problem is the onstrution of reurrent ergodi oyles de�ned over a givendynamial system by regular funtions ϕ with values in Rℓ. There is an importantliterature on skew produts over an irrational rotation on the irle, and severallasses of ergodi oyles with values in R orRℓ are known in that ase (see [23℄, [25℄and [26℄ for some lasses of ergodi pieewise absolutely ontinuous non-ontinuous
R-oyles, [16℄ for examples of ergodi oyles with values in a nilpotent group,[7℄ for ergodi oyles in Z2 assoiated to speial diretional retangular billiard�ows in the plane).Skew produts appear in a natural way in the study of the billiard �ow in theplane with Z2 periodially distributed obstales. For instane when the obstalesare retangles, they an be modeled as skew produts over interval exhange trans-formations (abbreviated as IETs). Reurrene and ergodiity of these models aremainly open questions. Nevertheless a �rst step is the onstrution of reurrentergodi oyles over some lasses of IETs (see also a reent paper by P. Hubertand B. Weiss [17℄ for oyles assoiated to non-ompat translation surfaes).



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 3For the rotations on the irle, a speial lass onsists in the rotations withbounded partial quotients. For IETs, it is natural to onsider the so-alled intervalexhange transformations of periodi type. The aim of this paper is to onstrutdi�erent lasses of reurrent ergodi oyles over IETs in this speial lass.This is done in Setions 3, 4, and 5. In Setion 2 we reall basi fats aboutIETs of periodi type, as well as from the ergodi theory of oyles. In the ap-pendix proofs of the needed results on the growth of oyles of bounded variation(abbreviated as BV oyles) are given, mainly adapted from [24℄.In Setions 6 and 7 we present smooth models for reurrent and ergodi sys-tems based on the previous setions. We deal with a lass of smooth �ows onnon-ompat manifolds whih are extensions of multivalued Hamiltonian �ows onompat surfaes of higher genus. These �ows have Poinaré setions for whihthe �rst reurrene map is isomorphi to a skew produt of an IET and a BV o-yle. This allows us to prove a su�ient ondition for reurrene and ergodiity(see Setion 6) whenever the IET is of periodi type. In Setion 7 we show how toonstrut expliit non-ompat ergodi extensions of some Hamiltonian �ows.2. Preliminaries2.1. Interval exhange transformations.In this subsetion, we reall standard fats on IET's, with the presentation andnotations from [32℄ and [33℄. Let A be a d-element alphabet and let π = (π0, π1)be a pair of bijetions πε : A → {1, . . . , d} for ε = 0, 1. Denote by S0
A the subset ofirreduible pairs, i.e. suh that π1 ◦ π−1

0 {1, . . . , k} 6= {1, . . . , k} for 1 ≤ k < d. Wewill denote by πsymd any pair (π0, π1) suh that π1 ◦π−1
0 (j) = d+1−j for 1 ≤ j ≤ d.Let us onsider λ = (λα)α∈A ∈ RA

+ , where R+ = (0,+∞). Set
|λ| =

∑

α∈A

λα, I = [0, |λ|)and
Iα = [lα, rα), where lα =

∑

π0(β)<π0(α)

λβ , rα =
∑

π0(β)≤π0(α)

λβ .Then |Iα| = λα. Denote by Ωπ the matrix [Ωαβ ]α,β∈A given by
Ωαβ =





+1 if π1(α) > π1(β) and π0(α) < π0(β),
−1 if π1(α) < π1(β) and π0(α) > π0(β),
0 in all other ases.Given (π, λ) ∈ S0

A×RA
+, let T(π,λ) : [0, |λ|) → [0, |λ|) stand for the interval exhangetransformation (IET) on d intervals Iα, α ∈ A, whih are rearranged aording tothe permutation π−1

1 ◦ π0, i.e. T(π,λ)x = x+ wα for x ∈ Iα, where w = Ωπλ.Note that for every α ∈ A with π0(α) 6= 1 there exists β ∈ A suh that π0(β) 6= dand lα = rβ . It follows that(2.1) {lα : α ∈ A, π0(α) 6= 1} = {rα : α ∈ A, π0(α) 6= d}.By T̂(π,λ) : (0, |I|] → (0, |I|] denote the exhange of the intervals Îα = (lα, rα],
α ∈ A, i.e. T(π,λ)x = x+ wα for x ∈ Îα. Note that for every α ∈ A with π1(α) 6= 1



4 J.-P. CONZE, K. FR�CZEKthere exists β ∈ A suh that π1(β) 6= d and T(π,λ)lα = T̂(π,λ)rβ . It follows that(2.2) {T(π,λ)lα : α ∈ A, π1(α) 6= 1} = {T̂(π,λ)rα : α ∈ A, π1(α) 6= d}.A pair (π, λ) satis�es the Keane ondition if Tm(π,λ)lα 6= lβ for all m ≥ 1 and forall α, β ∈ A with π0(β) 6= 1.Let T = T(π,λ), (π, λ) ∈ S0
A ×RA

+, be an IET satisfying Keane's ondition. Then
λπ−1

0 (d) 6= λπ−1
1 (d). Let

Ĩ =
[
0,max

(
lπ−1

0 (d), lπ−1
1 (d)

))and denote by R(T ) = T̃ : Ĩ → Ĩ the �rst return map of T to the interval Ĩ. Set
ε(π, λ) =

{
0 if λπ−1

0 (d) > λπ−1
1 (d),

1 if λπ−1
0 (d) < λπ−1

1 (d).Let us onsider a pair π̃ = (π̃0, π̃1) ∈ S0
A, where

π̃ε(α) = πε(α) for all α ∈ A and
π̃1−ε(α) =





π1−ε(α) if π1−ε(α) ≤ π1−ε ◦ π−1
ε (d),

π1−ε(α) + 1 if π1−ε ◦ π−1
ε (d) < π1−ε(α) < d,

π1−επ
−1
ε (d) + 1 if π1−ε(α) = d.As it was shown by Rauzy in [27℄, T̃ is also an IET on d-intervals

T̃ = T(π̃,λ̃) with λ̃ = Θ−1(π, λ)λ,where
Θ(T ) = Θ(π, λ) = I + Eπ−1

ε (d)π−1
1−ε(d) ∈ SL(ZA).Moreover,(2.3) Θt(π, λ)ΩπΘ(π, λ) = Ωπ̃.It follows that kerΩπ = Θ(π, λ) ker Ωπ̃. We have also Ωtπ = −Ωπ. Thus taking

Hπ = Ωπ(R
A) = kerΩ⊥

π , we get Hπ̃ = Θt(π, λ)Hπ . Moreover, dimHπ = 2g and
dimkerΩπ = κ− 1, where κ is the number of singularities and g is the genus of thetranslation surfae assoiated to π. For more details we refer the reader to [33℄.The IET T̃ ful�lls the Keane ondition as well. Therefore we an iterate therenormalization proedure and generate a sequene of IETs (T (n))n≥0, where T (n) =

Rn(T ) for n ≥ 0. Denote by π(n) = (π
(n)
0 , π

(n)
1 ) ∈ S0

A the pair and by λ(n) =

(λ
(n)
α )α∈A the vetor whih determines T (n). Then T (n) is the �rst return map of

T to the interval I(n) = [0, |λ(n)|) and
λ = Θ(n)(T )λ(n) with Θ(n)(T ) = Θ(T ) · Θ(T (1)) · . . . · Θ(T (n−1)).2.2. IETs of periodi type.De�nition (see [29℄). An IET T is of periodi type if there exists p > 0 (alled aperiod of T ) suh that Θ(T (n+p)) = Θ(T (n)) for every n ≥ 0 and Θ(p)(T ) (alleda periodi matrix of T and denoted by A in all that follows) has stritly positiveentries.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 5Remark 2.1. Suppose that T = T(π,λ) is of periodi type. It follows that
λ = Θ(pn)(T )λ(pn) = Θ(p)(T )nλ(pn) ∈ Θ(p)(T )nRA,and hene λ belongs to ⋂

n≥0 Θ(p)(T )nRA whih is a one-dimensional onvex one(see [30℄). Therefore λ is a positive right Perron-Frobenius eigenvetor of the matrix
Θ(p)(T ). Sine the set S0

A is �nite, multiplying the period p if neessary, we anassume that π(p) = π. It follows that (π(p), λ(p)/|λ(p)|) = (π, λ/|λ|) and ρ :=
|λ|/|λ(p)| is the Perron-Frobenius eigenvetor of the matrix Θ(p)(T ). Reall thatsimilar arguments to those above show that every IET of periodi type is uniquelyergodi.A proedure giving an expliit onstrution of IETs of periodi type was intro-dued in [29℄. The onstrution is based on hoosing losed paths on the graphgiving the Rauzy lasses. Every IET of periodi type an be obtained this way.Let T = T(π,λ) be an IET of periodi type and p be a period suh that π(p) = π.Let A = Θ(p)(T ). By (2.3),

AtΩπA = Ωπ and hene kerΩπ = A kerΩπ and Hπ = AtHπ.Multiplying the period p if neessary, we an assume that A|kerΩπ
= Id (see Ap-pendix C for details). Denote by Sp(A) the olletion of omplex eigenvalues of

A, inluding multipliities. Let us onsider the olletion of Lyapunov exponents
log |ρ|, ρ ∈ Sp(A). It onsists of the numbers

θ1 > θ2 ≥ θ3 ≥ . . . ≥ θg ≥ 0 = . . . = 0 ≥ −θg ≥ . . . ≥ −θ3 ≥ −θ2 > −θ1,where 2g = dimHπ and 0 ours with the multipliity κ− 1 = dimkerΩπ (see e.g.[35℄ and [36℄). Moreover, ρ1 := exp θ1 is the Perron-Frobenius eigenvalue of A. Wewill use sometimes the symbol θi(T ) instead of θi to emphasize that it is assoiatedto T .De�nition. An IET of periodi type T(π,λ) has non-degenerated spetrum if θg > 0.2.3. Growth of BV oyles.The reurrene of a oyle ϕ with values in Rℓ is related to the growth of ϕ(n)when n tends to ∞.For an irrational rotation T : x→ x+α mod 1 (this an be viewed as an exhangeof 2 intervals), when ϕ has a bounded variation, the growth of ϕ(n) is ontrolledby the Denjoy-Koksma inequality: if ϕ is a zero mean funtion on X = R/Z withbounded variation Varϕ, and (qn) the denominators (of the onvergents) given bythe ontinued fration expansion of α, then the following inequality holds:
|
qn−1∑

j=0

ϕ(x+ jα)| ≤ Varϕ, ∀x ∈ X.(2.4)This inequality implies obviously reurrene of the oyle ϕ( · ) and if α has boundedpartial quotients (we say for brevity bpq) ∑n−1
j=0 ϕ(x+ jα) = O(log n) uniformly in

x ∈ X .



6 J.-P. CONZE, K. FR�CZEKIt is muh more di�ult to get a preise upper bound for the growth of a oyleover an IET. The following theorem (proved in Appendix A) gives for an IET ofperiodi type a ontrol on the growth of a BV oyle in terms of the Lyapunovexponents of the matrix A.Theorem 2.2. Suppose that T(π,λ) : I → I is an interval exhange transformationof periodi type, 0 ≤ θ2 < θ1 are the two largest Lyapunov exponents, and M is themaximal size of Jordan bloks in the Jordan deomposition of its periodi matrix
A. Then there exists C > 0 suh that

‖ϕ(n)‖sup ≤ C · logM+1 n · nθ2/θ1 · Varϕfor every funtion ϕ : I → R of bounded variation with zero mean and for eahnatural n. �For our purpose, this inequality is useful when θ2(T )/θ1(T ) is small. In Appen-dix B we will give examples with arbitrary small values of this ratio.2.4. Reurrene, essential values, and ergodiity of oyles.In this subsetion we reall some general fats about oyles. For relevant bak-ground material onerning skew produts and in�nite measure-preserving dynam-ial systems, we refer the reader to [28℄ and [1℄.Denote by G the one point ompati�ation of the group G. An element g ∈ Gis said to be an essential value of ϕ, if for every open neighbourhood Vg of g in Gand any set B ∈ B, µ(B) > 0, there exists n ∈ Z suh that
µ(B ∩ T−nB ∩ {x ∈ X : ϕ(n)(x) ∈ Vg}) > 0.(2.5)The set of essential values of ϕ will be denoted by E(ϕ). The set of �nite essentialvalues E(ϕ) := G∩E(ϕ) is a losed subgroup of G. We reall below some propertiesof E(ϕ) (see [28℄).Two oyles ϕ, ψ : X → G are alled ohomologous for T if there exists ameasurable funtion g : X → G suh that ϕ = ψ + g − g ◦ T . The orrespondingskew produts Tϕ and Tψ are then measure-theoretially isomorphi. A oyle

ϕ : X → G is a oboundary if it is ohomologous to the zero oyle.If ϕ and ψ are ohomologous then E(ϕ) = E(ψ). Moreover, ϕ is a oboundaryif and only if E(ϕ) = {0}.A oyle ϕ : X → G is reurrent (as de�ned in the introdution) if and only if,for eah open neighborhood V0 of 0, (2.5) holds for some n 6= 0. This is equivalentto the onservativity of the skew produt Tϕ (f. [28℄). Let ϕ : X → Rℓ be anintegrable funtion. If it is reurrent, then ∫
X
ϕdµ = 0; moreover, for ℓ = 1 thisondition is su�ient for reurrene when T is ergodi.The group E(ϕ) oinides with the group of periods of Tϕ-invariant funtionsi.e. the set of all g0 ∈ G suh that, if f : X ×G → R is a Tϕ-invariant measurablefuntion, then f(x, g+ g0) = f(x, g) µ×mG-a.e. In partiular, Tϕ is ergodi if andonly if E(ϕ) = G.A simple su�ient ondition of reurrene is the following:



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 7Proposition 2.3 (see Corollary 1.2 in [5℄). If ϕ : X → Rℓ is a square integrableoyle for an automorphism T : (X,B, µ) → (X,B, µ) suh that ‖ϕ(n)‖L2(µ) =

o(n1/ℓ), then it is reurrent. �In view of Theorem 2.2, as a onsequene we have the following.Corollary 2.4. If T : I → I is an IET of periodi type suh that θ2(T )/θ1(T ) < 1/ℓfor an integer ℓ ≥ 1, then every oyle ϕ : I → Rℓ over T of bounded variationwith zero mean is reurrent. If, for j = 1, . . . , ℓ, Tj : I(j) → I(j) are intervalexhange transformations of periodi type suh that θ2(Tj)/θ1(Tj) < 1/ℓ, then every"produt" oyle ϕ = (ϕ1, . . . , ϕℓ) : I(1)× . . .×I(ℓ) → Rℓ of bounded variation withzero mean over T1 × ...× Tℓ is reurrent. �We ontinue these preliminaries by some useful observations for proving the er-godiity of oyles. Let (X, d) be a ompat metri spae. Let B stand for the
σ�algebra of all Borel sets and let µ be a probability Borel measure on X . By χB wewill denote the indiator funtion of a set B. Suppose that T : (X,B, µ) → (X,B, µ)is an ergodi measure�preserving automorphism and there exist an inreasing se-quene of natural numbers (qn) and a sequene of Borel sets (Cn) suh that

µ(Cn) → α > 0, µ(Cn△T−1Cn) → 0 and sup
x∈Cn

d(x, T qnx) → 0.Assume that G ⊂ Rℓ for some ℓ ≥ 1. Let ϕ : X → G be a Borel integrableoyle for T with zero mean. Suppose that the sequene (
∫
Cn

|ϕ(qn)(x)|dµ(x))n≥1is bounded. As the distributions
(µ(Cn)−1(ϕ(qn)|Cn

)∗(µ|Cn
), n ∈ N)are uniformly tight, by passing to a further subsequene if neessary we an assumethat they onverge weakly to a probability Borel measure P on G.Lemma 2.5. The topologial support of the measure P is inluded in the group

E(ϕ) of essential values of the oyle ϕ.Proof. Suppose that g ∈ supp(P ). Let Vg be an open neighborhood of g. Let
ψ : G → [0, 1] be a ontinuous funtion suh that ψ(g) = 1 and ψ(h) = 0 for
h ∈ G \ Vg. Thus ∫

G ψ(g) dP (g) > 0. By Lemma 5 in [13℄, for every B ∈ B with
µ(B) > 0 we have

µ(B ∩ T−qnB ∩ (ϕ(qn) ∈ Vg)) ≥
∫

Cn

ψ
(
ϕ(qn)(x)

)
χB(x)χB(T qnx) dµ(x)

→ α

∫

X

∫

G

ψ(g)χB(x) dP (g) dµ(x) = αµ(B)

∫

G

ψ(g) dP (g) > 0,and hene g ∈ E(ϕ). �Corollary 2.6 (see also [6℄). If ϕ(qn)(x) = gn for all x ∈ Cn and gn → g, then
g ∈ E(ϕ).Proposition 2.7 (see Proposition 3.8 in [28℄). Let T : (X,B, µ) → (X,B, µ) bean ergodi automorphism and let ϕ : X → G be a measurable oyle for T . If
K ⊂ G is a ompat set suh that K ∩E(ϕ) = ∅, then there exists B ∈ B suh that
µ(B) > 0 and

µ(B ∩ T−nB ∩ (ϕ(n) ∈ K)) = 0 for every n ∈ Z.



8 J.-P. CONZE, K. FR�CZEKLemma 2.8. Let K ⊂ G be a ompat set. If for every B ∈ B with µ(B) > 0 andevery neighborhood V0 ⊂ G of zero there exists n ∈ Z suh that
µ(B ∩ T−nB ∩ (ϕ(n) ∈ K + V0)) > 0,then K ∩E(ϕ) 6= ∅. In partiular, when K = {g,−g}, where g is an element of G,then g ∈ E(ϕ).Proof. Suppose that K ∩ E(ϕ) = ∅. Sine K is ompat and E(ϕ) is losed, thereexists a neighborhood V0 of zero suh that V0 is ompat and (K +V0)∩E(ϕ) = ∅.As K + V0 is also ompat, by Proposition 2.7, there exists B ∈ B suh that

µ(B) > 0 and
µ(B ∩ T−nB ∩ (ϕ(n) ∈ (K + V0))) = 0 for every n ∈ Z,ontrary to assumption. The last laim is lear. �Consider the quotient oyle ϕ∗ : X → G/E(ϕ) given by ϕ∗(x) = ϕ(x) +E(ϕ).Then E(ϕ∗) = {0}. The oyle ϕ is alled regular if E(ϕ∗) = {0} and non�regularif E(ϕ∗) = {0,∞}. Reall that if ϕ is regular then it is ohomologous to a oyle

ψ : X → E(ϕ) suh that E(ψ) = E(ϕ).Lemma 2.9. If H is a losed subgroup of E(ϕ) suh that the quotient oyle
ϕH : X → G/H, ϕH(x) = ϕ(x) +H is ergodi, then ϕ : X → G is ergodi as well.Proof. Let f(x, g) be a measurable Tϕ-invariant funtion. Then, sine H ⊂ E(ϕ),
f is H-invariant. Sine ϕH is ergodi, f is onstant. �3. Ergodiity of pieewise linear oylesNotations. We denote by BV(⊔α∈AI

(k)
α ) the spae of funtions ϕ : I(k) → R suhthat the restrition ϕ : I

(k)
α → R is of bounded variation for every α ∈ A, and by

BV0(⊔α∈AI
(k)
α ) the subspae of funtions in BV(⊔α∈AI

(k)
α ) with zero mean. Weadopt the notation from [24℄. The spae BV(⊔α∈AI

(k)
α ) is equipped with the norm

‖ϕ‖BV = ‖ϕ‖sup + Varϕ, where
Varϕ =

∑

α∈A

Varϕ|
I
(k)
α
.For ϕ ∈ BV(⊔α∈AIα) and x ∈ I, ϕ+(x) and ϕ−(x) denote the right-handed andleft-handed limit of ϕ at x respetively. We denote by BV1(⊔α∈AIα) the spae offuntions ϕ : I → R whih are absolutely ontinuous on eah Iα, α ∈ A and suhthat ϕ′ ∈ BV(⊔α∈AIα). For ϕ ∈ BV1(⊔α∈AIα) let

s(ϕ) =

∫

I

ϕ′(x) dx =
∑

α∈A

(ϕ−(rα) − ϕ+(lα)).We denote by BV1
∗(⊔α∈AIα) the subspae of funtions ϕ ∈ BV1(⊔α∈AIα) forwhih s(ϕ) = 0, and by PL(⊔α∈AIα) the set of pieewise linear (with onstantslope) funtions ϕ : I → R suh that ϕ(x) = sx+ cα for x ∈ Iα.Proposition 3.1 (see [24℄). If T : I → I satis�es a Roth type ondition, then eahoyle ϕ ∈ BV1

∗(⊔α∈AIα) for T is ohomologous to a oyle whih is onstant



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 9on eah interval Iα, α ∈ A. Moreover, the set of IETs satisfying this Roth typeondition has full measure and ontains all IETs of periodi type.As a onsequene of Proposition 3.1 we have the following.Lemma 3.2. If T : I → I is of periodi type, then eah oyle ϕ ∈ BV1(⊔α∈AIα)is ohomologous to a oyle ϕpl ∈ PL(⊔α∈AIα) with s(ϕpl) = s(ϕ).3.1. Pieewise linear oyles.Now we will fous on the ase where the slope of a pieewise linear oyle isnon-zero and show ergodiity. We will need an information on the distribution ofdisontinuities of ϕ(n).Let T : I → I be an arbitrary IET satisfying Keane's ondition. Denote by µ theLebesgue measure on I. Eah �nite subset D ⊂ I determines a partition P(D) of
I into left-losed and right-open intervals. Denote by minP(D) and maxP(D) thelength of the shortest and the longest interval of the partition P(D) respetively.For every n ≥ 0 let Pn(T ) stand for the partition given by the subset {T−klα : α ∈
A, 0 ≤ k < n}. Then T n is a translation on eah interval of the partition Pn(T ).The following result shows that the disontinuities for iterations of IETs of perioditype are well distributed.Proposition 3.3 (see [22℄). For every IET T of periodi type there exists c ≥ 1suh that for every n ≥ 1 we have(3.1) 1

cn
≤ minPn(T ) ≤ maxPn(T ) ≤ c

nWe begin by a preliminary result whih will be proved later in a general version(see Theorem 3.5 and 3.9 for ℓ = 1).Theorem 3.4. Let T : I → I be an IET of periodi type. If ϕ ∈ PL(⊔α∈AIα) is apieewise linear oyle with zero mean and s(ϕ) 6= 0, then the skew produt Tϕ isergodi.Now we onsider oyles taking values in Rℓ, ℓ ≥ 1. Suppose that ϕ : I → Rℓ isa pieewise linear oyle with zero mean suh that the slope s(ϕ) ∈ Rℓ is non-zero.Then, by an appropriate hoie of oordinates, we obtain s(ϕ1) 6= 0 and s(ϕ2) = 0,where ϕ = (ϕ1, ϕ2) and ϕ1 : I → R, ϕ2 : I → Rℓ−1. Thus ϕ2 is pieewiseonstant and, roughly speaking, the ergodiity of ϕ2 implies the ergodiity of ϕ.The ergodiity of pieewise onstant oyles will be studied in Setions 4 and 5.Theorem 3.5. Suppose that T : I → I is an IET of periodi type suh that
θ2(T )/θ1(T ) < 1/ℓ. Let ϕ1 ∈ PL(⊔α∈AIα,R), ϕ2 ∈ PL(⊔α∈AIα,R

ℓ−1) be pieewiselinear oyles with zero mean suh that s(ϕ1) 6= 0 and s(ϕ2) = 0. If the oyle
ϕ2 : I → Rℓ−1 is ergodi, then the oyle ϕ = (ϕ1, ϕ2) : I → Rℓ is ergodi as well.Proof. Without loss of generality we an assume that s(ϕ1) = 1. It su�es to showthat for every 0 < a < 1

4c , the pair (a, 0) belongs to E(ϕ1, ϕ2). Indeed this impliesthat R × {0} ⊂ E(ϕ1, ϕ2), and sine the oyle ϕ2 is ergodi, by Lemma 2.9, itfollows that (ϕ1, ϕ2) : I → Rℓ is ergodi as well.Fix 0 < a < 1
4c , where c is given by Proposition 3.3. By a density point argument,for every measurable B ⊂ I with µ(B) > 0 and every ε ∈ (0, a2 ), there are B′ ⊂ B



10 J.-P. CONZE, K. FR�CZEKwith µ(B′) > 0 and n0 ≥ 1 suh that for n ≥ n0,(3.2) µ
((
x− c

n
, x+

c

n

)
\B

)
<
ε

n
for every x ∈ B′.Sine θ2(T )/θ1(T ) < 1/ℓ, by Corollary 2.4, (ϕ1, ϕ2) is reurrent, and hene thereexists n ≥ n0 suh that

µ(B′ ∩ T−nB′ ∩ (|ϕ(n)
1 | < ε) ∩ (‖ϕ(n)

2 ‖ < ε)) > 0.Let x0 ∈ I be suh that x0, T
nx0 ∈ B′, |ϕ(n)

1 (x0)| < ε and ‖ϕ(n)
2 (x0)‖ < ε. Denoteby J(x0) ⊂ I the interval of the partition Pn(T ) whih ontains x0. Then ϕ(n)

1 isa linear funtion on J(x0) with slope n. Sine 2ε < a < 1/(2c)− 2ε and |J(x0)| >
1/(cn) (by (3.1)), there exists y0 suh that (y0 − ε/n, y0 + ε/n) ⊂ J(x0) and

|ϕ(n)
1 (y)| ∈ a+ (−ε, ε) for all y ∈ (y0 − ε/n, y0 + ε/n).Sine ϕ(n)

2 is onstant on J(x0), we have
‖ϕ(n)

2 (x)‖ < ε for all x ∈ (y0 − ε/n, y0 + ε/n).Therefore
µ

(
B ∩ T−nB ∩ (ϕ

(n)
1 ∈ {−a, a} + (−ε, ε)) ∩ (ϕ

(n)
2 ∈ (−ε, ε)ℓ−1)

)

≥ µ
(
(y0 − ε/n, y0 + ε/n) ∩B ∩ T−nB

)
.

(3.3)By (3.1) we have |J(x0)| < c/n, and hene J(x0) ⊂ (x0 − c/n, x0 + c/n). Moreover,
T nJ(x0) is an interval suh that |T nJ(x0)| = |J(x0)| < c/n, so that

T nJ(x0) ⊂
(
T nx0 −

c

n
, T nx0 +

c

n

)
.Sine x0, T

nx0 ∈ B′, by (3.2), µ(J(x0) \ B) < ε/n and µ(T nJ(x0) \ B) < ε/n.Therefore, µ(J(x0) \ (B ∩ T−nB)) < 2ε/n, and hene
µ

(
(y0 − ε/n, y0 + ε/n) \ (B ∩ T−nB)

)
< 2ε/n.Thus

µ
(
(y0 − ε/n, y0 + ε/n) ∩B ∩ T−nB

)
> 0.In view of (3.3), it follows that

µ
(
B ∩ T−nB ∩ (ϕ

(n)
1 ∈ {−a, a} + (−ε, ε)) ∩ (ϕ

(n)
2 ∈ (−ε, ε)ℓ−1)

)
> 0.By Lemma 2.8, we onlude that (a, 0) ∈ E(ϕ1, ϕ2), whih ompletes the proof. �3.2. Produt oyles.The method used in Theorem 3.4 allows us to prove the ergodiity for Cartesianproduts of ertain skew produts. As an example, �rst we apply this method foroyles taking values in Z over irrational rotations on the irle. This will give alass of ergodi Z2-oyles driven by 2-dimensional rotationsLet T (x, y) = (x+α1, x+α2) be a 2-dimensional rotation and ϕ be a zero meanfuntion on T2 of the form ϕ(x, y) = (ϕ1(x), ϕ2(y)) with ϕ1 and ϕ2 BV funtions. If

α1 and α2 have bounded partial quotients, then (2.4) implies ‖ϕ(n)‖sup = O(log n),and therefore, by Proposition 2.3, the oyle ϕ is reurrent.Consider the funtion ϕ(x, y) = (2·χ[0, 12 )(x)−1, 2·χ[0, 12 )(y)−1) or more generallyassume that ϕi, i = 1, 2, are step funtions in one variable with values in Z. For
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i = 1, 2, we denote by Di ⊂ T the �nite set of disontinuities of ϕi and by Ji ⊂ Zthe orresponding set of jumps of the funtions ϕi. It de�nes a reurrent Z2-oyledriven by a 2-dimensional rotation. A question is then the ergodiity (with respetto the measure µ ×m the produt of the uniform measure on T2 by the ountingmeasure on Z2) of the skew-produt

Tϕ : T2 × Z2 → T2 × Z2, Tϕ(x, y, n̄) = (x+ α1, y + α2, n̄+ ϕ(x, y)).Theorem 3.6. Let α1 and α2 be two rationally independent irrational bpq numbers,and let ϕ(x, y) = (ϕ1(x), ϕ2(y)) be a funtion on the torus with step funtionsomponents ϕi : T → Z, i = 1, 2, suh that D1, D2 ⊂ Q and the sets of the jumps
J1 × {0}, {0} × J2 generate Z2. Then the system (T2 × Z2, µ×m,Tϕ) is ergodi.Proof. We have seen that the oyle ϕ(n) is reurrent. We prove that the groupof its �nite essential values is Z2.Let n be a �xed integer and let (γin,k)k=1,...,din be the ordered set of the dindisontinuities of ϕ(n)

i in [0, 1) (where di := #Di). In the sequene of denominatorsof αi, let qiri(n) be suh that qiri(n) ≤ n < qiri(n)+1. We write simply qiri
for qiri(n).As αi is bpq, the ratio qiri+1/q

i
ri
is bounded by a onstant independent from n.Sine αi is bpq and the disontinuity points of ϕi are rational, the distanesbetween onseutive disontinuities of ϕ(n) are of the same order: there are twopositive onstants c1, c2 suh that(3.4) c1

n
≤ γin,k+1 − γin,k ≤ c2

n
, k = 1, . . . , din, i = 1, 2.Reall that, for eah t ∈ Di and eah 0 ≤ ℓ < qri

, there is (mod 1) a point t− kαi,
0 ≤ k < qri

in eah interval [t+ ℓ/qiri
, t+(ℓ+ 1)/qiri

]. Therefore, in eah interval oflength greater than 2/qir and for eah t ∈ Di, there is at least one disontinuity of
ϕ

(n)
i of the form t− kαi, 0 ≤ k < n.It implies that if we move a point x on the unit interval by a displaementgreater than 2/qiri

, we ross disontinuities of ϕ(n)
i orresponding to eah di�erentdisontinuity t ∈ Di of ϕi.For x ∈ T, onsider the interval [γin,k, γ

i
n,k+1) whih ontains x and denote it by

Iin(x). The intervals [γin,k+ℓ, γ
i
n,k+ℓ+1), where k + ℓ is taken mod d1n, are denotedby Iin,ℓ(x). This gives two olletions of retangles

Rnk,ℓ(x, y) := I1
n,k(x) × I2

n,ℓ(y) and R̃nk,ℓ(x, y) := T nRnk,ℓ(T
−n(x, y))for eah (x, y) ∈ T2. By (3.4), we have(3.5) µ(Rnk,ℓ(x, y)) and µ(R̃nk,ℓ(x, y)) ∈

[
c21
n2
,
c22
n2

]
.Let M be a natural number suh that c1M > 1. Then, by (3.4), the length of⋃M

k=−M Iin,k(x) is greater than 2/qiri
, i = 1, 2. Let δ > 0 be suh that δc2(2M+1)2 <

1/2 with c = c22/c
2
1. Set

RnM (x, y) :=

k=M⋃

k=−M

ℓ=M⋃

ℓ=−M

Rnk,ℓ(x, y),

R̃nM (x, y) := T nRnM (T−n(x, y)) =

k=M⋃

k=−M

ℓ=M⋃

ℓ=−M

R̃nk,ℓ(x, y).



12 J.-P. CONZE, K. FR�CZEKIn view of (3.4),(3.6) length(RnM (x, y))

width(RnM (x, y))
and length(R̃nM (x, y))

width(R̃nM (x, y))
∈

[
c1
c2
,
c2
c1

]
.The oyle ϕ(n) has a onstant value on eah retangle Rnk,ℓ(x, y) and the di�erenebetween its value on Rnk+1,ℓ(x, y) and Rnk,ℓ(x, y) (resp. Rnk,ℓ+1(x, y) and Rnk,ℓ(x, y))belongs to J1 × {0} (resp. {0} × J2). Denote by κnk,ℓ(x, y) the value of ϕ(n) on

Rnk,ℓ(x, y). Sine the length of RnM (x, y) is greater than 2/q1r1 and the width of
RnM (x, y) is greater than 2/q2r2 we have

{κnk+1,ℓ(x, y) − κnk,ℓ(x, y) : −M ≤ k < M} = J1 × {0},
{κnk,ℓ+1(x, y) − κnk,ℓ(x, y) : −M ≤ l < M} = {0} × J2.

(3.7)Let
K :=

M︷ ︸︸ ︷
(J1 ∪ {0} + . . .+ J1 ∪ {0})×

M︷ ︸︸ ︷
(J2 ∪ {0} + . . .+ J2 ∪ {0}) .Let K1 be the subset of elements of K whih are not essential values of ϕ, andsuppose K1 6= ∅. By Proposition 2.7, there exists B ⊂ T2 suh that µ(B) > 0 and(3.8) µ(B ∩ T−nB ∩ (ϕ(n) ∈ K1)) = 0 for every n ∈ Z.Sine the areas of RnM (x, y), R̃nM (x, y) tend to 0 as n → ∞ and the retanglessatisfy (3.6), by a density point argument, there is a Borel subset B′ of B ofpositive measure and there is n0 ∈ N suh that for n ≥ n0 and (x, y) ∈ B′:

µ(B ∩RnM (x, y)) ≥ (1 − δ)µ(RnM (x, y)), µ(B ∩ R̃nM (x, y)) ≥ (1 − δ)µ(R̃nM (x, y)).By (3.5), the areas of the small retangles being omparable, and hene
µ(RnM (x, y)) ≤ (2M + 1)2c2µ(Rnk,ℓ(x, y)) for all k, ℓ ∈ [−M,M ].Therefore, by the hoie of δ, for eah (x, y) ∈ B′ we have

µ(B ∩Rnk,ℓ(x, y)) ≥ µ(Rnk,ℓ(x, y)) − µ(Bc ∩Rnk,ℓ(x, y))
≥ µ(Rnk,ℓ(x, y)) − µ(Bc ∩RnM (x, y)) ≥ µ(Rnk,ℓ(x, y)) − δµ(RnM (x, y))

≥ µ(Rnk,ℓ(x, y)) − δ(2M + 1)2c2µ(Rnk,ℓ(x, y)) >
1

2
µ(Rnk,ℓ(x, y)).In the same way, if T n(x, y) ∈ B′, then µ(B∩R̃nk,ℓ(T n(x, y))) > 1

2µ(R̃nk,ℓ(T
n(x, y))).Sine R̃nk,ℓ(T n(x, y)) = T nRnk,ℓ(x, y), we have

µ(T−nB ∩Rnk,ℓ(x, y)) >
1

2
µ(Rnk,ℓ(x, y)).The preeding inequalities imply

µ(B ∩ T−nB ∩Rnk,ℓ(x, y)) > 0, ∀k, ℓ ∈ [−M,M ].(3.9)By the reurrene property, there is n > n0 suh that
µ(B′ ∩ T−nB′ ∩ {ϕ(n)( · ) = (0, 0)}) > 0.If (x, y) ∈ B′∩T−nB′∩{ϕ(n)( · ) = (0, 0)}, then ϕ(n) is equal to (0, 0) on Rn0,0(x, y).Moreover, on eah retangle Rnk,ℓ(x, y), k, ℓ ∈ [−M,M ], the oyle ϕ(n) is onstantand is equal to κk,ℓ(x, y) ∈ K. In view of (3.9), it follows that

µ(B ∩ T−nB ∩ {ϕ(n)( · ) = κk,ℓ(x, y)}) > 0, ∀k, ℓ ∈ [−M,M ].



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 13Therefore, by (3.8) and the de�nition of K1, κk,l(x, y) 6∈ K1, and so it belongs to
E(ϕ) for all k, ℓ ∈ [−M,M ]. In view of (3.7), it follows that J1 × {0}, {0} × J2 ⊂
E(ϕ), and hene E(ϕ) = Z2. �Remark 3.7. The ergodiity of Tϕ an be proven also for the more general asewhere αi is bpq and (Di−Di)\ {0} ⊂ (Q+Qαi)\ (Z+Zαi) for i = 1, 2. To extendthe result of Theorem 3.6, we use that the disontinuities of the oyle are "welldistributed" (the ondition (3.4)) whih is a onsequene of Lemma 2.3 in [15℄.Now by a similar method we show the ergodiity of Cartesian produts of skewproduts that appeared in Theorem 3.4. We need an elementary algebrai result:Remark 3.8. Let R be a real m× k�matrix. Then the subgroup R(Zk) is dense in
Rm if and only if

∀a ∈ Rm, Rt(a) ∈ Zk ⇒ a = 0.(3.10)For instane, if R = [rij ] is a m× (m+1)�matrix suh that rij = ±δij for 1 ≤ i, j ≤
m and 1, r1m+1, . . . , rmm+1 are independent over Q, then (3.10) holds.Theorem 3.9. Let Tj : I(j) → I(j) be an interval exhange transformation ofperiodi type suh that θ2(Tj)/θ1(Tj) < 1/ℓ for j = 1, . . . , ℓ. Suppose that theCartesian produt T1 × . . . × Tℓ is ergodi. If ϕj ∈ PL(⊔α∈A|

I
(j)
α ) is a pieewiselinear oyle with zero mean and s(ϕj) 6= 0 for j = 1, . . . , ℓ, then the Cartesianprodut (T1)ϕ1 × . . .× (Tℓ)ϕℓ

is ergodi.Proof. Sine T1, . . . , Tℓ have periodi type, by Lemma 3.3 there exists c > 0 suhthat(3.11) 1

cn
≤ minPn(Tj) ≤ maxPn(Tj) ≤

c

n
for all j = 1, . . . , ℓ and n > 0.Let Ī = I(1) × . . .× I(l), T̄ = T1 × . . .× Tℓ and let ϕ̄ : Ī → Rℓ be given by

ϕ̄(x1, . . . , xℓ) = (ϕ1(x1), . . . , ϕℓ(xℓ)).Then (T1)ϕ1 × . . .×(Tℓ)ϕℓ
= T̄ϕ̄. Denote by µ̄ the Lebesgue measure on Ī. Withoutloss of generality we an assume that s(ϕj) = ±1 for j = 1, . . . , ℓ. By Corollary 2.4,the oyle ϕ̄ for T̄ is reurrent.To prove the result, it su�es to show that, for every r = (r1, . . . , rℓ) ∈ [0, 1

4c )
ℓ,the set E(ϕ̄) has nontrivial intersetion with

{s • r := (s1r1, . . . , sℓrℓ) : s = (s1, . . . , sℓ) ∈ {−1, 1}ℓ}.Indeed, for a �xed rational 0 < r < 1
4c , let us onsider a olletion of vetors

r(i) = (r1i, . . . , rℓi) ∈ [0, 1/(4c))ℓ, 1 ≤ i ≤ ℓ + 1 suh that rij = rδij for all
1 ≤ i, j ≤ ℓ and 1, r1 ℓ+1, . . . , rℓ ℓ+1 are independent over Q. By Remark 3.8, forany hoie s(i) ∈ {−1, 1}ℓ, 1 ≤ i ≤ ℓ+1 the subgroup generated by vetors s(i)•r(i),
1 ≤ i ≤ ℓ + 1 is dense in Rℓ. Sine E(ϕ̄) ⊂ Rℓ is a losed subgroup and for every
1 ≤ i ≤ ℓ+ 1 there exists s(i) ∈ {−1, 1}ℓ suh that s(i) • r(i) ∈ E(ϕ), it follows that
E(ϕ̄) = Rℓ, and hene T̄ϕ̄ is ergodi.Fix r = (r1, . . . , rℓ) ∈ [0, 1

4c)
ℓ. We have to show that for every measurable set

B ⊂ Ī with µ̄(B) > 0 and 0 < ε < 1/c there exists n > 0 suh that the set of all
x̄ = (x1, . . . , xℓ) ∈ B suh that

(T n1 x1, . . . , T
n
ℓ xℓ) ∈ B, ϕ

(n)
j (xj) ∈ {−rj , rj} + (−ε, ε) for 1 ≤ j ≤ ℓ



14 J.-P. CONZE, K. FR�CZEKhas positive µ̄ measure. By a density point argument, there exists B′ ⊂ B and
n0 ≥ 1 suh that µ̄(B′) > 0 and for every (x1, . . . , xℓ) ∈ B′ and n ≥ n0 we have(3.12) µ̄(

ℓ∏

j=1

(
xj −

c

n
, xj +

c

n

)
\B) <

ε

4(2n)ℓ
.Sine ϕ̄ (as a oyle for T̄ ) is reurrent, there exists n ≥ n0 suh that

µ̄
(
B′ ∩ T̄−nB′ ∩ (ϕ̄(n) ∈ (−ε/2, ε/2)ℓ)

)
> 0.Next hoose x0 = (x0

1, . . . , x
0
ℓ) ∈ B′ so that (T n1 x

0
1, . . . , T

n
ℓ x

0
ℓ) ∈ B′, |ϕ(n)

j (x0
j )| < ε/2for 1 ≤ j ≤ ℓ. For eah 1 ≤ j ≤ ℓ denote by Jj,n(x

0
j ) ⊂ Ij the interval of thepartition Pn(Tj) suh that x0

j ∈ Jj,n(x
0
j ). By assumption, ϕ(n)

j is ontinuous onevery interval of Pn(Tj). Therefore, for every 1 ≤ j ≤ ℓ, the funtion ϕ
(n)
j isontinuous on Jj,n(x0

j ), and hene ϕ(n)
j (x) = ±nx + dn,j for x ∈ Jj,n(x

0
j ). In viewof (3.11), 1

cn < |Jj,n(x0
j )| < c

n , and hene Jj,n(x0
j ) ⊂ (x0

j − c/n, x0
j + c/n) for every

1 ≤ j ≤ ℓ. Moreover, T nj Jj,n(x0
j ) is an interval suh that |T nj Jj,n(x0

j )| = |Jj,n(x0
j )| <

c/n, so(3.13) T nj Jj,n(x
0
j ) ⊂

(
T nj x

0
j −

c

n
, T nj x

0
j +

c

n

)
.Sine |ϕ(n)

j (x0
j )| < ε/2, ϕ(n)

j is linear on Jj,n(x0
j ) with slope ±n and 0 ≤ rj <

1
4c <

1
2c − ε

4 , we an �nd (y0
j − ε/(4n), y0

j + ε/(4n)) ⊂ Jj,n(x
0
j ) suh that(3.14) |ϕ(n)

j (x)| ∈ rj + (−ε, ε) for all x ∈ (y0
j − ε/(4n), y0

j + ε/(4n)).Let y0 = (y0
1 , . . . , y

0
ℓ ) ∈

∏ℓ
j=1 Jj,n(x

0
j ). Sine

ℓ∏

j=1

(
y0
j −

ε

4n
, y0
j +

ε

4n

)
⊂

ℓ∏

j=1

Jj,n(x
0
j ) ⊂

ℓ∏

j=1

(
x0
j −

c

n
, x0
j +

c

n

)
,

x0 ∈ B′ and n ≥ n0, by (3.12), we have
µ̄




ℓ∏

j=1

(
y0
j −

ε

4n
, y0
j +

ε

4n

)
\B


 <

ε

4(2n)ℓ
.Moreover, by (3.13),

T̄ n
ℓ∏

j=1

(
y0
j −

ε

4n
, y0
j +

ε

4n

)
⊂

ℓ∏

j=1

T nj Jj,n(x
0
j ) ⊂

ℓ∏

j=1

(
T nj x

0
j −

c

n
, T nj x

0
j +

c

n

)
.Sine (T n1 x

0
1, . . . , T

n
ℓ x

0
ℓ ) ∈ B′ and n ≥ n0, by (3.12), it follows that

µ̄(

ℓ∏

j=1

(y0
j −

ε

4n
, y0
j +

ε

4n
) \ T̄−nB) = µ̄(T̄ n

ℓ∏

j=1

(y0
j −

ε

4n
, y0
j +

ε

4n
) \B) <

ε

4(2n)ℓ
.Hene

µ̄(

ℓ∏

j=1

(
y0
j −

ε

4n
, y0
j +

ε

4n
) ∩ (B ∩ T̄−nB)

)
>

ε

2(2n)ℓ
> 0.
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ϕ(n)(x) ∈

ℓ∏

j=1

({−rj, rj} + (−ε, ε)) if x ∈
ℓ∏

j=1

(
y0
j −

ε

4n
, y0
j +

ε

4n

)
.Thus

µ̄(B ∩ T̄−nB ∩ (ϕ̄(n) ∈
ℓ∏

j=1

({−rj , rj} + (−ε, ε)))) > ε

2(2n)ℓ
> 0.By Lemma 2.8, it follows that (∏ℓ

j=1{−rj, rj}
)
∩ E(ϕ̄) 6= ∅. This ompletes theproof. �4. Ergodiity of ertain step oylesIn this setion we apply Corollary 2.6 to prove the ergodiity of step oylesover IETs of periodi type.4.1. Step oyles.Let T : I → I be an arbitrary IET satisfying Keane's ondition. Suppose that

(nk)k≥0 is an inreasing sequene of natural numbers suh n0 = 0 and the matrix
Z(k + 1) = Θ(T (nk)) · Θ(T (nk+1)) · . . . · Θ(T (nk+1−1))has positive entries for eah k ≥ 0. In what follows, we denote by (π(k), λ(k)) thepair de�ning T (nk). By abuse of notation, we ontinue to write T (k) for T (nk). Withthis notation,

λ(k) = Z(k + 1)λ(k+1).We adopt the notation from [24℄. For eah k < l let
Q(k, l) = Z(k + 1) · Z(k + 2) · . . . · Z(l).Then

λ(k) = Q(k, l)λ(l).We will write Q(l) for Q(0, l). By de�nition, T (l) : I(l) → I(l) is the �rst returnmap of T (k) : I(k) → I(k) to the interval I(k) ⊂ I(l). Moreover, Qαβ(k, l) is the timespent by any point of I(l)
β in I(k)

α until it returns to I(l). It follows that
Qβ(k, l) =

∑

α∈A

Qαβ(k, l)is the �rst return time of points of I(l)
β to I(l).Suppose that T = T(π,λ) is of periodi type and p is a period suh that π(p) = π.Let A = Θ(p)(T ). Considering the sequene (nk)k≥0, nk = pk we get Z(l) = A and

Q(k, l) = Al−k for all 0 ≤ k ≤ l.The norm of a vetor is de�ned as the largest absolute value of the oe�ients.We set ‖B‖ = maxβ∈A

∑
α∈A |Bαβ | for B = [Bαβ ]α,β∈A. Following [31℄, for everymatrix B = [Bαβ ]α,β∈A with positive entries, we set

ν(B) = max
α,β,γ∈A

Bαβ
Bαγ

.



16 J.-P. CONZE, K. FR�CZEKThen(4.1) ∑

α∈A

Bαβ ≤ ν(B)
∑

α∈A

Bαγ for all β, γ ∈ A and ν(CB) ≤ ν(B),for any nonnegative nonsingular matrix C. It follows that ν(Bm) ≤ ν(B), andhene(4.2) ‖Bm‖ = max
β∈A

∑

α∈A

Bmαβ ≤ ν(B) min
β∈A

∑

α∈A

Bmαβ .Denote by Γ(k) the spae of funtions ϕ : I(k) → R onstant on eah interval I(k)
α ,

α ∈ A and denote by Γ
(k)
0 the subspae of funtions with zero mean. Every funtion

ϕ =
∑

α∈A hαχI(k)
α

in Γ(k) an be identi�ed with the vetor h = (hα)α∈A ∈ RA.Moreover,(4.3) ϕ(Q(k,l)α)(x) = (Q(k, l)th)α for every x ∈ I(l)
α , α ∈ A.The indued IET T (n) : I(n) → I(n) determines a partition of I into disjoint towers

H
(n)
α , α ∈ A, where

H(n)
α = {T kI(n)

α : 0 ≤ k < h(n)
α := Qα(n)}.Denote by h(n)

max and h(n)
min the height of the highest and the lowest tower respetively.Assume that I(n+1) ⊂ I

(n)
α1 , where π(n)

0 (α1) = 1. For every α ∈ A denote by C(n)
αthe tower {T iI(n+1)

α : 0 ≤ i < h
(n)
α1 }.Lemma 4.1. For every α ∈ A we have(4.4) µ(C(n)

α △TC(n)
α ) → 0 and sup

x∈C
(n)
α

|T h(n+1)
α x− x| → 0 as n→ +∞.If ϕ =

∑
α∈A vαχI(0)α

for some v = (vα)α∈A ∈ Γ
(0)
0 , then(4.5) ϕ(h(n+1)

α )(x) = (Q(n+ 1)tv)α for all x ∈ C(n)
α .If additionally T is of periodi type then(4.6) lim inf

n→∞
µ(C(n)

α ) > 0and(4.7) ϕ(h(n+1)
α )(x) = ((At)n+1v)α for all x ∈ C(n)

α .Proof. Sine C(n)
α △TC(n)

α ⊂ T h
(n+1)
α1 I

(n+1)
α ∪ I(n+1)

α , we have
µ(C(n)

α △TC(n)
α ) ≤ 2µ(I(n+1)

α ) → 0 as n→ +∞.Suppose that x ∈ T iI
(n+1)
α for some 0 ≤ i < h

(n)
α1 . Then

T h
(n+1)
α x ∈ T iT h

(n+1)
α I(n+1)

α ⊂ T iI(n+1) ⊂ T iI(n)
α1
.It follows that(4.8) x, T h

(n+1)
α x ∈ T iI(n)

α1
⊂ Iβ for some β ∈ A.Therefore

|x− T h
(n+1)
α x| ≤ |I(n)

α1
| for all x ∈ C(n)

α .



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 17Next, by (4.3), ϕ(h(n+1)
α )(x) = (Q(n + 1)tv)α for every x ∈ I

(n+1)
α . Moreover, if

x ∈ C
(n)
α , say x = T ix0 with x0 ∈ I

(n+1)
α and 0 ≤ i < h

(n)
α1 , then

ϕ(h(n+1)
α )(T ix0) − ϕ(h(n+1)

α )(x0) =
∑

0≤j<i

ϕ(T h
(n+1)
α T jx0) − ϕ(T jx0).By (4.8), ϕ(T h

(n+1)
α T jx0) = ϕ(T jx0) for every 0 ≤ j < h

(n)
α1 , and hene

ϕ(h(n+1)
α )(x) = ϕ(h(n+1)

α )(x0) = (Q(n+ 1)tv)α for all x ∈ C(n)
α .Assume that T = T(π,λ) is of periodi type and A is its periodi matrix. Denoteby ρ1 the Perron-Frobenius eigenvalue of A. Then there exists C > 0 suh that

1
C ρ

n
1 ≤ ‖An‖ ≤ Cρn1 . Sine h(n)

max = ‖An‖ = maxα∈AA
n
α and h(n)

min = minα∈AA
n
α,by (4.2), it follows that(4.9) 1

Cν(A)
ρn1 ≤ h

(n)
min < h(n)

max ≤ Cρn1 .As |I(n+1)
α | = ρ

−(n+1)
1 |I(0)

α |, we have
µ(C(n)

α ) = |I(n+1)
α |h(n)

α1
= |I(0)

α |h(n)
min/ρ

n+1
1 ≥ |I(0)

α |
Cν(A)ρ1

> 0.Multiplying the period of T , if neessary, we have I(n+1) ⊂ I
(n)
α1 for every natural

n, and hene
ϕ(h(n+1)

α )(x) = (Q(n+ 1)tv)α = ((At)n+1v)α for all x ∈ C(n)
α .

�4.2. Ergodi oyles in ase κ > 1.Assume that T = T(π,λ) is of periodi type and κ = κ(π) > 1. Then dim kerΩπ =
κ− 1 > 0. As we already mentioned A is the identity on kerΩπ. Let

F (T ) = {v ∈ RA : Atv = v}.Then F (T ) is a linear subspae with dimF (T ) = k ≥ κ− 1. Sine
〈v, λ〉 = 〈Atv, λ〉 = 〈v,Aλ〉 = ρ1〈v, λ〉 for eah v ∈ F (T ),we have F (T ) ⊂ Γ

(0)
0 . Moreover, we an hoose a basis of the linear spae F (T )suh that eah of its element belongs to ZA. It follows that ZA ∩ F (T ) is a freeabelian group of rank k.Lemma 4.2. Let vi = (viα)α∈A, 1 ≤ i ≤ k, be a basis of the group ZA ∩ F (T ).Then the olletion of vetors wα = (viα)ki=1 ∈ Zk, α ∈ A, generates the group

Zk. �Theorem 4.3. Let vi = (viα)α∈A, 1 ≤ i ≤ k be a basis of the group ZA ∩ F (T ).Then the oyle ϕ : I → Zk given by ϕ = (ϕ1, . . . , ϕk) with ϕi =
∑
α∈A viαχIα

for
i = 1, . . . , k is ergodi.If R is a (k− 1)× k-real matrix satisfying (3.10), then the oyle ϕ̃ : I → Rk−1given by ϕ̃(x) = Rϕ(x), whih is onstant over exhanged intervals, is ergodi.



18 J.-P. CONZE, K. FR�CZEKProof. By (4.7), for every α ∈ A we have
ϕ(h(n+1)

α )(x) = (((At)n+1v1)α, . . . , ((A
t)n+1vk)α) = ((v1)α, . . . , (vk)α) = wαfor x ∈ C

(n)
α . In view of Lemma 4.1, we an apply Corollary 2.6. Thus wα ∈ E(ϕ)for all α ∈ A. Sine E(ϕ) is a group, by Lemma 4.2, we obtain E(ϕ) = Zk.It is easy to show that RE(ϕ) ⊂ E(Rϕ). Sine E(ϕ) = Zk and E(Rϕ) is losed,by Remark 3.8, we obtain E(ϕ̃) = E(Rϕ) ⊃ RZk = Rk−1. �Remark 4.4. Note that Remark 3.8 indiates how to onstrut matries R satisfying(3.10). 5. Ergodiity of orreted oylesIn this setion, using a method from [24℄, we present a proedure of orretionof funtions in BV0(⊔α∈AI

(0)
α ) by pieewise onstant funtions (in Γ

(0)
0 ) in order toobtain better ontrol on the growth of Birkho� sums. It will allow us to prove theergodiity of some orreted oyles.5.1. Rauzy-Veeh indution for oyles.For every oyle ϕ : I(k) → R for the IET T (k) : I(k) → I(k) and l > k denote by

S(k, l)ϕ : I(l) → R the renormalized oyle for T (l) given by
S(k, l)ϕ(x) =

∑

0≤i<Qβ(k,l)

ϕ((T (k))ix) for x ∈ I
(l)
β .Note that the operator S(k, l) maps BV(⊔α∈AI

(k)
α ) into BV(⊔α∈AI

(l)
α ) and(5.1) VarS(k, l)ϕ ≤ Varϕ,(5.2) ‖S(k, l)ϕ‖sup ≤ ‖Q(k, l)‖‖ϕ‖sup and(5.3) ∫

I(l)
S(k, l)ϕ(x) dx =

∫

I(k)

ϕ(x) dxfor all ϕ ∈ BV(⊔α∈AI
(k)
α ). In view of (5.3), S(k, l) maps BV0(⊔α∈AI

(k)
α ) into

BV0(⊔α∈AI
(l)
α ).Reall that Γ(k) is the spae of funtions ϕ : I(k) → R whih are onstant oneah interval I(k)

α , α ∈ A and Γ
(k)
0 is the subspae of funtions with zero mean.Then

S(k, l)Γ(k) = Γ(l) and S(k, l)Γ
(k)
0 = Γ

(l)
0 .Moreover, every funtion ∑

α∈A hαχI(k)
α

from Γ(k) an be identi�ed with the vetor
h = (hα)α∈A ∈ RA. Under this identi�ation,

Γ
(k)
0 = Ann(λ(k)) := {h = (hα)α∈A ∈ RA : 〈h, λ(k)〉 = 0}and the operator S(k, l) is the linear automorphism of RA whose matrix in theanonial basis isQ(k, l)t. Moreover, the norm on Γ(k) inherited from the supremumnorm oinides with the norm of vetors.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 195.2. Corretion of funtions of bounded variation.Suppose now that T is of periodi type. Let us onsider the linear subspaes
Γ(k)
cs = {h ∈ Γ(k) : lim sup

l→∞

1

l
log ‖S(k, l)h‖ = lim sup

l→∞

1

l
log ‖Q(k, l)th‖ ≤ 0},

Γ(k)
u = {h ∈ Γ(k) : lim sup

l→∞

1

l
log ‖S(k, l)h‖ = lim sup

l→∞

1

l
log ‖Q(k, l)th‖ > 0}.Denote by

U (k) : BV(⊔α∈AI
(k)
α ) → BV(⊔α∈AI

(k)
α )/Γ(k)

csthe projetion on the quotient spae. Let us onsider the linear operator P (k)
0 :

BV0(⊔α∈AI
(k)
α ) → BV0(⊔α∈AI

(k)
α ) given by

P
(k)
0 ϕ(x) = ϕ(x) − 1

|I(k)
α |

∫

I
(k)
α

ϕ(t)dt if x ∈ I(k)
α .Theorem 5.1. For every ϕ ∈ BV0(⊔α∈AI

(k)
α ) the sequene(5.4) {U (k) ◦ S(k, l)−1 ◦ P (l)
0 ◦ S(k, l)ϕ}l≥konverges in the quotient norm on BV0(⊔α∈AI

(k)
α )/Γ

(k)
cs indued by ‖ · ‖BV.Notations. Let P (k) : BV0(⊔α∈AI

(k)
α ) → BV0(⊔α∈AI

(k)
α )/Γ

(k)
cs stand for the limitoperator. Note that if ϕ ∈ Γ

(k)
0 then P (k)

0 ϕ = 0, and hene P (k)ϕ = 0.We denote by BV♦(⊔α∈AIα) the subspae of funtions ϕ ∈ BV(⊔α∈AIα) suhthat ϕ−(x) = ϕ+(x) for every x = T nlα, α ∈ A, π0(α) 6= 1, n ∈ Z \ {0}.Reall that, in general, the growth of (S(k)ϕ)k≥1 is exponential with exponent
θ2/θ1 (see Theorem 2.2). Nevertheless, the growth an be redued by orretingthe funtion ϕ by a funtion h onstant on the exhanged intervals.Theorem 5.2. Suppose now that T = T(π,λ) is of periodi type and M is themaximal size of Jordan bloks in the Jordan deomposition of its periodi matrix.Let ϕ ∈ BV0(⊔α∈AI

(0)
α ). There exist C1, C2 > 0 suh that if ϕ̂+Γ

(0)
cs = P (0)ϕ, then

ϕ̂− ϕ ∈ Γ
(0)
0 and(5.5) ‖S(k)(ϕ̂)‖sup ≤ C1k

M Varϕ+ C2k
M−1‖ϕ̂‖sup for every natural k.For every ϕ ∈ BV0(⊔α∈AI

(0)
α ) there exists h ∈ Γ

(0)
u ∩ Γ

(0)
0 suh that ϕ+ h+ Γ

(0)
cs =

P (0)ϕ. Moreover, the vetor h ∈ Γ
(0)
u ∩ Γ

(0)
0 is unique.If additionally T has non-degenerated spetrum and ϕ ∈ BV♦

0 (⊔α∈AI
(0)
α ) then

‖S(k)(ϕ̂)‖sup ≤ C1 Varϕ+ C2‖ϕ̂‖sup for every natural k.For ompleteness the proofs of these theorems will be given in Appendix C.Remark 5.3. If we restrit the hoie of h to the subspae Γ
(0)
u ∩ Γ

(0)
0 , then theorretion h ∈ Γ

(0)
u ∩ Γ

(0)
0 is unique. In what follows, ϕ̂ will stand for the funtion

ϕ orreted by the unique orretion h ∈ Γ
(0)
u ∩ Γ

(0)
0 (i.e. ϕ̂ = ϕ+ h).If ϕ : I → Rℓ with ϕ = (ϕ1, . . . , ϕℓ), we deal with the orreted funtion ϕ̂ :=

(ϕ̂1, . . . , ϕ̂ℓ), and we have
‖S(k)(ϕ̂)‖sup ≤ C1 max

1≤i≤ℓ
Varϕi + C2‖ϕ̂‖sup for every natural k.



20 J.-P. CONZE, K. FR�CZEK5.3. Ergodiity of orreted step funtions.We now onsider pieewise onstant zero mean oyles ϕ : I → Rℓ, ℓ ≥ 1 whihare also disontinuous in the interior of the exhanged intervals. Suppose that
γi ∈ I, i = 1, . . . , s are disontinuities of ϕ di�erent from lα, α ∈ A. Denote by
d̄i ∈ Rℓ the vetor desribing the jumps of oordinate funtions of ϕ at γi, thisis, d̄i = ϕ+(γi) − ϕ−(γi) ∈ Rℓ. In this setion we will prove the ergodiity of
ϕ̂ for almost every hoie of disontinuities. Note that the orreted oyle ϕ̂ isalso pieewise onstant and it is disontinuous at γi with the jump vetor d̄i for
i = 1, . . . , s, and hene it is still non-trivial.Theorem 5.4. Suppose that T = T(π,λ) is an IET of periodi type and it has non-degenerated spetrum. There exists a set D ⊂ Is of full Lebesgue measure suh thatif (i) (γ1, . . . , γs) ∈ D;(ii) the subgroup Z(d̄1, . . . , d̄s) ⊂ Rℓ generated by d̄1, . . . , d̄s is dense in Rℓ,then the oyle ϕ̂ : I → Rℓ is ergodi.Proof. As we already mentioned we an assume that I(n+1) ⊂ I

(n)
α1 for every natural

n, where α1 = (π
(n)
0 )−1(1) = π−1

0 (1). Fix α ∈ A and hoose b0 < a1 < b1 < . . . <
as < bs < as+1 so that [b0, as+1) = Iα. Let

F
(n)
i =

⋃

h
(n)
α1

≤j<h
(n+1)
α

T j(ai/ρ
n+1
1 , bi/ρ

n+1
1 ), for 1 ≤ i ≤ s,

C
(n)
i =

⋃

0≤j<h
(n)
α1

T j(bi/ρ
n+1
1 , ai+1/ρ

n+1
1 ), for 0 ≤ i ≤ s(ρ1 is the Perron-Frobenius eigenvalue of the periodi matrix A of T ). Sine

[b0/ρ
n+1
1 , as+1/ρ

n+1
1 ) = I

(n+1)
α , the sets C(n)

i , F (n)
i are towers for whih eah levelis an interval. Moreover, C(n)

i ⊂ C
(n)
α for 0 ≤ i ≤ s and

h(n+1)
α − h(n)

α1
≥

∑

β∈A

h
(n)
β − h(n)

α1
≥ h

(n)
min.In view of (4.9), it follows that

µ(C
(n)
i ) = (ai+1 − bi)

h
(n)
α1

ρn+1
1

≥ (ai+1 − bi)
h

(n)
min

ρn+1
1

≥ ai+1 − bi
Cν(A)ρ1

> 0,

µ(F
(n)
i ) = (bi − ai)

h
(n+1)
α − h

(n)
α1

ρn+1
1

≥ (bi − ai)
h

(n)
min

ρn+1
1

≥ bi − ai
Cν(A)ρ1

> 0.Reall that if T : (X,B, µ) → (X,B, µ) is ergodi and (Ξn)n≥1 is a sequene oftowers for T for whih
lim inf
n→∞

µ(Ξn) > 0 and height(Ξn) → ∞,then (see King [20℄, Lemma 3.4)(5.6) µ(B ∩ Ξn) − µ(B)µ(Ξn) → 0 for all B ⊂ B.It follows that, for µ-almost every x ∈ X , the point x belongs to Ξn for in�nitelymany n.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 21Applying this fat for subsequenes of (F
(n)
i )n≥1 suessively for i = 1, . . . , s,we onlude that for a.e. (γ1, . . . , γs) ∈ Is there exists a subsequene (kn)n≥1 suhthat

γi ∈ F
(kn)
i for all 1 ≤ i ≤ s and n ≥ 1.Denote by D ⊂ Is the subset of all suh (γ1, . . . , γs) for whih γi does not belong tothe union of orbits of lα, α ∈ A, for i = 1, . . . , s. Therefore ϕ ∈ BV♦(⊔α∈AIα,R

ℓ).Suppose that for some n ≥ 1 we have γi ∈ F
(n)
i for all 1 ≤ i ≤ s. Then the sets

T jC
(n)
i , 0 ≤ j < h

(n+1)
α , 0 ≤ i ≤ s do not ontain disontinuities of ϕ̂. Thus similararguments to those from the proof of (4.7) show that ϕ̂(h(n+1)

α ) is onstant on eah
C

(n)
i and equals say ḡ(n)

i ∈ Rℓ.Let x ∈ [bi−1/ρ
n+1
1 , ai/ρ

n+1
1 ) and y ∈ [bi/ρ

n+1
1 , ai+1/ρ

n+1
1 ). By assumption, γi ∈

T j0 [ai/ρ
n+1
1 , bi/ρ

n+1
1 ) for some h(n)

α1 ≤ j0 < h
(n+1)
α . It follow that ϕ̂(T jx) = ϕ̂(T jy)for all 0 ≤ j < h

(n+1)
α , j 6= j0 and ϕ̂(T j0y) − ϕ̂(T j0x) = d̄i. Consequently,
ḡ
(n)
i − ḡ

(n)
i−1 = ϕ̂(h(n+1)

α )(y) − ϕ̂(h(n+1)
α )(x) = d̄i.It follows that

ϕ̂(h(n+1)
α )(x) = ḡ

(n)
0 +

i∑

l=1

d̄l for all x ∈ C
(n)
i , 0 ≤ i ≤ s.Sine ϕ ∈ BV♦(⊔α∈AIα,R

ℓ), by Theorem 5.2 there exists C > 0 suh that
‖ϕ̂(h(n+1)

α )(x)‖ = ‖S(n+ 1)ϕ̂(x)‖ ≤ C for all x ∈ I(n+1)
α ,and hene ‖ḡ(n)

0 ‖ ≤ C. Therefore for eah (γ1, . . . , γs) ∈ D there exists a subse-quene (kn)n≥1 suh that
ϕ̂(h(kn+1)

α )(x) = ḡ
(kn)
0 +

i∑

l=1

d̄l for all x ∈ C
(kn)
i , 0 ≤ i ≤ sand ḡ(kn)

0 → ḡ0 in Rℓ. Sine lim inf µ(C
(kn)
i ) > 0 for eah 0 ≤ i ≤ s, Corollary 2.6implies ḡ0 +

∑i
l=1 d̄l ∈ E(ϕ̂) for eah 0 ≤ i ≤ s. Therefore d̄l ∈ E(ϕ̂) for eah

1 ≤ l ≤ s. Sine d̄1, . . . , d̄s generate a dense subgroup of Rℓ and E(ϕ̂) is losed, itfollows that E(ϕ̂) = Rℓ. �Remark 5.5. Notie that the ondition (ii) implies s > ℓ. On the other hand, if
s > ℓ, in view of Remark 3.8, we an easily �nd a olletion of vetors d̄1, . . . , d̄s ∈ Rℓsuh that Z(d̄1, . . . , d̄s) = Rℓ.In order to have a more spei� ondition on the disontinuities γi, i = 1, . . . , sguaranteeing ergodiity, we an use a periodi type ondition.Let us onsider a set {γ1, . . . , γs} ⊂ I \ {lα : α ∈ A}. The points γ1, . . . , γstogether with lα, α ∈ A give a new partition of I into d + s intervals. Therefore
T an be treated as a d+ s-IET. Denote by (π′, λ′) the ombinatorial data of thisrepresentation of T .De�nition. We say that the set {γ1, . . . , γs} is of periodi type with respet to T(π,λ)if the IET T(π′,λ′) is of periodi type as an exhange of d+ s intervals.Remark 5.6. By the de�nition of periodi type, (λ′, π′) satis�es the Keane ondition.Therefore, eah γi does not belong to the orbit of any lα, α ∈ A.



22 J.-P. CONZE, K. FR�CZEKIn view of Theorem 23 in [27℄, eah admissible interval I(p) (p is a period) for
T(π′,λ′) is also admissible for T(π,λ). Therefore T(π,λ) is of periodi type as anexhange of d-intervals as well. It follows that, for every n ≥ 0 and i = 1, . . . , s if
γi ∈ Iα, then γi = T j(π,λ)(γi/ρ

n) for some 0 ≤ j < h
(n)
α . Therefore similar argumentsto those in the proof of Theorem 5.4 give the following result.Theorem 5.7. Suppose that T = T(π,λ) is an IET of periodi type and it has non-degenerated spetrum. Let ϕ : I → Rℓ be a zero mean pieewise onstant oylewith additional disontinuity at γi ∈ I \ {lα : α ∈ A} with the jump vetors d̄i ∈ Rℓfor i = 1, . . . , s. If(i) the set {γ1, . . . , γs} is of periodi type with respet to T(π,λ);(ii) Z(d̄1, . . . , d̄s) = Rℓ,then the oyle ϕ̂ : I → Rℓ is ergodi. �6. Reurrene and ergodiity of extensions of multivaluedHamiltoniansIn this setion we deal with a lass of smooth �ows on non-ompat manifoldswhih are extensions of so alled multivalued Hamiltonian �ows on ompat surfaesof higher genus. Eah suh �ow has a speial representation over a skew produt ofan IET and a BV oyle. This allows us to apply abstrat results from previoussetions to state some su�ient onditions for reurrene and ergodiity wheneverthe IET is of periodi type.6.1. Speial �ows.In this subsetion we brie�y reall some basi properties of speial �ows. Let T bean automorphism of a σ-�nite measure spae (X,B, µ). Let f : X → R be a stritlypositive funtion suh that(6.1) ∑

n≥1

f(T nx) = +∞ for a.e. x ∈ X.By T f = (T ft )t∈R we will mean the orresponding speial �ow under f (see e.g. [8℄,Chapter 11) ating on (Xf ,Bf , µf ), where Xf = {(x, s) ∈ X × R : 0 ≤ s < f(x)}and Bf (µf ) is the restrition of B×B(R) (µ×mR) to Xf . Under the ation of the�ow T f eah point in Xf moves vertially at unit speed, and we identify the point
(x, f(x)) with (Tx, 0). More preisely, for every (x, s) ∈ Xf we have

T ft (x, s) = (T nx, s+ t− f (n)(x)),where n ∈ Z is a unique number suh that f (n)(x) ≤ s+ t < f (n+1)(x).Remark 6.1. If T is onservative then the ondition (6.1) holds automatially andthe speial �ow T f is onservative as well. Moreover, if T is ergodi then T f isergodi.6.2. Basi properties of multivalued Hamiltonian �ows.Now we will onsider multivalued Hamiltonians and their assoiated �ows, a modelwhih has been developed by S.P. Novikov (see also [2℄ for the toral ase). Let
(M,ω) be a ompat sympleti smooth surfae and β be a Morse losed 1-formon M . Denote by π : M̂ → M the universal over of M and by β̂ the pullbak of
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β by π : M̂ → M . Sine M̂ is simply onneted and β̂ is also a losed form, thereexists a smooth funtion Ĥ : M̂ → R, alled a multivalued Hamiltonian, suh that
dĤ = β̂. By assumption, Ĥ is a Morse funtion. Suppose additionally that allritial values of Ĥ are distint.Denote by X : M → TM the smooth vetor �eld determined by

β = iXω = ω(X, · ).Let (φt)t∈R stand for the smooth �ow on M assoiated to the vetor �eld X . Sine
dβ = 0, the �ow (φt)t∈R preserves the sympleti form ω, and hene it preserves thesmooth measure ν = νω determined by ω. Sine β is a Morse form, the �ow (φt)t∈Rhas �nitely many �xed points (equal to zeros of β and equal to images of ritialpoints of Ĥ by the map π). The set of �xed points will by denoted by F(β). Allof them are enters or non-degenerated saddles. By assumption, any two di�erentsaddles are not onneted by a separatrix of the �ow (alled a saddle onnetion).Nevertheless, the �ow (φt)t∈R an have saddle onnetions whih are loops. Eahsuh saddle onnetion gives a deomposition of M into two nontrivial invariantsubsets.By Theorem 14.6.3 in [18℄, the surfae M an be represented as the �nite unionof disjoint (φt)t∈R�invariant sets as follows

M = P ∪ S ∪
⋃

T ∈T

T ,where P is an open set onsisting of periodi orbits, S is a �nite union of �xedpoints or saddle onnetions, and eah T ∈ T is open and every positive semi-orbitin T , that is not a separatrix inoming to a �xed point, is dense in T . It followsthat T is a transitive omponent of (φt)t∈R. Eah transitive omponent T is asurfae with boundary and the boundary of T is a �nite union of �xed points andloop saddle onnetions.Remark 6.2. Let X be a smooth tangent vetor �eld preserving a volume form ωon a surfae M . A parametrization γ : [a, b] →M of a urve is alled indued if
∫ γ(s′)

γ(s)

iXω = s− s′ for all s, s′ ∈ [a, b].Let γ : [a, b] → M and γ̃ : [ã, b̃] → M be indued parameterizations of two urves.Suppose that for every x ∈ [a, b] the positive semi-orbit of the �ow through γ(x) hitsthe urve γ̃. Denote by Tγγ̃(x) ∈ [ã, b̃] the parameter and by τγγ̃(x) > 0 the timeof the �rst hit. Using Stokes' theorem, it is easy to hek that Tγγ̃ : [a, b] → [ã, b̃]is a translation and τγγ̃ : [a, b] → R+ is a smooth funtion.Fix T ∈ T and let J ⊂ T be a transversal smooth urve for (φt)t∈R suh thatthe boundary of J onsists of two points lying on an inoming and an outgo-ing separatrix respetively, and the segment of eah separatrix between the or-responding boundary point of J and the �xed point has no intersetion with J .Let γ : [0, a] → J stand for the indued parametrization suh that the boundarypoints γ(0) and γ(a) lie on the inoming and outgoing separatrixes respetively (seeFigure 1). Set I = [0, a). We will identify the interval I with the urve J .Denote by T := Tγγ the �rst-return map indued on J ; T an be seen as a map
T : I → I. By Remark 6.2, T : I → I is an exhange interval transformation. Then
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T = T(π,λ), where π ∈ S0

A for some �nite set A and (π, λ) ∈ S0
A × RA

+ satis�esKeane's ondition. Reall that lα, α ∈ A stand for the left end points of theexhanged intervals. Let Z = F(β) ∩ T . Sine T is a transitive omponent, eahelement of Z is a non-degenerated saddle. Let us deompose the set of �xed points
Z into subsets Z0, Z+ and Z− of points z ∈ Z suh that z has no loop onnetion,has a loop onnetion with positive orientation and has a loop onnetion withnegative orientation respetively. For eah z ∈ Z+ ∪ Z− denote by σloop(z) theorresponding loop onnetion.Denote by z ∈ Z the �xed point suh that γ(0) belongs to its inoming separatrix
σ−(z). Then γ(0) is the �rst bakward intersetion with J of σ−(z). Set α =
π−1

1 (1) ∈ A. Then eah point γ(lα) with α 6= α orresponds to the �rst bakwardintersetion with J of an inoming separatrix of a �xed point, denoted by zlα ∈ Z(see Figure 1). The point γ(lα) orresponds to the seond bakward intersetionwith J of σ−(z) and T lα = 0.Denote by τ : I → R+ the �rst-return time map of the �ow (φt)t∈R to J . Thismap is well de�ned and smooth on the interior of eah interval Iα, α ∈ A, and τ hasa singularity of logarithmi type at eah point lα, α ∈ A (see [21℄) exept for theright-side of lα; here the right-sided limit of τ exists. Moreover, the �ow (φt)t∈R on
(T , ν|T ) is measure-theoretial isomorphi to the speial �ow T τ . An isomorphismis established by the map Γ : Iτ → T , Γ(x, s) = φsγ(x).

Figure 1. Separatries of (φt)6.3. Extensions of multivalued Hamiltonian �ows.Let f : M → Rℓ be a smooth funtion. Let us onsider a system of di�erentialequations on M × Rℓ of the form
{

dx
dt = X(x),
dy
dt = f(x),for (x, y) ∈ M × Rℓ. Then the assoiated �ow (Φft )t∈R = (Φt)t∈R on M × Rℓ isgiven by

Φt(x, y) =

(
φtx, y +

∫ t

0

f(φsx) ds

)
.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 25It follows that (Φt)t∈R is a skew produt �ow with the base �ow (φt)t∈R on M andthe oyle F : R ×M → Rℓ given by
F (t, x) =

∫ t

0

f(φsx) ds.Therefore (Φt)t∈R preserves the produt measure ν × mRℓ . The deviation of theoyle F was studied by Forni in [10℄, [11℄ for typial (φt)t∈R with no saddleonnetions. Reall that the ergodiity of (Φft )t∈R has been already studied in [9℄in the simplest ase where M = T2 and ℓ = 1.In this setion we will study reurrene and ergodi properties of the �ow (Φft )t∈Rfor funtions f : M → Rℓ suh that f(x) = 0 for all x ∈ F(β). By obviousreason (Φt)t∈R will be restrited to the invariant set T × Rℓ, T ∈ T. Let usonsider its transversal submanifold J × Rℓ ⊂ T × Rℓ. Note that every point
(γ(x), y) ∈ γ(Int Iα) × Rℓ returns to J × Rℓ and the return time is τ̂(x, y) = τ(x).Denote by ϕ :

⋃
α∈A Int Iα → Rℓ the smooth funtion

ϕ(x) = F (τ(x), γ(x)) =

∫ τ(x)

0

f(φsγ(x))ds, for x ∈
⋃

α∈A

Int Iα.Notie that(6.2) ∫

I

ϕ(x) dx =

∫

T

f dν.Let us onsider the skew produt Tϕ : (I × Rℓ, µ ×mRℓ) → (I × Rℓ, µ ×mRℓ),
Tϕ(x, y) = (Tx, y + ϕ(x)) and the speial �ow (Tϕ)τ̂ built over Tϕ and under theroof funtion τ̂ : I × Rℓ → R+ given by τ̂(x, y) = τ(x).Lemma 6.3. The speial �ow (Tϕ)τ̂ is measure-theoretial isomorphi to the �ow
(Φt) on (T × Rℓ, ν|T ×mRℓ). �Remark 6.4. If ∫

T
f dν 6= 0 then, by (6.2), the skew produt Tϕ is dissipative. Inview of Lemma 6.3, the �ow (Φt) on (T × Rℓ, ν|T ×mRℓ) is dissipative, as well.On the other hand, if ℓ = 1 and (φt) on (T , ν|T ) is ergodi, then ∫

T
f dν = 0implies the reurrene of (Φt) on (T × R, ν|T ×mR).The following lemma will help us to �nd out further properties of ϕ. Sine theproof is rather straightforward and the �rst part follows very losely the proof ofProposition 2 in [14℄, we leave it to the reader.Lemma 6.5. Let g : [−1, 1] × [−1, 1] → R be a C1-funtion suh that g(0, 0) = 0.Then the funtion ξ : [0, 1] → R,

ξ(s) =

{ ∫ 1

s
g

(
u, su

)
1
udu, if s > 0,∫ 1

0 (g(u, 0) + g(0, u)) 1
udu, if s = 0,is absolutely ontinuous. If additionally g is a C2-funtion, g′(0, 0) = 0, and

g′′(0, 0) = 0, then ξ′ is absolutely ontinuous. �Remark 6.6. Note that the seond onlusion of the lemma beomes false if therequirement g′′(0, 0) = 0 is omitted. Indeed, if g(x, y) = x·y then ξ(s) = − log s−1,
s > 0, is not even bounded.For eah z ∈ Z+ ∪ Z− hoose an element uz of the saddle loop σloop(z).



26 J.-P. CONZE, K. FR�CZEKTheorem 6.7. If f(x) = 0 for all x ∈ F(β), then ϕ is absolutely ontinuous oneah interval Iα, α ∈ A, in partiular ϕ ∈ BV(⊔α∈AIα,R
ℓ). Moreover,

∫

I

ϕ′(x) dx =
∑

z∈Z+

∫

R

f(φsuz) ds−
∑

z∈Z−

∫

R

f(φsuz) ds.If additionally f ′(x) = 0 and f ′′(x) = 0 for all x ∈ F(β), then ϕ′′ ∈ L1(I,Rℓ),in partiular, ϕ ∈ BV1(⊔α∈AIα,R
ℓ).Proof. First note that it su�es to onsider the ase ℓ = 1. Sine dβ = 0, thereexists a family of pairwise disjoint open sets Uz ⊂ M , z ∈ Z suh that z ∈ Uzand there exists a smooth funtion H :

⋃
z∈Z Uz → R suh that dH = β on Uz forevery z ∈ Z. By the Morse Lemma, for every z ∈ Z there exist a neighborhood

(0, 0) ∈ Vz ⊂ R2 and a smooth di�eomorphism Υz : Vz → Uz suh that Υz(0, 0) = zand
Hz(x, y) := H ◦ Υz(x, y) = x · y for all (x, y) ∈ Vz.Denote by ωz ∈ Ω2(Vz) the pullbak of the form ω by Υz : Vz → Uz. Sine ωzis non-zero at eah point, there exists a smooth non-zero funtion p = pz : Vz → Rsuh that

ωz(x,y) = p(x, y)dx ∧ dy.Let (φzt ) stand for the pullbak of the �ow (φt) by Υz : Vz → Uz, i.e. the loal�ow on Vz given by φzt = Υ−1
z ◦ φt ◦ Υz. Denote by Xz : Vz → R2 the vetor �eldorresponding to (φzt ). Then dHz = ωz(Xz, · ), and hene

Xz(x, y) =

(
∂Hz

∂y (x, y),−∂Hz

∂x (x, y)
)

p(x, y)
=

(x,−y)
p(x, y)

.Let δ be a positive number suh that [−δ, δ]× [−δ, δ] ⊂ Vz for every z ∈ Z. Letus onsider the C∞�urves γ±,0z , γ±,1z : [−δ2, δ2] →M given by
γ±,0z (s) = Υz(±s/δ,±δ), γ±,1z (s) = Υz(±δ,±s/δ).Notie that γ±,iz establishes an indued parametrization for the form ω(x, y) andthe vetor �eld X . Indeed, we have for every s ∈ [−δ2, δ2] and i = 0, 1,

∫ γ±,i
z (s)

γ±,i
z (0)

β =

∫ γ±,i
z (s)

γ±,i
z (0)

dH = H(γ±,iz (s)) −H(γ±,iz (0)) = ±s/δ · ±δ = s.We onsider the funtions τ±z and ϕ±
z from [−δ2, 0)∪ (0, δ2] to R, where τ±z (x) isthe exit time of the point γ±,0z (x) for the �ow (φt) from the set Υz([−δ, δ]× [−δ, δ])and

ϕ±
z (x) =

∫ τ±
z (x)

0

f(φsγ
±,0
z x)ds.Note that τ±z (x) is the passage time from (±x/δ,±δ) to (± sgn(x)δ,± sgn(x)x/δ)for the loal �ow (φzt ). Let fz : Vz → R be given by fz = f ◦ Υz. By assumption,

fz is a smooth funtion suh that fz(0, 0) = 0. Furthermore,
ϕ±
z (x) =

∫ τ±
z (x)

0

fz(φ
z
s(±x/δ,±δ))ds.Let (xs, ys) = φzs(±x/δ,±δ). Then(6.3) (

d

ds
xs,

d

ds
ys

)
= Xz(xs,−ys) =

(xs,−ys)
p(xs, ys)

,
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xs · ys = Hz(xs, ys) = Hz(x0, y0) = Hz(±x/δ,±δ) = x.Sine x 6= 0, it follows that xs 6= 0 for all s ∈ R. By using the substitution u = xs,we obtain du = d
dsxsds = xs

p(xs,ys)
ds and

ϕ±
z (x) =

∫ τ±
z (x)

0

fz(xs, ys)ds =

∫ τ±
z (x)

0

fz

(
xs,

x

xs

)
ds

=

∫ ± sgn(x)δ

±x/δ

fz

(
u,
x

u

)
p

(
u,
x

u

) du
u
.By Lemma 6.5, the funtions ϕ±

z : [−δ2, 0) ∪ (0, δ2] → R is absolutely ontinuousand
lim
x→0+

ϕ±
z (x) =

∫ ±δ

0

fz(u, 0)p(u, 0)
du

u
+

∫ ±δ

0

fz(0, u)p(0, u)
du

u
.It follows that(6.4) lim

x→0+
ϕ±
z (x) =

∫ +∞

0

f(φsγ
±,0
z 0)ds+

∫ 0

−∞

f(φsγ
±,1
z 0)ds.Similar arguments to those above show that(6.5) lim

x→0−
ϕ±
z (x) =

∫ +∞

0

f(φsγ
±,0
z 0)ds+

∫ 0

−∞

f(φsγ
∓,1
z 0)ds.In view of Remark 6.2, we onlude that ϕ : I → R is absolutely ontinuous oneah interval Iα, α ∈ A and(6.6) ϕ+(lα) =

∫ +∞

0

f(φsγ(lα))ds +

∫ 0

−∞

f(φsγ(T lα))ds,whenever α 6= α and zlα ∈ Z−∪Z0. If α 6= α and zlα ∈ Z+, then omputing ϕ+(lα)we have over also a distane along the loop separatrix σloop(zlα), so that(6.7) ϕ+(lα) =

∫ +∞

0

f(φsγ(lα))ds +

∫ 0

−∞

f(φsγ(T lα))ds+

∫ +∞

−∞

f(φsuzlα
)ds.Moreover, if f ′(zlα) = 0 and f ′′(zlα) = 0 then the derivative ϕ′′ is integrable ona neighborhood of lα. It follows that if f ′(z) = 0 and f ′′(z) = 0 for eah z ∈ F(β)then ϕ′′ is integrable.If α = α, then, by de�nition, the positive semi-orbit through γ(lα) returns to γbefore approahing the �xed point z. It follows that(6.8) ϕ+(lα) =

∫ τγγ(lα)

0

f(φsγ(lα))ds.Let α = π−1
0 (d), i.e. rα = |I|. Similar arguments to those used for the right-sidedlimits show that for every α 6= α we have

ϕ−(rα) =

∫ +∞

0

f(φsγ(rα))ds+

∫ 0

−∞

f(φsγ(T̂ rα))ds if zrα
∈ Z0 ∪ Z+,(6.9)

ϕ−(rα) =

∫ +∞

0

f(φsγ(rα))ds+

∫ 0

−∞

f(φsγ(T̂ rα))ds+

∫ +∞

−∞

f(φsuzrα
)ds,(6.10)
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∈ Z−. Moreover, sine γ(rα) lies on an outgoing separatrix, the positivesemi-orbit through γ(rα) returns to the urve γ, so that(6.11) ϕ−(rα) = ϕ−(|I|) =

∫ τγγ(rα)

0

f(φsγ(rα))ds.In view of (6.6) - (6.11), we have
∫

I

ϕ′(x) dx =
∑

α∈A

∫

Iα

ϕ′(x) dx =
∑

α∈A

(ϕ−(rα) − ϕ+(lα))

=
∑

z∈Z−

∫ +∞

−∞

f(φsuz)ds−
∑

z∈Z+

∫ +∞

−∞

f(φsuz)ds

+
∑

α∈A,α6=α

∫ 0

−∞

f(φsγ(T̂ rα))ds −
∑

α∈A,α6=α

∫ 0

−∞

f(φsγ(T lα))ds

+
∑

α∈A,α6=α

∫ +∞

0

f(φsγ(rα))ds −
∑

α∈A,α6=α

∫ +∞

0

f(φsγ(lα))ds

+

∫ τγγ(rα)

0

f(φsγ(rα))ds −
∫ τγγ(lα)

0

f(φsγ(lα))ds.

(6.12)
Sine α = π−1

1 (1) and α = π−1
0 (d), in view of (2.1), (2.2), we have

{rα : α ∈ A, α 6= α} = {rα : α ∈ A, π0(α) 6= d} = {lα : α ∈ A, π0(α) 6= 1},
{T lα : α ∈ A, α 6= α} = {T lα : α ∈ A, π1(α) 6= 1} = {T̂ rα : α ∈ A, π1(α) 6= d}.Moreover, lπ−1

0 (1) = 0 = T lα and T̂ rπ−1
1 (d) = |I| = rα. It follows that

∑

α∈A,α6=α

∫ 0

−∞

f(φsγ(T̂ rα))ds−
∑

α∈A,α6=α

∫ 0

−∞

f(φsγ(T lα))ds

=

∫ 0

−∞

f(φsγ(rα))ds−
∫ 0

−∞

f(φsγ(T̂ rα))ds,

∑

α∈A,α6=α

∫ +∞

0

f(φsγ(rα))ds−
∑

α∈A,α6=α

∫ +∞

0

f(φsγ(lα))ds

=

∫ +∞

0

f(φsγ(lα))ds−
∫ +∞

0

f(φsγ(T lα))ds.Sine the negative semi-orbit of T̂ rα visits rα before approahing the �xed point
z and the positive semi-orbit of lα visits T lα before approahing the �xed point z(see Figure 1), we have

∫ 0

−∞

f(φsγ(T̂ rα))ds−
∫ 0

−∞

f(φsγ(rα))ds =

∫ τγγ(rα)

0

f(φsγ(rα))ds,

∫ +∞

0

f(φsγ(lα))ds −
∫ +∞

0

f(φsγ(T lα))ds =

∫ τγγ(lα)

0

f(φsγ(lα))ds.
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∫

I

ϕ′(x) dx =
∑

z∈Z−

∫ +∞

−∞

f(φsuz)ds−
∑

z∈Z+

∫ +∞

−∞

f(φsuz)ds.

�Remark 6.8. Notie that, in view of Remark 6.6, the assumption on the vanishingof derivatives of f at �xed points is neessary to ontrol the smoothness of ϕf .Theorem 6.9. Suppose that the IET T is of periodi type. Let f : M → Rℓbe a smooth funtion suh that f(x) = 0 for all x ∈ F(β) and ∫
T
f dν = 0. If

θ2(T )/θ1(T ) < 1/ℓ then the �ow (Φt) on T × Rℓ is onservative.Proof. By Lemma 6.3, Theorem 6.7 and (6.2), the �ow (Φt) on T ×R is isomorphito a speial �ow built over the skew produt Tϕ, where ϕ : I → Rℓ is a funtion ofbounded variation with zero mean. In view of Corollary 2.4, the skew produt isonservative. Now the onservativity of (Φt) follows from Remark 6.1. �Let g be a Riemann metri on M . Let us onsider 1-form ϑβ ∈ Ω1(M \ F(β))on M \ F(β) de�ned by
ϑβxY =

gx(Y,X(x))

gx(X(x), X(x))
.Then ϑβxX(x) = 1, and hene

∫

{φsx:s∈[a,b]}

f · ϑβ =

∫ b

a

f(φsx) · ϑβφsx
(X(φsx))ds =

∫ b

a

f(φsx)ds.It follows that∫

∂T

f · ϑβ =
∑

z∈Z−

∫ +∞

−∞

f(φsuz)ds−
∑

z∈Z+

∫ +∞

−∞

f(φsuz)ds =

∫

I

ϕ′(x) dx.Theorem 6.10. Suppose that the IET T is of periodi type. Let f : M → R be asmooth funtion suh that f(x) = 0, f ′(x) = 0 and f ′′(x) = 0 for all x ∈ F(β),
∫

T

f dν = 0 and ∫

∂T

f · ϑβ 6= 0.Then the orresponding �ow (Φt) on T × R is ergodi.Proof. By Lemma 6.3, Theorem 6.7 and (6.2), the �ow (Φt) on T ×R is isomorphito a speial �ow built over the skew produt Tϕ, where ϕ ∈ BV1(⊔α∈AIα) has zeromean and
s(ϕ) =

∫

I

ϕ′(x)dx =

∫

∂T

f · ϑβ 6= 0.By Lemma 3.2, the oyle ϕ is ohomologous to a oyle ϕpl ∈ PL(⊔α∈AIα) with∫
ϕpl(x) dx = 0 and s(ϕpl) = s(ϕ) 6= 0. In view of Theorem 3.4, the skew produt

Tϕpl
is ergodi. Consequently, the skew produt Tϕ and hene the �ow (Φt) on

T × R are ergodi, by Remark 6.1. �Suppose that the IET T is of periodi type and θ2(T )/θ1(T ) < 1/ℓ (ℓ ≥ 2). Let
f : M → Rℓ be a smooth funtion suh that f(x) = 0, f ′(x) = 0 and f ′′(x) = 0 forall x ∈ F(β), ∫

T

f dν = 0 and Rℓ ∋ v =

∫

∂T

f · ϑβ 6= 0.



30 J.-P. CONZE, K. FR�CZEKLet a2, . . . , aℓ be a basis of the subspae {v}⊥ and let fa : M → Rℓ−1 be given by
fa = (〈a2, f〉, . . . , 〈aℓ, f〉).Theorem 6.11. If the �ow (Φfa

t ) on T × Rℓ−1 is ergodi then (Φft ) on T × Rℓ isergodi.Proof. Without loss of generality we an assume that v = (1, 0, . . . , 0), a2 =
(0, 1, 0, . . . , 0), . . . , aℓ = (0, . . . , 0, 1). Then ϕ = (ϕ1, ϕ2), where ϕ1 : I → R,
ϕ2 : I → Rℓ are funtions with ∫

I
ϕ′

1(x) dx 6= 0 and ∫
I
ϕ′

2(x) dx = 0. ApplyingProposition 3.1 we an pass to ohomologial oyles whih are pieewise linearwith onstant slope. Now we an apply Theorem 3.5 to prove the ergodiity of Tϕwhih implies the ergodiity of the �ow (Φt) on T × Rℓ. �7. Examples of ergodi extensions of multivalued Hamiltonian flowsIn this setion we will apply Theorems 5.7, 6.10 and 6.11 to onstrut expliitexamples of reurrent ergodi extensions of multivalued Hamiltonian �ows.7.1. Constrution of multivalued Hamiltonians.Let T = T(π,λ) : I → I be an arbitrary IET satisfying the Keane ondition. Webegin this setion by realling a reipe for onstruting multivalued Hamiltonianssuh that the orresponding �ows have speial representation over T . Let us startfrom any translation surfae (M,α) built over T by applying the zipped retanglesproedure (see [30℄ or [33℄). Denote by Σ = {p1, . . . , pκ} the set of singular pointof (M,α). Let J ⊂M \ Σ be a urve transversal to the vertial �ow and suh thatthe �rst return map to J is T . We will onstantly identify J with the interval I.Denote by S ⊂ M the union of segments of all separatries onneting singularpoints with J .We will onsider so alled regular adapted oordinates on M \ Σ, this is oordi-nates ζ relatively to whih αζ = dζ. If p ∈ Σ is a singular point with multipliity
m ≥ 1 then we onsider singular adapted oordinates around p, this is oordinates
ζ relatively to whih αζ = d ζ

m+1

m+1 = ζm dζ. Then all hanges of regular oordinatesare given by translations. If ζ′ is a regular adapted oordinate and ζ is a singularadapted oordinate, then ζ′ = ζm+1/(m+1)+c. Let us onsider the vertial vetor�eld Y and the assoiated vertial �ow (ψt)t∈R on (M,α), this is αxY (x) = i and
d
dtψtx = Y (ψtx) for x ∈ M \ Σ. Then for a regular adapted oordinate ζ we have
Y (ζ) = i and ψtζ = ζ + it. Moreover, for a singular adapted oordinate ζ we have
ζmY (ζ) = i, and hene Y (ζ) = iζ

m

|ζ|2m .For eah ε > 0 and p ∈ Σ denote by Bε(p) the ε open ball of enter p and let
g = gε : [0,+∞) → [0, 1] be a monotoni C∞-funtion suh that g(x) = x for
x ∈ [0, ε] and g(x) = 1 for x ≥ 2ε. Fix ε > 0 small enough. In what follows, we willdeal with regular adapted oordinates on M \ ⋃

p∈ΣB2ε(p) and singular adaptedoordinates on B3ε(p) for p ∈ Σ. Let us onsider a tangent C∞-vetor �eld Ỹ on
M suh that in adapted oordinates ζ we have

Ỹ (ζ) =

{
Y (ζ) = i, on M \ ⋃

p∈ΣB2ε(p),
g(|ζ|)2miζ

m

|ζ|2m , on B3ε(p), p ∈ Σ.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 31Denote by (ψ̃t)t∈R the assoiated C∞-�ow on M . Then (ψ̃t)t∈R on M \ Σ isobtained by a C∞ time hange in the vertial �ow (ψt)t∈R, and (ψ̃t)t∈R oinideswith (ψt)t∈R on M \ ⋃
p∈ΣB2ε(p).Denote by ω̃ the sympleti C∞-form on M suh that in adapted oordinates

ζ = x+ iy we have
ω̃ζ =

{
dx ∧ dy, on M \ ⋃

p∈ΣB2ε(p),
|ζ|2m

g(|ζ|)2m dx ∧ dy, on B3ε(p), p ∈ Σ.Let us onsider the C∞ 1-form on M given by β̃ = iỸ ω̃. Then in adaptedoordinates ζ = x+ iy we have
β̃ζ =

{ −dx, on M \ ⋃
p∈ΣB2ε(p),

−ℜζmdx+ ℑζmdy, on B3ε(p), p ∈ Σ.By Cauhy-Riemann equations, ∂
∂yℜζm+ ∂

∂xℑζm = 0, and hene dβ̃ = 0. There-fore (ψ̃t)t∈R is a multivalued Hamiltonian C∞-�ow whose orbits on M \Σ oinidewith orbits of the vertial �ow. It follows that (ψ̃t)t∈R has a speial representationover the IET T(π,λ). If the multipliity of a singularity p ∈ Σ is equal to m = 1 thenin singular adapted oordinates ζ = x+ iy on Bε(p) we have β̃ = −xdx+ ydy, andhene the multivalued Hamiltonian Ĥ is equal to Ĥ(x, y) = (y2 −x2)/2 + const, so
p is a non-degenerated ritial point of Ĥ.Let us onsider the sympleti form ν = ce2xdx ∧ dy, c 6= 0 on the disk D =
{(x, y) ∈ R2 : (x− 1/2)2 + y2 ≤ (3/2)2} and the Hamilton di�erential equation

dx

dt
= −y, dy

dt
= x(x − 1) + y2.Then the funtion −ce2x((x−1)2+y2)/2 is the orresponding Hamiltonian. Denoteby (ht) the assoiated loal Hamiltonian �ow. It has two ritial points: z0 = (0, 0)is a non-degenerated saddle and (1, 0) is a enter. The point (0, 0) has a loop saddleonnetion whih oinides with the urve e2x((x−1)2 +y2) = 1, x ≥ 0. Inside thisloop onnetion all trajetories of (ht) are periodi (see Figure 2). Suh domainsare alled traps. It is easy to show that the orresponding Hamiltonian vetor �eld

�
(0, 0)(−1, 0) (2, 0)(1, 0)

A+

A−Figure 2. The phase portrait of the Hamiltonian �ow for c > 0

Z does not vanish on ∂D, and that it has two ontat points (2, 0) and (−1, 0)



32 J.-P. CONZE, K. FR�CZEKand two ars A+ and A− onneting them with the same length (with respet to
ν). Let us ut out from M \ S a disk Bδ(q), δ > 0 suh that B2δ(q) is disjointfrom the transversal urve J and from eah B3ε(p), p ∈ Σ. The vetor �eld Ỹ doesnot vanish on ∂Bδ(q), has two ontat points and two ars Ã+ and Ã− onnetingthem with the same length (with respet to ω̃). Choose c 6= 0 suh that all fourars A+, A−, Ã+ and Ã− have the same length. Note that c is unique up to sign.Therefore, by Lemma 1 in [4℄, there exists a C∞-di�eomorphism f : ∂D → ∂Bδ(q),a sympleti C∞-form ω on (M \ Bδ(q)) ∪f D and a tangent C∞ vetor �eld Xsuh that

• LXω = 0;
• ω = ω̃ and X = Ỹ on M \B2δ(q);
• ω = ν and X = Z on D;
• the orbits of X on M \B2δ(q) are piees of orbits of the �ow (ψ̃t).Of ourse, (M \Bδ(q)) ∪f D is di�eomorphi to M , and so the vetor �eld X andthe sympleti form ω an be onsidered on M . Sine d(iXω) = LXω = 0, Xis a Hamiltonian vetor �eld with respet to ω. Denote by (φt)t∈R the Hamilton�ow assoiated to X . Sine the dynamis of (φt)t∈R and (ψt)t∈R oinide on M \

(
⋃
p∈ΣB2ε(p) ∪B2δ(q)) and J ⊂M \ (

⋃
p∈ΣB2ε(p) ∪B2δ(q)), the �rst return mapto J for (φt)t∈R is T . Denote by γ ∈ I the �rst bakward intersetion with J ofthe separatrix inoming to z0. Note that γ may be an arbitrary point of I di�erentfrom the ends of the exhanged intervals. It su�es to hoose the point q ∈M \ Sand δ > 0 arefully enough. Reall that the saddle point z0 has a loop onnetionwhih will be denoted by σloop(z0). Then the orientation of σloop(z0) is positive if

c > 0 and negative if c < 0.Remark 7.1. We an repeat the proedure of produing new loop onnetions (posi-tively or negatively oriented) as many times as we want. Therefore for any olletionof distint points {γ1, . . . , γs} ⊂ ⋃
α∈A Int Iα and δ > 0 small enough we an on-strut a multivalued Hamiltonian �ow (φt)t∈R on M whih has s non-degeneratedsaddle ritial points z1, . . . , zs suh that eah zi has a loop onnetion σloop(zi)inluded in Bδ(zi) for i = 1, . . . , s. Moreover, (ψt)t∈R and (φt)t∈R oinide on

M \ (
⋃
p∈ΣB2ε(p) ∪

⋃s
i=1 B2δ(zi))) and γi ∈ I orresponds to the �rst bakwardintersetion with J of the separatrix inoming to zi for i = 1, . . . , s.We denote by Trapi the trap orresponding to zi, by ǫ(zi) ∈ {−,+} the signof the orientation of σloop(zi) for i = 1, . . . , s, and by T the surfae M with theinterior of the traps Trapi, i = 1, . . . , s removed.Remark 7.2. Choose 0 < δ′ < δ suh that σloop(zi) ∩ (M \ Bδ′(zi)) 6= ∅ for i =

1, . . . , s. Let f : M → R be a C∞-funtion with ∫
T
fω = 0 and suh that f vanisheson eah B2ε(p), p ∈ Σ and Bδ(zi), i = 1, . . . , s. Then the orresponding funtion

ϕf : I → R, ϕf (x) = ϕ(x) =

∫ τ(x)

0

f(φtx) dt(τ : I → R+ is the �rst-return time map of the �ow (φt)t∈R to J) an be extended toa C∞-funtion on the losure of any interval of the partition P({lα : α ∈ A}∪{γi :
i = 1, . . . , s}). Moreover,(7.1) di(f) := ϕ+(γi) − ϕ−(γi) = ǫ(zi)

∫ +∞

−∞

f(φtuzi
) dt and s(ϕ) =

s∑

i=1

di(f),



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 33where uzi
is an arbitrary point of σloop(zi) for i = 1, . . . , s.Lemma 7.3. For every (d1, . . . , ds) ∈ Rs there exists a C∞-funtion f : M → Rwhih vanishes on a neighborhood of eah �xed point of (φt) suh that ∫

T
fω = 0and (d1(f), . . . , ds(f)) = (d1, . . . , ds).Proof. Let us start from f ≡ 0. Sine σloop(zi) ∩ (B2δ′(zi) \ Bδ′(zi)) 6= ∅, we anmodify f smoothly on B2δ′(zi) \Bδ′(zi) suh that

ǫ(zi)

∫ +∞

−∞

f(φtuzi
) dt = di and ∫

(B2δ′ (zi)\Bδ′ (zi))\Trapi

fω = 0for i = 1, . . . , s. In view of (7.1), it follows that di(f) = di for i = 1, . . . , s.Moreover, ∫

T

dω =
s∑

i=1

∫

(B2δ′ (zi)\Bδ′ (zi))\Trapi

fω = 0.

�Lemma 7.4. For every h ∈ Hπ there exists a C∞-funtion f : M → R suh that
ϕf =

∑
α∈A hαχIα

(f. Remark 7.2). If h ∈ Hπ ∩ Γ0 then ∫
T
fω = 0.Proof. Following [33℄, for every α ∈ A denote by [vα] ∈ H1(M,R) the homologylass of any losed urve vα formed by a segment of the orbit for (ψt)t∈R starting atany point x ∈ Int Iα and ending at Tx together with the segment of J that joins Txand x. Let Ψ : H1(M,R) → RA be given by Ψ([̺]) = (

∫
vα
̺)α∈A. By Lemma 2.19in [33℄, the map Ψ : H1(M,R) → Hπ establishes the isomorphism of linear spaes.Therefore for every h ∈ Hπ there exists a losed 1-form ̺ suh that Ψ([̺]) = h and

̺ vanishes on an open neighborhood of J . Let f : M → R be given by f(x) = ̺xXxfor x ∈M .For every x ∈ Int Iα let vx be the losed urve formed by the segment of orbit for
(φt)t∈R starting at x and ending at Tx together with the segment of J that joins
Tx and x. Then [vx] = [vα]. Therefore, hα =

∫
vα
̺ =

∫
vx
̺.Sine the form ρ vanishes on J , we have

∫

vx

̺ =

∫ τ(x)

0

̺φtxX(φtx) dt =

∫ τ(x)

0

f(φtx) dt = ϕf (x).Consequently, ϕf (x) = hα for all x ∈ Int Iα and α ∈ A. If we assume that
h ∈ Hπ ∩ Γ0, then

0 = 〈λ, h〉 =

∫

I

ϕf (x)dx =

∫

T

fω.

�7.2. Examples.Let us onsider an IET T = T(π,λ) and a set {γ1, . . . , γs} ⊂ I \ {lα : α ∈ A}, s ≥ 3.Set ℓ = s− 1. Suppose that(7.2) {γ1, . . . , γs} is of periodi type with respet to T and θ2(T )/θ1(T ) < 1/ℓ.Reall that T has to be of periodi type as well. An expliit example of suh datafor s = 3 is given at the end of this setion.By Remark 7.1, there exists a multivalued Hamiltonian �ow (φt)t∈R with s traps(determined by saddle points zi, i = 1, . . . , s) on a sympleti surfae (M,ω) suh



34 J.-P. CONZE, K. FR�CZEKthat (φt)t∈R on T has a speial representation over T(π,λ) and γi orresponds to the�rst bakward intersetion with the transversal urve of the separatrix inoming to
zi for i = 1, . . . , s.By Lemma 7.3 and (7.1), there exists a C∞-funtion f1 : M → R suh that∫
T
f1ω = 0 and s(ϕf1 ) 6= 0. In view of Theorem 6.10, the �ow (Φf1t )t∈R on T × Ris ergodi.Let d̄1, . . . , d̄s be vetors in Rℓ−1 suh that Z(d̄1, . . . , d̄s) = Rℓ−1 and ∑s

i=1 d̄i =
0̄. Sine s = (ℓ − 1) + 2, the existene of suh olletion follows diretly fromRemark 3.8. By Lemma 7.3, there exists a C∞-funtion f ′

2 : M → Rℓ−1 suhthat f ′
2 vanishes on a neighborhood of eah �xed point of (φt), ∫

T f
′
2ω = 0̄ and

(ϕf ′
2
)+(γi) − (ϕf ′

2
)−(γi) = d̄i for i = 1, . . . , s. Then ϕf ′

2
has zero mean and, by(7.1), s(ϕf ′

2
) =

∑s
i=1 d̄i = 0̄.Denote by ϕ̄ : I → Rℓ the pieewise onstant funtion with zero mean whosedisontinuities are γi, i = 1, . . . , s and ϕ̄+(γi) − ϕ̄−(γi) = d̄i for i = 1, . . . , s.In view of (7.2) and Remark 5.6, ϕ̄ ∈ BV♦

0 (⊔α∈AIα,R
ℓ−1). By Remark 7.2, ϕf ′

2an be extended to a C∞-funtion on the losure of any interval of the partition
P({lα : α ∈ A} ∪ {γi : i = 1, . . . , s}). It follows that ϕf ′

2
− ϕ̄ ∈ BV1(⊔α∈A,R

ℓ−1).Moreover, ϕf ′
2
− ϕ̄ has zero mean and s(ϕf ′

2
− ϕ̄) = s(ϕf ′

2
) − s(ϕ̄) = 0. Therefore,by Proposition 3.1, ϕf ′

2
− ϕ̄ is ohomologous to h̄1 = (h1

1, . . . , h
1
ℓ−1), where h1

i ∈ Γ0for i = 1, . . . , ℓ− 1.In view of Theorem 5.2 applied to the oordinate funtions of the funtion ϕ̄ +
h̄1 ∈ BV♦

0 (⊔α∈AIα,R
ℓ−1), there exists h̄2 = (h1

2, . . . , h
2
ℓ−1) with h2

i ∈ Γu ∩ Γ0 for
i = 1, . . . , ℓ − 1 suh that ϕ̄ + h̄1 + h̄2 = ̂̄ϕ+ h̄1. Moreover, by Theorem 5.7,the oyle ϕ̄ + h̄1 + h̄2 = ̂̄ϕ+ h̄1 is ergodi. As ϕf ′

2
+ h̄2 is ohomologous to

ϕ̄ + h̄1 + h̄2, it is ergodi as well. By Lemma 7.4, there exists a C∞-funtion
f ′′
2 : M → Rℓ−1 with ∫

T f
′′
2 ω = 0̄ suh that ϕf ′′

2
= h̄2. Setting f2 = f ′

2 + f ′′
2 , wehave ∫

T f2ω = 0̄, ϕf2 = ϕf ′
2

+ h̄2, and s(ϕf2) = s(ϕf ′
2
) =

∑s
i=1 d̄i = 0̄. It followsthat the �ow (Φf2t )t∈R on T × Rℓ−1 is ergodi. Finally applying Theorem 6.11 to

f = (f1, f2) : I → Rℓ we have the ergodiity of the �ow (Φft )t∈R on T × Rℓ.Example 1. Let us onsider the permutation (
1 2 3 4 5 6 7
6 7 4 5 3 1 2

) and a orre-sponding pair π′. On the Rauzy graph R(π′) let us onsider the loop starting from
π′ and passing through the edges labeled onseutively by

1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1.Then the resulting matrix is
A′ :=




9 8 20 20 15 5 5
1 2 4 4 3 2 2
2 2 6 5 4 1 1
2 2 5 6 4 1 1
1 1 2 2 2 0 0
2 2 4 4 3 2 1
1 1 3 3 2 1 2


and (A′)2 has positive entries. Let λ′ ∈ R7

+ be a Perron-Frobenius eigenvetor of A′.Then T(π′,λ′) is of periodi type and A′ is its periodi matrix. Of ourse, T(π′,λ′) isan exhange of 4 intervals, more preisely, T(π′,λ′) = T(πsym
4 ,λ), where λ1 = λ′1 +λ′2,
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λ2 = λ′3 + λ′4, λ3 = λ′5 and λ4 = λ′6 + λ′7. As we already notied in Setion 5.3,
T(πsym

4 ,λ) has also periodi type and the family γ1 = λ′1, γ2 = λ′1 + λ′2 + λ′3, γ3 =

λ′1 +λ′2 +λ′3 +λ′4 +λ′5 +λ′6 is of periodi type with respet to T(πsym
4 ,λ). Moreover,

A =




10 24 18 7
4 11 8 2
1 2 2 0
3 7 5 3


is the periodi matrix of T(πsym

4 ,λ), so
ρ1 =

13

2
+

1

2

√
115 +

1

2

√
280 + 26

√
115, ρ2 =

13

2
− 1

2

√
115 +

1

2

√
280 − 26

√
115.Hene θ2/θ1 ≈ 0.164 < 1/2, so T(πsym

4 ,λ) and {γ1, γ2, γ3} satisfy (7.2) with s = 3.Remark 7.5. Similar examples an be onstruted by mathing the set {γ1, . . . , γs}for a �xed IET T = Tπ,λ of periodi type. Let p ≥ 1 be the period of T and let
ρ > 1 be the Perron-Frobenius eigenvalue of the periodi matrix A of T . For every
x ∈ I let k(x) = inf{k ≥ 0 : T−kx ∈ I(p)}. Let us onsider the map S : I → I,
S(x) = ρ ·T−k(x)x. Note that for every α ∈ A the map S has at least Aαα−2 �xedpoints in the interior of Iα. Therefore, multiplying the period of T , if neessary, forevery s ≥ 1 we an �nd s distint �xed points γ1, . . . , γs di�erent from lα, α ∈ A.In view of Theorem 23 in [27℄, the set {γ1, . . . , γs} is of periodi type with respetto T .Denote by M2 a ompat C∞-surfae of genus 2. We an apply the aboveonstrutions to the sequene of IETs T with arbitrary small values of the ratio
θ2(T )/θ1(T ) from Appendix B to obtain the following result:Corollary 7.6. For every ℓ ≥ 1 there exists a multivalued Hamiltonian �ow (φt)t∈Ron M2 and a C∞-funtion f : M2 → Rℓ for whih the �ow (Φft )t∈R on T × Rℓ isergodi. �Appendix A. Deviation of oyles: proofsLet T : I → I be an arbitrary IET satisfying Keane's ondition. For every x ∈ Iand n ≥ 0 set

m(x, n, T ) = max{l ≥ 0 : #{0 ≤ k ≤ n : T kx ∈ I(l)} ≥ 2}.Proposition A.1 (see [36℄ or [33℄). For every x ∈ I and n > 0 we have
min
α∈A

Qα(m) ≤ n ≤ dmax
α∈A

Qα(m+ 1) = d‖Q(m+ 1)‖, where m = m(x, n, T ). �Remark A.2. Assume that T = T(π,λ) is of periodi type and A is its periodimatrix. Then there exists C > 0 suh that eθ1k/C ≤ ‖Ak‖ ≤ Ceθ1k for every
k ≥ 1, where θ1 is the greatest Lyapunov exponent of A. Let m = m(x, n, T ).Sine ‖An‖ = maxα∈AA

n
α, by Proposition A.1 and (4.2), it follows that

n ≥ min
α∈A

Qα(m) = min
α∈A

Amα ≥ 1

ν(A)
max
α∈A

Amα =
‖Am‖
ν(A)

≥ eθ1m

Cν(A)
.Thus(A.1) m ≤ 1

θ1
log(Cν(A)n).



36 J.-P. CONZE, K. FR�CZEKProposition A.3 (see [24℄). For eah bounded funtion ϕ : I → R, x ∈ I and
n > 0 we have(A.2) |ϕ(n)(x)| ≤ 2

m∑

l=0

‖Z(l+ 1)‖‖S(l)ϕ‖sup, where m = m(x, n, T ).If additionally ϕ ∈ BV0(⊔α∈AIα) then(A.3) ‖S(l)ϕ‖sup ≤
∑

1≤j≤l

‖Z(j)‖‖S(j, l)|
Γ

(j)
0
‖Varϕ. �Proof of Theorem 2.2. Sine λ is a positive Perron-Frobenius eigenvetor of A, byProposition 5 in [36℄, the restrition of At to the invariant spae Ann(λ) = {h ∈

RA : 〈h, λ〉 = 0} has the following Lyapunov exponents:
θ2 ≥ θ3 ≥ . . . ≥ θg ≥ 0 = . . . = 0 ≥ −θg ≥ . . . ≥ −θ3 ≥ −θ2 > −θ1.Thus there exists C > 0 suh that for every k ∈ N we have

‖(At)kh‖ ≤ CkM−1 exp(kθ2)‖h‖ for all h ∈ Ann(λ).Sine Γ
(j)
0 = Ann(λ) and S(j, l) = Qt(j, l) = (At)l−j on Γ

(j)
0 , by (A.3),

‖S(l)ϕ‖sup ≤
∑

1≤j≤l

‖A‖‖(At)l−j |Ann(λ)‖Varϕ

≤
∑

0≤k<l

‖A‖CkM−1 exp(kθ2)Varϕ ≤ ‖A‖ClM exp(lθ2)Varϕ.In view of (A.2), it follows that
|ϕ(n)(x)| ≤ 2

m∑

l=0

‖A‖‖S(l)ϕ‖sup ≤ 2

m∑

l=0

‖A‖2ClM exp(lθ2)Varϕ

≤ 2‖A‖2CmM+1 exp(mθ2)Varϕ,where m = m(x, n, T ). Consequently, by (A.1),
|ϕ(n)(x)| ≤ 2

‖A‖2C2ν(A)

θM+1
1

logM+1(Cν(A)n)nθ2/θ1 Varϕ.

�Appendix B. Possible values of θ2/θ1In this setion we will show that for eah symmetri pair πsym4 there are IETs ofperiodi type suh that θ2/θ1 is arbitrary small and the spetrum of the periodimatrix is non-degenerated. As it was shown in [24℄ for every natural n the matrix
M(n) =




1 1 1 1
n n+ 1 0 0
0 0 2 1

n+ 1 n+ 2 2 2


is a resulting matrix orresponding to a loop in the Rauzy lass of πsym4 and startingfrom πsym4 . Sine M(n) is primitive, there exists an IET of periodi type for whih
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M(n) is its periodi matrix. The eigenvalues ρ1(n) > ρ2(n) > 1 > ρ3(n) > ρ4(n) >
0 of M(n) are of the form

ρ1(n) =
1

2

(
a+
n +

√
(a+
n )2 − 4

)
, ρ2(n) =

1

2

(
a−n +

√
(a−n )2 − 4

)
,

ρ3(n) =
1

2

(
a−n −

√
(a−n )2 − 4

)
, ρ4(n) =

1

2

(
a+
n −

√
(a+
n )2 − 4

)
,where

a±n =
1

2
(n+ 6 ±

√
n2 + 4).Sine a+

n → +∞ and a−n → 3 as n→ +∞, it follows that
θ2(n)

θ1(n)
=

log ρ2(n)

log ρ1(n)
→ 0 as n→ +∞.Appendix C. Deviation of orreted funtionsProof of Theorem 5.1. First note that for every natural k the subspae Γ

(k)
cs ⊂ RAis the diret sum of invariant subspaes assoiated to Jordan bloks of At withnon-positive Lyapunov exponents. It follows that there exists C > 0 suh that(C.1) ‖(At)nh‖ ≤ CnM−1‖h‖ for all h ∈ Γ(k)

cs and n ≥ 0.It is easy to show that Γ
(k)
cs ⊂ Γ

(k)
0 .Next note that S(k, l)Γ

(k)
cs = Γ

(l)
cs and the quotient linear transformation

Su(k, l) : BV(⊔α∈AI
(k)
α )/Γ(k)

cs → BV(⊔α∈AI
(l)
α )/Γ(l)

csis invertible. Moreover,(C.2) Su(k, l) ◦ U (k)ϕ = U (l) ◦ S(k, l)ϕ for ϕ ∈ BV(⊔α∈AI
(k)
α ).Sine Γ

(k)
u ⊂ RA the diret sum of invariant subspaes assoiated to Jordanbloks of At with positive Lyapunov exponents, RA = Γ(k) = Γ

(k)
cs ⊕ Γ

(k)
u is aninvariant deomposition. Moreover, there exist θ+ > 0 and C > 0 suh that

‖(At)−nh‖ ≤ C exp(−nθ+)‖h‖ for all h ∈ Γ(k)
u and n ≥ 0.Sine the linear operators At : Γ

(k)
u → Γ

(k)
u and At : Γ(k)/Γ

(k)
cs → Γ(k)/Γ

(k)
cs areisomorphi, there exists C′ > 0 suh that

‖(At)−n(h+ Γ(k)
cs )‖ ≤ C′ exp(−nθ+)‖h+ Γ(k)

cs ‖for all h+ Γ
(k)
cs ∈ Γ(k)/Γ

(k)
cs and n ≥ 0. Consequently,(C.3) ‖(Su(k, l))−1(h+ Γ(k)

cs )‖ ≤ C′ exp(−(l − k)θ+)‖h+ Γ(k)
cs ‖for all h+ Γ

(k)
cs ∈ Γ(k)/Γ

(k)
cs and 0 ≤ k < l.Let us onsider the linear operator C(k) : BV0(⊔α∈AI

(k)
α ) → Γ

(k)
0 given by

C(k)ϕ(x) =
1

|I(k)
α |

∫

I
(k)
α

ϕ(t)dt if x ∈ I(k)
α .Then P (k)

0 ϕ = ϕ− C(k)ϕ and(C.4) ‖C(k)ϕ‖ ≤ ‖ϕ‖sup,(C.5) ‖P (k)
0 ϕ‖sup ≤ VarP

(k)
0 ϕ = Varϕ.



38 J.-P. CONZE, K. FR�CZEKLet ϕ ∈ BV0(⊔α∈AIα). Note that for 0 ≤ k ≤ l we have
P

(k)
0 ϕ− S(k, l)−1 ◦ P (l)

0 ◦ S(k, l)ϕ

=
∑

k≤r<l

(S(k, r)−1 ◦ P (r)
0 ◦ S(k, r) − S(k, r + 1)−1 ◦ P (r+1)

0 ◦ S(k, r + 1))ϕ

=
∑

k≤r<l

S(k, r + 1)−1 ◦ (S(r, r + 1) ◦ P (r)
0 − P

(r+1)
0 ◦ S(r, r + 1)) ◦ S(k, r)ϕ.Next observe that

(S(r, r + 1) ◦ P (r)
0 − P

(r+1)
0 ◦ S(r, r + 1))ψ = C(r+1) ◦ S(r, r + 1) ◦ P (r)

0 ψ ∈ Γr+1
0for ψ ∈ BV0(⊔α∈AI

(r)
α ). Indeed, if ψ ∈ BV0(⊔α∈AI

(r)
α ) then ψ = P

(r)
0 ψ + C(r)ψand

P
(r+1)
0 ◦ S(r, r + 1)ψ = P

(r+1)
0 ◦ S(r, r + 1) ◦ P (r)

0 ψ + P
(r+1)
0 ◦ S(r, r + 1) ◦ C(r)ψ.Sine S(r, r+ 1) ◦C(r)ψ ∈ Γ

(r+1)
0 , we obtain P (r+1)

0 ◦ S(r, r+ 1) ◦C(r)ψ = 0; hene
S(r, r + 1) ◦ P (r)

0 ψ − P
(r+1)
0 ◦ S(r, r + 1)ψ

= S(r, r + 1) ◦ P (r)
0 ψ − P

(r+1)
0 ◦ S(r, r + 1) ◦ P (r)

0 ψ

= C(r+1) ◦ S(r, r + 1) ◦ P (r)
0 ψ.Therefore

P
(k)
0 ϕ− S(k, l)−1 ◦ P (r)

0 ◦ S(k, l)ϕ

=
∑

k≤r<l

S(k, r + 1)−1 ◦ C(r+1) ◦ S(r, r + 1) ◦ P (r)
0 ◦ S(k, r)ϕ ∈ Γ

(k)
0 .In view of (C.2),

(U (k) ◦ P (k)
0 − U (k) ◦ S(k, l)−1 ◦ P (r)

0 ◦ S(k, l))ϕ

=
∑

k≤r<l

Su(k, r + 1)−1 ◦ U (r+1) ◦ C(r+1) ◦ S(r, r + 1) ◦ P (r)
0 ◦ S(k, r)ϕ.Moreover, using (C.4), (5.2), (C.5) and (5.1) suessively we obtain

‖C(r+1) ◦ S(r, r + 1) ◦ P (r)
0 ◦ S(k, r)ϕ‖ ≤ ‖S(r, r + 1) ◦ P (r)

0 ◦ S(k, r)ϕ‖sup

≤ ‖Z(r + 1)‖‖P (r)
0 ◦ S(k, r)ϕ‖sup ≤ ‖A‖VarS(k, r)ϕ ≤ ‖A‖Varϕ.Next let onsider the series in Γ

(k)
0 /Γ

(k)
cs(C.6) ∑

r≥k

(Su(k, r + 1))−1 ◦ U (r+1) ◦ C(r+1) ◦ S(r, r + 1) ◦ P (r)
0 ◦ S(k, r)ϕ.Sine ‖U (r+1)‖ = 1 and U (r+1)◦C(r+1)◦S(r, r+1)◦P (r)

0 ◦S(k, r)ϕ ∈ Γ
(r+1)
0 /Γ

(r+1)
cs ,by (C.3), the norm of the r-th element of the series (C.6) is bounded from aboveby C′‖A‖ exp(−(r − k + 1)θ+)Varϕ. As

∑

r≥k

C′‖A‖ exp(−(r − k + 1)θ+)Varϕ < +∞,the series (C.6) onverges in Γ
(k)
0 /Γ

(k)
cs . Denote by ∆P (k)ϕ ∈ Γ

(k)
0 /Γ

(k)
cs the sum of(C.6). Then there exists K > 0 suh that(C.7) ‖∆P (k)ϕ‖ ≤ K Varϕ, for every ϕ ∈ BV0(⊔α∈AI

(k)
α ) and k ≥ 0.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 39It follows that the sequene (5.4) onverges in BV0(⊔α∈AI
(k)
α )/Γ

(k)
cs and(C.8) P (k) = U (k) ◦ P (k)

0 − ∆P (k).

�Lemma C.1. For all 0 ≤ k ≤ l and ϕ ∈ BV0(⊔α∈AI
(k)
α ) we have

Su(k, l) ◦ P (k)ϕ = P (l) ◦ S(k, l)ϕ,(C.9)
‖P (k)ϕ‖

sup /Γ
(k)
cs

≤ (1 +K)Varϕ.(C.10)Proof. By de�nition and by (C.2),
Su(k, l) ◦ P (k)ϕ = Su(k, l) lim

r→∞
U (k) ◦ S(k, r)−1 ◦ P (r)

0 ◦ S(k, r)ϕ

= lim
r→∞

U (l) ◦ S(l, r) ◦ S(k, r)−1 ◦ P (r)
0 ◦ S(k, r)ϕ

= lim
r→∞

U (l) ◦ S(l, r)−1 ◦ P (r)
0 ◦ S(l, r) ◦ S(k, l)ϕ = P (l) ◦ S(k, l)ϕ.Moreover, by (C.8), (C.5) and (C.7),

‖P (k)ϕ‖
sup /Γ

(k)
cs

≤ ‖P (k)
0 ϕ‖sup + ‖∆P (k)ϕ‖ ≤ (1 +K)Varϕ.

�Let p : {0, 1, . . . , d, d+ 1} → {0, 1, . . . , d, d+ 1} stand for the permutation
p(j) =

{
π1 ◦ π−1

0 (j) if 1 ≤ j ≤ d
j if j = 0, d+ 1.Following [30, 31℄, denote by σ = σπ the orresponding permutation on {0, 1, . . . , d},

σ(j) = p−1(p(j) + 1) − 1 for 0 ≤ j ≤ d.Then T̂(π,λ)rπ−1
0 (j) = T(π,λ)rπ−1

0 (σj) for all j 6= 0, p−1(d). Denote by Σ(π) the set oforbits for the permutation σ. Let Σ0(π) stand for the subset of orbits that do notontain zero. Then Σ(π) orresponds to the set of singular points of any translationsurfae assoiated to π and hene #Σ(π) = κ(π). For every O ∈ Σ(π) denote by
b(O) ∈ RA the vetor given by

b(O)α = χO(π0(α)) − χO(π0(α) − 1) for α ∈ A.Lemma C.2 (see [31℄). For every irreduible pair π we have ∑
O∈Σ(π) b(O) = 0, thevetors b(O), O ∈ Σ0(π) are linearly independent and the linear subspae generatedby them is equal to kerΩπ. Moreover, h ∈ Hπ if and only if 〈h, b(O)〉 = 0 for every

O ∈ Σ(π). �Remark C.3. Let Λπ : RA → RΣ0(π) stand for the linear transformation givenby (Λπh)O = 〈h, b(O)〉 for O ∈ Σ0(π). By Lemma C.2, Hπ = kerΛπ and if
RA = F ⊕Hπ is a diret sum deomposition then Λπ : F → RΣ0(π) establishes anisomorphism of linear spaes. It follows that there exists KF > 0 suh that

‖h‖ ≤ KF ‖Λπh‖ for all h ∈ F.Lemma C.4 (see [31℄). Suppose that T(π̃,λ̃) = R(T(π,λ)). Then there exists abijetion ξ : Σ(π) → Σ(π̃) suh that Θ(π, λ)−1b(O) = b(ξO) for O ∈ Σ(π). �



40 J.-P. CONZE, K. FR�CZEKLet T = T(π,λ) be an IET satisfying Keane's ondition. For every O ∈ Σ(π) and
ϕ ∈ BV♦(⊔α∈AIα) let

O(ϕ) =
∑

α∈A,π0(α)∈O

ϕ−(rα) −
∑

α∈A,π0(α)−1∈O

ϕ+(lα).Note that if h ∈ Γ(0) (i.e. h is a funtion onstant on exhanged intervals), then
O(h) =

∑

π0(α)∈O

hα−
∑

π0(α)−1∈O

hα =
∑

α∈A

(χO(π0(α))−χO(π0(α)−1))hα = 〈h, b(O)〉.Moreover,(C.11) |O(ϕ)| ≤ 2d‖ϕ‖sup for every ϕ ∈ BV♦(⊔α∈AIα) and O ∈ Σ(π).Let us onsider T(π̃,λ̃) = R(T(π,λ)) and the renormalized oyle ϕ̃ : Ĩ → R, thisis
ϕ̃(x) =

∑

0≤i<Θβ(π,λ)

ϕ(T i(π,λ)x) for x ∈ Ĩβ .The proof of the following lemma is straightforward and we leave it to the reader.Lemma C.5. If ϕ ∈ BV♦(⊔α∈AIα) then ϕ̃ ∈ BV♦(⊔α∈AĨα) and (ξO)(ϕ̃) = O(ϕ)for eah O ∈ Σ(π). �Let T = T(π,λ) be an IET of periodi type and let A be its periodi matrix. ByLemma C.4, there exists a bijetion ξ : Σ(π) → Σ(π) suh that A−1b(O) = b(ξO)for O ∈ Σ(π). Sine ξN = IdΣ(π) for someN ≥ 1, multiplying the period of T by N ,we an assume that ξ = IdΣ(π). Therefore Ab(O) = b(O) for eah O ∈ Σ(π), andhene A|ker Ωπ
= Id. It follows that the dimension of Γ

(0)
c = {h ∈ RA : Ath = h}is greater or equal than κ − 1. Denote by Γ

(0)
s ⊂ RA the diret sum of invariantsubspaes assoiated to Jordan bloks of At with negative Lyapunov exponents.Assume that T has non-degenerated spetrum, i.e. θg > 0. Then dimΓ

(0)
s =

dimΓ
(0)
u = g. Sine 2g + κ− 1 = d and dimΓ

(0)
c = κ− 1,

RA = Γ(0) = Γ(0)
s ⊕ Γ(0)

c ⊕ Γ(0)
uis an At�invariant deompositions. It follows that Γ

(0)
s ⊕Γ

(0)
c = Γ

(0)
cs ⊂ Γ

(0)
0 . There-fore

Γ
(0)
0 = Γ(0)

s ⊕ Γ(0)
c ⊕ (Γ(0)

u ∩ Γ
(0)
0 ).Reall that Γ

(0)
s ⊕Γ

(0)
u ⊂ Hπ. As T has non-degenerated spetrum, these subspaeshave the same dimension, and so they are equal. Denote by Γ

(k)
s , Γ

(k)
c and Γ

(k)
u thesubspaes of funtions on I(k) onstant on intervals I(k)

α , α ∈ A orresponding tothe vetors from Γ
(0)
s , Γ

(0)
c and Γ

(0)
u respetively. Then(C.12) Γ(k) = Γ(k)

s ⊕Γ(k)
c ⊕Γ(k)

u , Hπ = Γ(k)
s ⊕Γ(k)

u , Γ
(k)
0 = Γ(k)

s ⊕Γ(k)
c ⊕(Γ(k)

u ∩Γ
(k)
0 )for k ≥ 0 is a family of deomposition invariant with respet to the renormalizationoperators S(k, l) for 0 ≤ k < l.As ξ = IdΣ(π), by Lemma C.5, for every ϕ ∈ BV♦(⊔α∈AI

(k)
α ) and l ≥ k we have(C.13) S(k, l)ϕ ∈ BV♦(⊔α∈AI

(l)
α ) and O(S(k, l)ϕ) = O(ϕ) for eah O ∈ Σ(π).
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U (0)ϕ̂ = P (0)ϕ = U (0) ◦ P (0)

0 ϕ− ∆P (0)ϕ = U (0)ϕ− U (0) ◦ C(0)ϕ− ∆P (0)ϕ,we have
ϕ− ϕ̂ ∈ U (0) ◦ C(0)ϕ+ ∆P (0)ϕ ⊂ Γ

(0)
0 .In view of (C.2) and (C.9),

U (k) ◦ S(k)ϕ̂ = Su(k) ◦ U (0)ϕ̂ = Su(k) ◦ P (0)ϕ = P (k) ◦ S(k)ϕ.Therefore, by (C.10) and (5.1), we have
‖U (k) ◦ S(k)ϕ̂‖

sup /Γ
(k)
cs

= ‖P (k)(S(k)ϕ)‖
sup /Γ

(k)
cs

≤ (1 +K)Var(S(k)ϕ) ≤ (1 +K)Varϕ.It follows that for every k ≥ 0 there exists ϕk ∈ BV0(⊔α∈AI
(k)
α ) and hk ∈ Γ

(k)
cs suhthat(C.14) S(k)ϕ̂ = ϕk + hk and ‖ϕk‖sup ≤ (1 +K)Varϕ.As(C.15) ϕk+1 + hk+1 = S(k + 1)ϕ̂ = S(k, k + 1)S(k)ϕ̂ = S(k, k + 1)ϕk +Athk,setting ∆hk+1 = hk+1−Athk (∆h0 = h0) we have ∆hk+1 = −ϕk+1 +S(k, k+1)ϕk.Moreover, by (C.14),

‖∆hk+1‖ = ‖ϕk+1 − S(k, k + 1)ϕk‖sup

≤ ‖ϕk+1‖sup + ‖S(k, k + 1)ϕk‖sup ≤ (1 + ‖A‖)(1 +K)Varϕ.and
‖∆h0‖ = ‖ϕ̂− ϕ0‖sup ≤ ‖ϕ̂‖sup + (1 +K)Varϕ.Sine hk =

∑
0≤l≤k(A

t)l∆hk−l and ∆hl ∈ Γ
(l)
cs , by (C.1),

‖hk‖ ≤
∑

0≤l≤k

‖(At)l∆hk−l‖ ≤
∑

0≤l≤k

ClM−1‖∆hk−l‖

≤ CkM (1 + ‖A‖)(1 +K)Varϕ+ CkM−1‖ϕ̂‖sup.In view of (C.14), it follows that
‖S(k)ϕ̂‖sup ≤ ‖ϕk‖sup + ‖hk‖ ≤ CkM (2 + ‖A‖)(1 +K)Varϕ+ CkM−1‖ϕ̂‖sup.Sine ϕ̂−ϕ ∈ Γ

(0)
0 = (Γ

(0)
u ∩Γ

(0)
0 )⊕Γ

(0)
cs , there exist h ∈ (Γ

(0)
u ∩Γ

(0)
0 ) and h′ ∈ Γ

(0)
cssuh that ϕ+ h = ϕ̂+ h′. Hene

ϕ+ h+ Γ(0)
cs = ϕ̂+ Γ(0)

cs = P (0)ϕ.Suppose that h1, h2 ∈ Γ
(0)
u ∩ Γ

(0)
0 are vetors suh that

ϕ+ h1 + Γ(0)
cs = ϕ+ h2 + Γ(0)

cs = P (0)ϕ.In view of (5.5), ‖S(k)(ϕ+h1)‖sup and ‖S(k)(ϕ+h2)‖sup have at most polynomialgrowth. Therefore, ‖(At)k(h1 − h2)‖ = ‖S(k)(h1 − h2)‖ has at most polynomialgrowth, as well. Sine h1 − h2 ∈ Γ
(0)
u , it follows that h1 = h2.Assume that T has non-degenerated spetrum. Then Γ

(k)
cs = Γ

(k)
c ⊕Γ

(k)
s . Suppose

ϕk, hk ∈ Γ
(k)
cs satisfy (C.14). Let us deompose hk = hsk + hck, where hck ∈ Γ

(k)
c and
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hsk ∈ Γ

(k)
s ⊂ Hπ. By Remark C.3, Λπ(hsk) = 0. In view of (C.14) and (C.13), itfollows that

O(ϕ̂) = O(S(k)ϕ̂) = O(ϕk) + O(hck) for every O ∈ Σ(π).Moreover, by (C.11) and (C.14),
|O(ϕk)| ≤ 2d‖ϕk‖sup ≤ 2d(1 +K)Varϕ and |O(ϕ̂)| ≤ 2d‖ϕ̂‖supfor every O ∈ Σ(π). Therefore

|〈hck, b(O)〉| = |O(hck)| ≤ 2d((1 +K)Varϕ+ ‖ϕ̂‖sup) for every O ∈ Σ(π),so that(C.16) ‖Λπ(hck)‖ ≤ 2d((1 +K)Varϕ+ ‖ϕ̂‖sup).By (C.12), we have RA = Γ(k) = Γ
(k)
c ⊕Hπ, so in view of Remark C.3, there exists

K ′ ≥ 1 suh that ‖h‖ ≤ K ′‖Λπh‖ for every h ∈ Γ
(k)
c . By (C.16), it follows that(C.17) ‖hck‖ ≤ 2dK ′((1 +K)Varϕ+ ‖ϕ̂‖sup).Let ∆hsk+1 = hsk+1 −Athsk for k ≥ 0 and ∆hs0 = hs0. Then from (C.15), we have

∆hsk+1 = −ϕk+1+S(k, k+1)ϕk−hck+1+Athck = −ϕk+1+S(k, k+1)ϕk−hck+1+hck.Therefore, by (C.14) and (C.17),
‖∆hsk+1‖ ≤ ‖ϕk+1‖sup + ‖A‖‖ϕk‖sup + ‖hck+1‖ + ‖hck‖

≤ (1 + ‖A‖ + 4dK ′)(1 +K)Varϕ+ 4dK ′‖ϕ̂‖sup,

‖∆hs0‖ = ‖ϕ̂− ϕ0 − hc0‖sup ≤ (1 + 2dK ′)(‖ϕ̂‖sup + (1 +K)Varϕ).Notie that for every 0 < θ− < θg there exists C ≥ 1 suh that
‖(At)nh‖ ≤ C exp(−nθ−)‖h‖ for all h ∈ Γ(k)

s and n ≥ 0.Sine hsk =
∑

0≤l≤k(A
t)l∆hsk−l and ∆hsl ∈ Γ

(l)
s , it follows that

‖hsk‖ ≤
∑

0≤l≤k

‖(At)l∆hsk−l‖ ≤
∑

0≤l≤k

C exp(−lθ−)‖∆hsk−l‖

≤ C(1 + ‖A‖ + 4dK ′)

1 − exp(−θ−)
((1 +K)Varϕ+ ‖ϕ̂‖sup).In view of (C.14) and (C.17), it follows that

‖S(k)ϕ̂‖sup ≤ ‖ϕk‖sup + ‖hck‖ + ‖hsk‖

≤ C(2 + ‖A‖ + 6dK ′)

1 − exp(−θ−)
((1 +K)Varϕ+ ‖ϕ̂‖sup),whih ompletes the proof. �Theorem C.6. There exist C3, C4 > 0 suh that

‖ϕ̂(n)‖sup ≤ C3 logM+1 nVarϕ+ C4 logM n‖ϕ̂‖supfor every natural n. If additionally T has non-degenerated spetrum then
‖ϕ̂(n)‖sup ≤ C3 lognVarϕ+ C4 logn‖ϕ̂‖sup.



COCYCLES OVER IETS AND MULTIVALUED HAMILTONIAN FLOWS 43Proof. By Proposition A.3 and Theorem 5.2, for every x ∈ I we have
‖ϕ̂(n)(x)‖ ≤ 2‖A‖

m∑

k=0

(C1k
M Varϕ+ C2k

M−1‖ϕ̂‖sup)

≤ 2‖A‖(C1m
M+1 Varϕ+ C2m

M‖ϕ̂‖sup),where m = m(x, n, T ). Now the assertion follows diretly from (A.1). �Appendix D. Example of non-regular step oyleLet T = T(π,λ) be an IET of periodi type with periodi matrix is A. Then thereexists C > 0 and θ > 0 suh that
‖(At)nh‖ ≤ C exp(−nθ)‖h‖ for all h ∈ Γ(0)

s and n ≥ 0.Lemma D.1. Suppose that h ∈ Γ
(0)
0 and ϕ : I → R is the assoiated step oyle.If h ∈ Γ

(0)
s then ϕ is a oboundary. If h /∈ Γ

(0)
cs then ϕ is not a oboundary.Proof. Assume that h ∈ Γ

(0)
s . Sine

‖S(l)ϕ‖sup = ‖(At)lh‖ ≤ C exp(−lθ)‖h‖,by Proposition A.3, we have
‖ϕ(n)‖sup ≤ 2

∞∑

l=0

‖Z(l + 1)‖‖S(l)ϕ‖sup ≤ 2C‖A‖‖h‖
∞∑

l=0

exp(−lθ) =
2C‖A‖‖h‖

1 − exp(−θ)for every natural n. But eah bounded oyle in Rℓ is a oboundary.Now suppose that h ∈ Γ
(0)
0 and ϕ is a oboundary. Set

ε = inf{µ(C(n)
α ) : n ≥ 0, α ∈ A}(see Setion 4 for the de�nition of the tower C(n)

α ). In view of (4.6), ε > 0. Sine
ϕ is a oboundary, there exist M > 0 and a sequene (Bk)k≥0 of measurablesets with µ(Bk) > 1 − ε for n ≥ 0 suh that |ϕ(k)(x)| ≤ M for all x ∈ Bk and
k ≥ 0. Reall that for every x ∈ C

(n)
α we have ϕ(h(n+1)

α )(x) = ((At)n+1h)α. Sine
C

(n)
α ∩ B

h
(n+1)
α

6= ∅, it follows that |((At)n+1h)α| ≤ M for every n ≥ 0 and α ∈ A.Thus ‖(At)n+1h‖ ≤M for every n ≥ 0, and hene h ∈ Γ
(0)
cs . �Example 2. Let us onsider an IET T = T(πsym

5 ,λ) of periodi type whose periodimatrix is equal to
A =




18 28 31 38 18
10 16 8 9 6
13 20 36 46 18
2 3 16 22 6
39 61 63 77 37



.The existene of suh IET was shown in [29℄. The Perron-Frobenius eigenvalue of

A is 55 + 12
√

21 and λ is equal to
(1 +

√
21, 2, 1 +

√
21, 2, 7 +

√
21)



44 J.-P. CONZE, K. FR�CZEKup to multipliation by a positive onstant. Moreover, the eigenvalues and eigen-vetors of At are as follows:
ρ1 = 55 + 12

√
21, v1 = (−1 +

√
21, 1 +

√
21, 3 +

√
21, 5 +

√
21, 4)

ρ2 = 9 + 4
√

5, v2 = (−2,−1 − 1
√

5, 2, 1 +
√

5, 0)
ρ3 = 1, v3 = (−1,−2, 0,−1, 1)

ρ4 = 9 − 4
√

5, v4 = (−2,−1 + 1
√

5, 2, 1 −
√

5, 0)

ρ5 = 55 − 12
√

21, v5 = (−1 −
√

21, 1 −
√

21, 3 −
√

21, 5 −
√

21, 4).Note that v2, v3, v4, v5 ∈ Γ
(0)
0 . Denote by ϕi : I → R the step funtion orrespondingto vi for 1 < i ≤ 5. Sine |ρ2| > 1 > |ρ4|, by Lemma D.1, ϕ4 is a oboundary and

ϕ2 is not a oboundary.We will show that ϕ2 is a non-regular oyle. Note that the oyles ϕ2 + ϕ4and ϕ2 − ϕ4 take values in Z and √
5Z respetively. Sine ϕ4 is a oboundary, itfollows that E(ϕ2) ⊂ Z and E(ϕ2) ⊂
√
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