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COCYCLES OVER INTERVAL EXCHANGE
TRANSFORMATIONS AND MULTIVALUED HAMILTONIAN
FLOWS

JEAN-PIERRE CONZE AND KRZYSZTOF FRACZEK

ABsTrACT. We consider interval exchange transformations of periodic type
and construct different classes of recurrent ergodic cocycles of dimension > 1
over this special class of IETs. Then using Poincaré sections we apply this
construction to obtain recurrence and ergodicity for some smooth flows on
non-compact manifolds which are extensions of multivalued Hamiltonian flows
on compact surfaces.
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1. INTRODUCTION

Let T : (X,B,u) — (X, B, 1) be an ergodic automorphism of a standard Borel
probability space and G be a locally compact abelian group with identity element
denoted by 0. We will consider essentially the case G = R, for ¢ > 1.

Each measurable function ¢ : X — G determines a cocycle o) : Zx X — G
for T by the formula

o(x) +p(Tx) + ...+ (T "), if n>0
—(p(Tz) + (T z) + ...+ (T 2)), if n<O.

We consider the associated skew product

To : (X xG,BxBg,uxmag) — (X xG,BxBg,pnxmag),
(1.1) Ty(z,9) = (Tx,g9+p(2)),

where Bg denotes the o-algebra of Borel subsets and mg the Haar measure of G.

The cocycle (")) can be viewed as a "stationary” walk in G over the dynamical
system (X, u, T). We say that it is recurrent if (™) (z)) returns for a.e. x infinitely
often in any neighborhood of the identity element. The transformation T, is then
conservative for the invariant o-finite measure g x mg. If moreover the system
(X xG, uxmg,T,) is ergodic, we say that the cocycle (") is ergodic. For simplicity,
the expression "cocycle " refers to the cocycle (¢()) generated by ¢ over the
dynamical system (X, B, u,T).

A problem is the construction of recurrent ergodic cocycles defined over a given
dynamical system by regular functions ¢ with values in R. There is an important
literature on skew products over an irrational rotation on the circle, and several
classes of ergodic cocycles with values in R or R® are known in that case (see [23], [25]
and [26] for some classes of ergodic piecewise absolutely continuous non-continuous
R-cocycles, [16] for examples of ergodic cocycles with values in a nilpotent group,
[7] for ergodic cocycles in Z? associated to special directional rectangular billiard
flows in the plane).

Skew products appear in a natural way in the study of the billiard flow in the
plane with Z2? periodically distributed obstacles. For instance when the obstacles
are rectangles, they can be modeled as skew products over interval exchange trans-
formations (abbreviated as TETs). Recurrence and ergodicity of these models are
mainly open questions. Nevertheless a first step is the construction of recurrent
ergodic cocycles over some classes of IETs (see also a recent paper by P. Hubert
and B. Weiss [17] for cocycles associated to non-compact translation surfaces).
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For the rotations on the circle, a special class consists in the rotations with
bounded partial quotients. For IETS, it is natural to consider the so-called interval
exchange transformations of periodic type. The aim of this paper is to construct
different classes of recurrent ergodic cocycles over IETs in this special class.

This is done in Sections 3, 4, and 5. In Section 2 we recall basic facts about
IETs of periodic type, as well as from the ergodic theory of cocycles. In the ap-
pendix proofs of the needed results on the growth of cocycles of bounded variation
(abbreviated as BV cocycles) are given, mainly adapted from [24].

In Sections 6 and 7 we present smooth models for recurrent and ergodic sys-
tems based on the previous sections. We deal with a class of smooth flows on
non-compact manifolds which are extensions of multivalued Hamiltonian flows on
compact surfaces of higher genus. These flows have Poincaré sections for which
the first recurrence map is isomorphic to a skew product of an IET and a BV co-
cycle. This allows us to prove a sufficient condition for recurrence and ergodicity
(see Section 6) whenever the IET is of periodic type. In Section 7 we show how to
construct explicit non-compact ergodic extensions of some Hamiltonian flows.

2. PRELIMINARIES

2.1. Interval exchange transformations.

In this subsection, we recall standard facts on IET’s, with the presentation and

notations from [32] and [33]. Let A be a d-element alphabet and let © = (7, 71)

be a pair of bijections 7. : A — {1,...,d} for ¢ = 0,1. Denote by SY the subset of

irreducible pairs, i.e. such that 7; o 71'0_1{1, ook #E{L .k for 1 <k <d We

will denote by 75" any pair (mo, 71) such that momy *(j) = d+1—jfor 1 < j < d.
Let us consider A = (Aa)aca € RY, where Ry = (0,+00). Set

A= e, T=[0,A])

acA
and
In = [la,7a), Where lo = > Xg, ra= Y A
7o (B8)<mo () mo(B8)<mo ()
Then |I,| = A\y. Denote by Q, the matrix [, gla,5c4 given by
+1  if m(a) > m(8) and mo(a) < mo(0),

Qaﬂ: -1 if 7T1(Oz) <7T1(ﬁ) and 7T0(Oé) >7T0(ﬁ),
0 in all other cases.

Given (m,A) € S xR, let T( 5 : [0,]A]) — [0, |A]) stand for the interval exchange
transformation (IET) on d intervals I, a € A, which are rearranged according to
the permutation 7r1_1 omg, i.e. Tz )T =T + wq for x € I, where w = Q.

Note that for every a € A with 7o(a) # 1 there exists 5 € A such that mo(5) # d
and [, = rg. It follows that

(2.1) {la:a€ A, mo(a) 1} ={rq:a € A, mo(a) # d}.

By f(w,A) . (0,]I]] = (0,1]] denote the exchange of the intervals Io, = (lo,74q],
a€ A ie T T =12+ w, for v € 1. Note that for every a € A with m(a) # 1



4 J.-P. CONZE, K. FRACZEK

there exists 3 € A such that 7 (3) # d and Tz x)la = f(m)\)rg. It follows that

(2.2) {Tanla:ac A m(@) # 1} = {Tara: a € A, mi(a) #d}.
A pair (7, ) satisfies the Keane condition if T2 \)lo # lg for all m > 1 and for
all a, 8 € A with m(5) # 1.

Let T'= Tix ), (T, A) € 82‘ X ]Rf, be an IET satisfying Keane’s condition. Then
)\ﬂal(d) 75 )\ﬂ,l—l(d). Let

I= [07 max (ln(;l(d)v lm‘l(d)))

and denote by R(T) =T : I — I the first return map of T to the interval I. Set

e(m,A) :{ 0 i A > Ay

Uit A iy < Ao

—1
my  (

Let us consider a pair @ = (7p,71) € 8947 where

() = me(a) for all « € A and
e (@) if m_c(a) <m_.om(d),
ﬁ'l_s(()é) = 71'1,5(04)4-1 if 71'1,5071';1((0 < 71'1,5(04) <d,

m_en N d)+ 1 if  m_o(a) =d.
As it was shown by Rauzy in 27|, T is also an IET on d-intervals

T= T, 5) with A=0"Hm M)A,

where

O(T) =O(m\) =1+ E, 14,1 4 € SL(ZA).
Moreover,
(2.3) Ol (1, \)Q:O(7, \) = Qx.

It follows that ker Q, = ©(m, \) ker Qz. We have also QY = —Q,. Thus taking
H; = Q:(RA) = ker Q, we get Hr = O(m,\)H,. Moreover, dim H, = 2g and
dimker 2, = k — 1, where & is the number of singularities and ¢ is the genus of the
translation surface associated to 7. For more details we refer the reader to [33].

The IET T fulfills the Keane condition as well. Therefore we can iterate the
renormalization procedure and generate a sequence of IETs (T(”))nzo, where T(") =

R™(T) for n > 0. Denote by n(") = (77(()”),71'5“)) € 89 the pair and by A" =
()\g"))aeA the vector which determines 7. Then T is the first return map of
T to the interval 1) = [0, |]A(™]) and

A =0(T)AM™ with ©(T) = ©(T)-0(TW)-....0(T™b),

2.2. TETs of periodic type.

Definition (see [29]). An IET T is of periodic type if there exists p > 0 (called a
period of T) such that O(T"+P)) = @(T™) for every n > 0 and ©@)(T) (called
a periodic matriz of T and denoted by A in all that follows) has strictly positive
entries.
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Remark 2.1. Suppose that T' = T(; y) is of periodic type. It follows that
A\ = @(pn)(T))\(zm) — oW (T)n)\(pn) c @ (T)ﬂR«‘l7

and hence \ belongs to (,~, © (T)"R* which is a one-dimensional convex cone
(see [30]). Therefore X is a positive right Perron-Frobenius eigenvector of the matrix
©®)(T). Since the set 8Y is finite, multiplying the period p if necessary, we can
assume that 7 = 7. Tt follows that (7(P), A®)/|AP)]) = (7, \/|\]) and p :=
IA|/|A®)] is the Perron-Frobenius eigenvector of the matrix ©®) (T). Recall that
similar arguments to those above show that every IET of periodic type is uniquely
ergodic.

A procedure giving an explicit construction of IETs of periodic type was intro-
duced in [29]. The construction is based on choosing closed paths on the graph
giving the Rauzy classes. Every IET of periodic type can be obtained this way.

Let T'= T, ) be an IET of periodic type and p be a period such that 7®) = .
Let A =0®)(T). By (2.3),

A0, A =Q, and hence kerQ, = AkerQ, and H, = A*H,.

Multiplying the period p if necessary, we can assume that Alxero,. = Id (see Ap-
pendix C for details). Denote by Sp(A) the collection of complex eigenvalues of
A, including multiplicities. Let us consider the collection of Lyapunov exponents
log |p|, p € Sp(A). Tt consists of the numbers

91>02293Z...29920:...:02—992...2—932—92>—01,

where 2g = dim H,; and 0 occurs with the multiplicity x — 1 = dimker Q. (see e.g.
[35] and [36]). Moreover, p; := exp 6 is the Perron-Frobenius eigenvalue of A. We
will use sometimes the symbol 6;(7T") instead of 6; to emphasize that it is associated
toT.

Definition. An IET of periodic type T(, ) has non-degenerated spectrum if 6, > 0.

2.3. Growth of BV cocycles.
The recurrence of a cocycle ¢ with values in R’ is related to the growth of ()
when n tends to co.

For an irrational rotation 7' : z — z+a mod 1 (this can be viewed as an exchange
of 2 intervals), when ¢ has a bounded variation, the growth of (™) is controlled
by the Denjoy-Koksma inequality: if ¢ is a zero mean function on X = R/Z with
bounded variation Var ¢, and (g,) the denominators (of the convergents) given by

the continued fraction expansion of «, then the following inequality holds:

qn—1
(2.4) | Z oz + ja)| < Varep, Vo € X.
3=0

This inequality implies obviously recurrence of the cocycle () and if & has bounded
partial quotients (we say for brevity bpg) Z;‘:ol o(z + ja) = O(log n) uniformly in
reX.
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It is much more difficult to get a precise upper bound for the growth of a cocycle
over an IET. The following theorem (proved in Appendix A) gives for an IET of
periodic type a control on the growth of a BV cocycle in terms of the Lyapunov
exponents of the matrix A.

Theorem 2.2. Suppose that T x): 1 — I is an interval exchange transformation
of periodic type, 0 < 05 < 01 are the two largest Lyapunov exponents, and M is the
mazximal size of Jordan blocks in the Jordan decomposition of its periodic matriz
A. Then there exists C > 0 such that

||<P(n) lsup < C - logM"'1 n-nf2/0 . Var ¢

for every function ¢ : I — R of bounded variation with zero mean and for each
natural n. (]

For our purpose, this inequality is useful when 65(7")/601(T) is small. In Appen-
dix B we will give examples with arbitrary small values of this ratio.

2.4. Recurrence, essential values, and ergodicity of cocycles.

In this subsection we recall some general facts about cocycles. For relevant back-
ground material concerning skew products and infinite measure-preserving dynam-
ical systems, we refer the reader to [28] and [1].

Denote by G the one point compactification of the group G. An element g € g
is said to be an essential value of ¢, if for every open neighbourhood V; of g in G
and any set B € B, u(B) > 0, there exists n € Z such that

(2.5) w(BNT"Bn{ze X : o™ (x)ecV,})>0.

The set of essential values of ¢ will be denoted by E(¢). The set of finite essential
values E(yp) := GNE(y) is a closed subgroup of G. We recall below some properties
of E(p) (see [28]).

Two cocycles v, : X — G are called cohomologous for T if there exists a
measurable function g : X — G such that ¢ =¥ + g — goT. The corresponding
skew products T, and T, are then measure-theoretically isomorphic. A cocycle
¢ : X — G is a coboundary if it is cohomologous to the zero cocycle.

If ¢ and 1 are cohomologous then E(p) = E(z)). Moreover, ¢ is a coboundary
if and only if E(p) = {0}.

A cocycle ¢ : X — G is recurrent (as defined in the introduction) if and only if,
for each open neighborhood V; of 0, (2.5) holds for some n # 0. This is equivalent
to the conservativity of the skew product T, (cf. [28]). Let ¢ : X — R’ be an
integrable function. If it is recurrent, then fX @dp = 0; moreover, for £ = 1 this
condition is sufficient for recurrence when T is ergodic.

The group E(p) coincides with the group of periods of T,-invariant functions
i.e. the set of all go € G such that, if f: X x G — R is a T, ,-invariant measurable
function, then f(z,9+ go) = f(x,9) p x mg-a.e. In particular, T,, is ergodic if and
only if E(p) = G.

A simple sufficient condition of recurrence is the following:
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Proposition 2.3 (see Corollary 1.2 in [5]). If ¢ : X — R’ is a square integrable
cocycle for an automorphism T : (X,B,pn) — (X,B,p) such that ||o™||p2¢,) =
o(n'/t), then it is recurrent. O

In view of Theorem 2.2, as a consequence we have the following.

Corollary 2.4. IfT : I — I is an IET of periodic type such that 05(T)/61(T) < 1/¢
for an integer € > 1, then every cocycle ¢ : I — R’ over T of bounded variation
with zero mean is recurrent. If, for 5 = 1,...,0, T} : 1W) — TG are interval
exchange transformations of periodic type such that 92( )/91( ) < 1/¢, then every
"product” cocycle o = (p1,...,00) : IV x ... x IO — RZ of bounded variation with
zero mean over 17 X ... X Ty is recurrent. O

We continue these preliminaries by some useful observations for proving the er-
godicity of cocycles. Let (X,d) be a compact metric space. Let B stand for the
o—algebra of all Borel sets and let ;1 be a probability Borel measure on X. By xp we
will denote the indicator function of a set B. Suppose that T': (X, B, n) — (X, B, 1)
is an ergodic measure preserving automorphism and there exist an increasing se-
quence of natural numbers (g,) and a sequence of Borel sets (C),) such that

w(Cp) — a >0, u(C,AT™'C,) —0 and sup d(z, T™x) — 0.
zeC,y,
Assume that G C Rf for some £ > 1. Let @ : X — G be a Borel integrable
cocycle for T' with zero mean. Suppose that the sequence (an lpt@n) ()| dp() ) n>1
is bounded. As the distributions

(1(Ca) " (', ) (e, ), € N)

are uniformly tight, by passing to a further subsequence if necessary we can assume
that they converge weakly to a probability Borel measure P on G.

Lemma 2.5. The topological support of the measure P is included in the group
E(p) of essential values of the cocycle .

Proof. Suppose that g € supp(P). Let V, be an open neighborhood of g. Let
¥ : G — [0,1] be a continuous function such that ¢¥(g) = 1 and ¥ (h) = 0 for
h € G\'V,. Thus [,1(g)dP(g) > 0. By Lemma 5 in [13], for every B € B with
w(B) > 0 we have

W(BNT~ BN (o) eV, 0)) > / ) (go(q")(x)) xB(x)xp(T"x)du(x)

ea//@b 9)x5 () dP(g) dyu(z /w aP(g

and hence g € E(p) O

Corollary 2.6 (see also [6]). If ¢l9)(x) = g, for all z € C,, and g, — g, then
g € E(p).

Proposition 2.7 (see Proposition 3.8 in [28]). Let T : (X,B,p) — (X,B,u) be
an ergodic automorphism and let ¢ : X — G be a measurable cocycle for T. If
K C G is a compact set such that K N E(p) =0, then there exists B € B such that
w(B) >0 and

wW(BNT"BN (o™ e K)) =0 for every n € Z.
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Lemma 2.8. Let K C G be a compact set. If for every B € B with u(B) > 0 and
every neighborhood Vo C G of zero there exists n € Z such that

w(BNT"BN (™ € K +Vp)) > 0,

then KN E(p) # 0. In particular, when K = {g,—g}, where g is an element of G,
then g € E(y).

Proof. Suppose that K N E(p) = (). Since K is compact and E(yp) is closed, there
exists a neighborhood V; of zero such that V; is compact and (K + Vp) N E(p) = 0.
As K + 1} is also compact, by Proposition 2.7, there exists B € B such that
w(B) > 0 and

w(BNT"BN (™ € (K +7p))) =0 for every n € Z,
contrary to assumption. The last claim is clear. O

Consider the quotient cocycle p* : X — G/E(y) given by ¢*(z) = ¢(z) + E(p).
Then E(p*) = {0}. The cocycle ¢ is called regular if E(¢*) = {0} and non-regular
if E(p*) = {0,00}. Recall that if ¢ is regular then it is cohomologous to a cocycle
¥ : X — E(p) such that E(p) = E(p).

Lemma 2.9. If H is a closed subgroup of E(p) such that the quotient cocycle
v : X — G/H, pu(x) = ¢(x) + H is ergodic, then ¢ : X — G is ergodic as well.

Proof. Let f(x,g) be a measurable Ty -invariant function. Then, since H C E(yp),
f is H-invariant. Since @ is ergodic, f is constant. O

3. ERGODICITY OF PIECEWISE LINEAR COCYCLES

Notations. We denote by BV(I_IQGAISC)) the space of functions ¢ : I*) — R such
that the restriction ¢ : Iék) — R is of bounded variation for every a € A, and by
BVO(I_IaeAIék)) the subspace of functions in BV(I_IaeALgk)) with zero mean. We
adopt the notation from [24]. The space BV(uaeALS’“)) is equipped with the norm
lellBv = [l@llsup + Var @, where

Var p = Z Var <p|lék).
acA
For ¢ € BV(Ugealn) and z € I, 1 () and p_(z) denote the right-handed and
left-handed limit of ¢ at z respectively. We denote by BV (Uaeals) the space of
functions ¢ : I — R which are absolutely continuous on each I, o € A and such
that ' € BV(Uaeuls). For o € BV (Ugeals) let

() = [ ¢arde = 3 (- ) = (1)

acA

We denote by BV (Uyeals) the subspace of functions ¢ € BV!(Uyeal,) for
which s(p) = 0, and by PL(Uaecaln) the set of piecewise linear (with constant
slope) functions ¢ : I — R such that ¢(z) = sz + ¢, for z € I,.

Proposition 3.1 (see [24]). If T : I — I satisfies a Roth type condition, then each
cocycle ¢ € BVi(I_IaeAIa) for T is cohomologous to a cocycle which is constant
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on each interval I,, o € A. Moreover, the set of IETs satisfying this Roth type
condition has full measure and contains all IETs of periodic type.

As a consequence of Proposition 3.1 we have the following.

Lemma 3.2. If T : I — I is of periodic type, then each cocycle ¢ € BV (Uyeal,)
is cohomologous to a cocycle @, € PL(Uacals) with s(op) = s(p).

3.1. Piecewise linear cocycles.

Now we will focus on the case where the slope of a piecewise linear cocycle is
non-zero and show ergodicity. We will need an information on the distribution of
discontinuities of ¢(™).

Let T : I — I be an arbitrary IET satisfying Keane’s condition. Denote by u the
Lebesgue measure on I. Each finite subset D C I determines a partition P(D) of
I into left-closed and right-open intervals. Denote by min P (D) and max P(D) the
length of the shortest and the longest interval of the partition P (D) respectively.
For every n > 0 let P, (T) stand for the partition given by the subset {7 %, : a €
A,0 < k <n}. Then T™ is a translation on each interval of the partition P, (T).
The following result shows that the discontinuities for iterations of IETs of periodic
type are well distributed.

Proposition 3.3 (see [22]). For every IET T of periodic type there exists ¢ > 1
such that for every n > 1 we have

1
(3.1) — < minPy(T) < max Py (T) < =
cn n
We begin by a preliminary result which will be proved later in a general version
(see Theorem 3.5 and 3.9 for £ =1).

Theorem 3.4. Let T : I — I be an IET of periodic type. If o € PL(Uneals) is a
piecewise linear cocycle with zero mean and s(¢) # 0, then the skew product Ty, is
ergodic.

Now we consider cocycles taking values in RY, £ > 1. Suppose that ¢ : I — R is
a piecewise linear cocycle with zero mean such that the slope s(p) € R is non-zero.
Then, by an appropriate choice of coordinates, we obtain s(p1) # 0 and s(p2) = 0,
where ¢ = (p1,02) and @1 : I — R, @9 : I — R"' Thus ¢, is piecewise
constant and, roughly speaking, the ergodicity of o implies the ergodicity of ¢.
The ergodicity of piecewise constant cocycles will be studied in Sections 4 and 5.

Theorem 3.5. Suppose that T : I — I is an IET of periodic type such that
02(T)/01(T) < 1/¢. Let o1 € PL(Uneala,R), p2 € PL(Uneala, RET1) be piecewise
linear cocycles with zero mean such that s(p1) # 0 and s(p2) = 0. If the cocycle
@9 : I — R is ergodic, then the cocycle ¢ = (o1, p2) : I — RY is ergodic as well.

Proof. Without loss of generality we can assume that s(p1) = 1. Tt suffices to show
that for every 0 < a < ﬁ, the pair (a,0) belongs to E(¢1,¢2). Indeed this implies
that R x {0} € E(¢1,¢2), and since the cocycle pq is ergodic, by Lemma 2.9, it
follows that (o1, p2) : I — RY is ergodic as well.

Fix0<a< ﬁ, where c is given by Proposition 3.3. By a density point argument,
for every measurable B C I with pu(B) > 0 and every ¢ € (0, §), there are B C B
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with u(B’) > 0 and ng > 1 such that for n > ng,
(3.2) u((x—g,m—i—g)\B) < < for every z € B'.
n n n

Since 05(T)/61(T) < 1/¢, by Corollary 2.4, (p1,¢2) is recurrent, and hence there
exists n > ng such that
WB T B0 (] <e)n (g < <)) > 0.

Let zg € I be such that zo, "z € B, |<p§") (x0)] < € and ||<pgn) (z0)|| < €. Denote

by J(xo) C I the interval of the partition P, (T") which contains zy. Then wgn) is
a linear function on J(xg) with slope n. Since 2 < a < 1/(2¢) — 2¢ and |J(xo)| >
1/(en) (by (3.1)), there exists yo such that (yo —e/n,y0 +¢/n) C J(zo) and

(P70 € at (~2.¢) for all y € (o — =/nyo + /).

Since gog") is constant on J(xz¢), we have

oS (@) < & for all @ € (yo — &/n, yo + & /n).

Therefore
1 (B NT BN (" € {—a,a} + (—¢,e)) N (K5 € (—5,5)2—1))
> 1 ((yo —e/n,y0 +e/n)NBNT"B).

By (3.1) we have |J(zo)| < ¢/n, and hence J(zo) C (o —¢/n, 2o+ ¢/n). Moreover,
T™J(z0) is an interval such that |T™J(zo)| = |J(x0)| < ¢/n, so that

(3.3)

T"J (o) C (T”xo - %,T”xo n %) .

Since o, T"xg € B’, by (3.2), u(J(xo) \ B) < ¢/n and pu(T"J(xo) \ B) < ¢/n.
Therefore, u(J(zo) \ (BNT~"B)) < 2¢/n, and hence

1 ((yo —&/n,yo +e/n)\ (BNT™"B)) < 2¢/n.
Thus
iz ((yo —¢e/n,yo+¢e/n)N BN T*”B) > 0.
In view of (3.3), it follows that

" (B NT"BN (o™ € {—a,a} + (—e,2) N (S € (¢, g)f—l)) > 0.

By Lemma 2.8, we conclude that (a,0) € E(¢1, ¢2), which completes the proof. O

3.2. Product cocycles.

The method used in Theorem 3.4 allows us to prove the ergodicity for Cartesian
products of certain skew products. As an example, first we apply this method for
cocycles taking values in Z over irrational rotations on the circle. This will give a
class of ergodic Z2-cocycles driven by 2-dimensional rotations

Let T'(z,y) = (x 4+ a1,z + az2) be a 2-dimensional rotation and ¢ be a zero mean
function on T? of the form p(z,y) = (¢1(x), p2(y)) with ¢ and @, BV functions. If
a1 and az have bounded partial quotients, then (2.4) implies ||¢(™||sup = O(logn),
and therefore, by Proposition 2.3, the cocycle ¢ is recurrent.

Consider the function ¢(z,y) = (2-X(0,1)(2)—1,2-X[0,1)(y) —1) or more generally
assume that ¢;, ¢ = 1,2, are step functions in one variable with values in Z. For
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i =1,2, we denote by D; C T the finite set of discontinuities of ¢; and by J; C Z
the corresponding set of jumps of the functions ;. It defines a recurrent Z2-cocycle
driven by a 2-dimensional rotation. A question is then the ergodicity (with respect
to the measure p x m the product of the uniform measure on T? by the counting
measure on Z?2) of the skew-product

T,:T*x 7% -T2 x 22, Ty(z,y,n) = (z+ a1,y + az,7+ ¢(z,y)).

Theorem 3.6. Let ay and as be two rationally independent irrational bpg numbers,
and let o(z,y) = (v1(x),p2(y)) be a function on the torus with step functions
components ¢; : T — Z, i = 1,2, such that D1, Dy C Q and the sets of the jumps
Ji x {0}, {0} x Jo generate Z2. Then the system (T? x Z*, u x m,T,) is ergodic.

Proof. We have seen that the cocycle ¢(™ is recurrent. We prove that the group
of its finite essential values is Z2.
Let n be a fixed integer and let (’Yfz,k)k:17-..7din be the ordered set of the d;n

discontinuities of @gn) in [0,1) (where d; := #D;). In the sequence of denominators

of oy, let qii(n) be such that q; ) <n <q; - We write simply g.., for qii(n).
As o is bpq, the ratio qf,i_‘_l/qf,i is bounded by a constant independent from n.

Since «a; is bpq and the discontinuity points of ¢; are rational, the distances
between consecutive discontinuities of ¢(™ are of the same order: there are two
positive constants ¢, co such that

(34) C_lgrYZLk—i-l_rﬁLkSC_Qakzlv"';dinai:lvz'
n ’ ? n

Recall that, for each ¢t € D; and each 0 < ¢ < ¢,,, there is (mod 1) a point ¢ — kay,
0 < k < gy, in each interval [t +¢/q. ,t+ ({+1)/q.]. Therefore, in each interval of
length greater than 2/¢¢ and for each t € D;, there is at least one discontinuity of
<pl(.n) of the form t — ka;, 0 < k < n.

It implies that if we move a point x on the unit interval by a displacement
greater than 2/qﬁi7 we cross discontinuities of @gn)
discontinuity ¢t € D; of ;.

For € T, consider the interval [y}, ,,7% ;1) which contains 2 and denote it by

corresponding to each different

I (x). The intervals [7;7k+£,’yfl7k+£+1), where k 4 ¢ is taken mod din, are denoted
by }M(x) This gives two collections of rectangles

Ry y(2,y) = I () x I o(y) and R} (2, y) = T" R} (T~"(x,y))
for each (z,y) € T?. By (3.4), we have
2 2
n 230 a G
(35 (B ) and (o) € | 5

Let M be a natural number such that ¢ M > 1. Then, by (3.4), the length of
UQ/I:_M }Zk(x) is greater than 2/¢!. , i = 1,2. Let § > 0 be such that §¢*(2M +1)? <
1/2 with ¢ = ¢3/c3. Set

k=M (=M
Ry (z,y) = U U RZ74(CC,y),

k=—M{=—M
~ k=M (=M ~
Rif(w,y) = T'RUT "(xy)= |J U By

k=—M {=—M
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In view of (3.4)

length(R%, (x,y)) and length(R?, (,7)) c {c_l c_g]

width(R}, (x,y)) width(R%, (z,y)) ca’er]’

The cocycle ¢(™ has a constant value on each rectangle Rz)g(m, y) and the difference
between its value on R}, ,(z,y) and R} ,(z,y) (vesp. Ry, (z,y) and R} ,(z,y))
belongs to Ji x {0} (resp. {0} x J2). Denote by r} ,(x,y) the value of ©™ on
Ry ,(z,y). Since the length of R} (z,y) is greater than 2/q}, and the width of
R}, (z,y) is greater than 2/¢2, we have

{KZJrl,f(x?y) - /iZ}g((E?y) =M <k< M} =Jp % {0}7

{ki 1 (@, y) = kg (@, y) : =M <1< M} = {0} x Ja.

(3.6)

(3.7)

Let
M M

K:=(J1U{0}+...+ JJU{0}) x (JU{0}+...+ 2 U{0}).

Let K; be the subset of elements of K which are not essential values of ¢, and
suppose K7 # (). By Proposition 2.7, there exists B C T? such that u(B) > 0 and

(3.8) wW(BNTBnN (o™ e K,)) =0 for every n € Z.

Since the areas of R7,(z,y), R} (x,y) tend to 0 as n — oo and the rectangles
satisfy (3.6), by a density point argument, there is a Borel subset B’ of B of
positive measure and there is ng € N such that for n > ng and (z,y) € B”:

W(B O Ry(2,)) = (1= 8)u(Riy (w,9)), p(B O Riy(w,y)) = (1= SRy ().
By (3.5), the areas of the small rectangles being comparable, and hence
p(Ry (2,y)) < (2M + 12eu(R} (x,y)) for all k,£ € [~M, M),
Therefore, by the choice of 4, for each (z,y) € B’ we have

w(B N Ry (z,y) > p(R ,(z,y) — p(B N R (,y))
> (R o(z,y)) — (BN Ry (2, y) > w(Ry (2, y)) — SRy (w,y))

> Ry (,y)) — 62M +1)*Pu(Ry o(2,y)) > éu(Rﬁe(x?y))

In the same way, if T"(x,y) € B, then u(BﬂRﬁAT"(x,y))) > 1 ~274(7’"(x,y))).
Since RZ’Z(T”(%y)) =T"Ry ,(z,y), we have

W "B ARE (r,9) > 5B (5,0))
The preceding inequalities imply
(3.9) WBNT BN Ry, (r,y)) >0, Vk,£ € [-M, M].
By the recurrence property, there is n > ng such that
p(B'OT7B 0 {e™ () = (0,0)}) > 0.
If (z,y) € BNT"B'n{eM™(-) = (0,0)}, then ¢(™) is equal to (0,0) on R (z,y).

Moreover, on each rectangle RZ,Z(CE, y), k, ¢ € [-M, M], the cocycle go(") is constant
and is equal to ki ¢(x,y) € K. In view of (3.9), it follows that

w(BNT"BN{e™ () = kpe(x,y)}) >0, Yk, L € [-M, M].
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Therefore, by (3.8) and the definition of K, xi(z,y) ¢ K1, and so it belongs to
E(p) for all k,¢ € [-M, M]. In view of (3.7), it follows that J; x {0},{0} x Jo C
E(p), and hence E(p) = Z2. O

Remark 3.7. The ergodicity of T, can be proven also for the more general case
where o is bpq and (D; — D;) \ {0} C (Q+ Q) \ (Z + Zoy;) for i = 1,2. To extend
the result of Theorem 3.6, we use that the discontinuities of the cocycle are "well
distributed" (the condition (3.4)) which is a consequence of Lemma 2.3 in [15].

Now by a similar method we show the ergodicity of Cartesian products of skew
products that appeared in Theorem 3.4. We need an elementary algebraic result:

Remark 3.8. Let R be a real m x k-matrix. Then the subgroup R(Z*) is dense in
R™ if and only if

(3.10) Va € R™, R'(a) € ZF = a = 0.
For instance, if R = [r;;] is a m X (m+ 1)-matrix such that r;; = +4;; for 1 <i,j <
m and 1,71 m41,- -, "mm+1 are independent over Q, then (3.10) holds.

Theorem 3.9. Let T} : 1) — 1U) be an interval exchange transformation of
periodic type such that 02(T;)/01(T;) < 1/¢ for j = 1,...,¢. Suppose that the
Cartesian product T7 x ... x Ty is ergodic. If ¢; € PL(LIOLGA‘Iéj)) 1S a piecewise
linear cocycle with zero mean and s(p;) # 0 for j = 1,...,¢, then the Cartesian
product (Th)y, X ... % (Ty),, is ergodic.

Proof. Since T1,...,T,; have periodic type, by Lemma 3.3 there exists ¢ > 0 such
that

1

(3.11)  — <minP,(T;) < maxP,(T}) < < forall j=1,....¢ and n > 0.
cn n

Let I=1M x ... xIW T=T, x...xT;and let @: I — R’ be given by

o1, .., 20) = (p1(21), - -, pe(xp)).
Then (T1)y, X ...% (T¢)y, = Ts. Denote by i the Lebesgue measure on I. Without
loss of generality we can assume that s(¢;) = £1 for j =1,...,¢. By Corollary 2.4,
the cocycle @ for T is recurrent.

To prove the result, it suffices to show that, for every r = (r1,...,7¢) € [0, &),
the set F(p) has nontrivial intersection with

{ser:=(s171,...,80¢) 8= (51,...,80) € {—1,1}}.

Indeed, for a fixed rational 0 < r < ﬁ, let us consider a collection of vectors
r® = (ryg,...,m6) € [0,1/(4¢)), 1 < i < £+ 1 such that ry; = rd;; for all
1<i4,5j</fand 1,r1¢41,...,70¢+1 are independent over Q. By Remark 3.8, for
any choice s e {-1, l}z, 1 < i < £+1 the subgroup generated by vectors s(") er(?)
1 <i< £+ 1is dense in R*. Since E(@) C R’ is a closed subgroup and for every
1 <i < £+1 there exists s) € {—1,1}¢ such that s e () € E(p), it follows that
E(p) = R*, and hence T} is ergodic.

Fix r = (r1,...,7¢) € [0,4)". We have to show that for every measurable set
B C I with i(B) > 0 and 0 < & < 1/c there exists n > 0 such that the set of all
Z = (x1,...,2¢) € B such that

(T{'z1, ..., T ze) € B, cpgn)(mj) e{-rjrit+(—ee)forl1 <j</¢
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has positive i measure. By a density point argument, there exists B’ C B and

ng > 1 such that i(B’) > 0 and for every (x1,...,2,) € B’ and n > ng we have
¢
¢ c €
3.12 i ( Sy —) B) < ——.
(3.12) M(Jl;[l Tj = 0 + " \B) < 4(2n)t

Since ¢ (as a cocycle for T) is recurrent, there exists n > ng such that
i (B’QT*”B’ N (@™ € (—¢/2,¢/2) )) > 0.

Next choose z° = (29,...,20) € B’ so that (T7a9,...,T;2Y) € B/, |<p(")( N <e/2
for 1 < j < . For each 1 < j < £ denote by J;,(z?) C I; the interval of the

J
partition P,(T}) such that % € J;,(29). By assumption, <p§n)

every interval of P"(T;). Therefore, for every 1 < j < ¢, the function ¢;

continuous on Jj,n(ac?)7 and hence go( )( ) = tnx +dy; for x € Jj,(29). Tn view
of (3.11), - < | Jj,n (2 9| < £, and hence J; ,(z 0) C (xo —c¢/n, 0-—|—c/n) for every
1<j5<e. Moreover T Jjn( 9) is an interval such that [T7".J; ,,(x 9)| = [Jjn(2})| <

¢/n, so

is continuous on

() 4

n n C n C
(3.13) T} Jjn(al) © (T7af - £, 1700 + 2.

1

Since |<p§n)( D <e/2, (p(”) is linear on Jj ,,(x9) with slope £n and 0 < 7; < 4

3 — 5, we can find (y) —e/(4n), 49 +¢/(4n)) C J; n(29) such that

(3.14) |<pjn (x)] €rj+ (—¢e,e) for all x € (yj — 5/(4n),y? +¢e/(4n)).

<

Let 10 = (49,....49) € [Tj_ Jjn(2?). Since
‘ ‘ .
[T (s - 4n’ya+4—)CH=fﬂn cIL (555 +3).
j=1 = j=1

20 € B' and n > ng, by (3.12), we have

4
_ o € o € €
p j_Hl(yj_R’ij’R)\B < 1@

Moreover, by (3.13),

4 Vi ¢
[ || 0 € 0 € n 0 n,.0 c n,.0 c
T (yj_4n’yj+4n)c IITJ ij(xj)c II (Tj xj_E7Tj x]—’—ﬁ)
/ Jj=1 j=1

Jj=1

Since (T7'29,...,T;29) € B’ and n > ng, by (3.12), it follows that

¢ 14
u(H(y;?—%,y%%)\T”B)zu(T"jl_Il(y?—%vy? VB < e
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By (3.14),

¢
€
o™ (z H{ ri,rit + (—¢€,¢€)) 1fx€H( ,yj+4n).
Jj=1

Thus
¢
EBNT™"BN(e™ € H({—m i} + (—€,¢))) >

By Lemma 2.8, it follows that (Hﬁzl{—rj,rj}) N E(p) # 0. This completes the
proof. O

4. ERGODICITY OF CERTAIN STEP COCYCLES

In this section we apply Corollary 2.6 to prove the ergodicity of step cocycles
over IETs of periodic type.

4.1. Step cocycles.
Let T : I — I be an arbitrary IET satisfying Keane’s condition. Suppose that
(nk)k>0 is an increasing sequence of natural numbers such ng = 0 and the matrix

Z(k+1) =0Ty . oty .orm+i—b)

has positive entries for each k > 0. Tn what follows, we denote by (7(*), A(¥)) the
pair defining 7("+). By abuse of notation, we continue to write 7% for 7("+) . With
this notation,

AB) = Z(k + 1)Ak+D),

We adopt the notation from [24]. For each k <[ let
Qk)=Zk+1)-Z(k+2)-...-Z().
Then
AE) = Q(k, AW,

We will write Q(I) for Q(0,1). By definition, T : IO — [U is the first return
map of T) : 1) — () 0 the interval I*) ¢ I Moreover, Qap(k, 1) is the time
spent by any point of Iél) in Iék) until it returns to 1. It follows that

Qp(k,1) = Z Qap(k,1)

acA

is the first return time of points of Iél) to I,

Suppose that T' = T ) is of periodic type and p is a period such that 7 = 7.
Let A= ©®)(T). Considering the sequence (n)r>0, nx = pk we get Z(l) = A and
Q(k,l) = Al=F forall 0 < k < .

The norm of a vector is defined as the largest absolute value of the coefficients.
We set || B|| = maxgea Y c 4 |Bap| for B = [Bagla,peca. Following [31], for every
matrix B = [Bagla,se4 With positive entries, we set
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Then
(4.1) > Bag <v(B) ) Bay forall 8,7 € Aand v(CB) < v(B),
acA acA

for any nonnegative nonsingular matrix C. It follows that v»(B™) < v(B), and
hence
(4.2) |B™|| = max > By < v(B)min Y By,
PeA hea Ped iea
(k)

Denote by I'®) the space of functions ¢ : I*) — R constant on each interval I3

a € A and denote by I‘ék) the subspace of functions with zero mean. Every function

© = neahax;m in I'®) can be identified with the vector b = (ha)aca € RA.
Moreover,

(4.3) QD) (1) = (Q(k,1)th)q for every z € IV o € A.

The induced IET 7( : [(®) — J(") determines a partition of I into disjoint towers
H(g"), a € A, where

H® = {TFI(Y 20 < k < ) := Qa(n)}.

)

Denote by hsﬂx and hf:l)n the height of the highest and the lowest tower respectively.
Assume that 11 ¢ ng), where W((Jn) (cv1) = 1. For every a € A denote by ci
the tower {715 10 < i < AV}

Lemma 4.1. For every a € A we have

(n+1)

(4.4) w(CHOATC™Y =0 and sup |Th" 'z — 2| — 0 as n — +oo.
reCén)

Ifo=3pea VaX o for some v = (Vo) aen € I‘éo), then

(4.5) o) (z) = (Q(n + 1)')a for all z € C).
If additionally T is of periodic type then

(4.6) limn gfu(cgm) >0

and

(4.7) o) (z) = (A" )y for all 2 € CM.

Proof. Since C&n)ATC’gL) C Th(Ji“)Ié"“) U Iénﬂ), we have
U(CE ATCE) < 2u(I5D) = 0 as n — +oc.

Suppose that = € TU&”H) for some 0 <3 < hg?. Then

hgl+1)

T g e TS I i) c i,

It follows that

(n+1)

(4.8) z, Th"""z e Tilé’f) C I for some € A.
Therefore
|z — Thgn+l)x| < |I§Z})| for all z € C(.
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Next, by (4.3), & ")(2) = (Q(n + 1)) for every z € IS Moreover, if
T € O&"), say ¢ = T%zq with zy € Ié"“) and 0 <17 < h((ﬁ), then

(1), (n+1) (nt1) ;
e (Thg) — e (o) = Y o(TH Tag) — p(T o).
0<j<i

By (4.8), gp(Thgan)zjo) = @(T9xp) for every 0 < j < h((ﬁ), and hence
PR () = oS (20) = (Q(n + 1)t0)q for all @ € O,

Assume that T'= T(; ) is of periodic type and A is its periodic matrix. Denote
by p1 the Perron-Frobenius eigenvalue of A. Then there exists C' > 0 such that
Spt < ||A™|| < CpY. Since h = |A™|| = maxqea AZ and hfﬁ)n = mingeq A2,
by (4.2), it follows that

1 n n n
(4.9) CV—(MP? < hi < hm, < Cpt.

As IS = p;("+1)|lé0)|, we have

I(O)|
(n)y — | f(n+D)p () — | 7(0) h(n') ntl S |1a .
M(Ca ) | «@ | g | @ | rnln/pl - CV(A)pl > 0

Multiplying the period of T, if necessary, we have I1("t1) ¢ Igf) for every natural
n, and hence

e () = (Q(n + 1)'0)a = (A1), for all 2 € O,

4.2. Ergodic cocycles in case k > 1.
Assume that T' = T{, y is of periodic type and x = x(m) > 1. Then dimker Q, =
k—1> 0. As we already mentioned A is the identity on ker 2. Let

F(T) = {v e R*: Alv = v}.
Then F(T') is a linear subspace with dim F/(T') = k > x — 1. Since
(v, \) = (A'0, \) = (v, AN) = p1 (v, \) for each v € F(T),

we have F(T) C Féo). Moreover, we can choose a basis of the linear space F(T)
such that each of its element belongs to ZA. Tt follows that Z4 N F(T) is a free
abelian group of rank k.

Lemma 4.2. Let v; = (Via)aca, 1 < i < k, be a basis of the group Z4 N F(T).
Then the collection of vectors w, = (Um)?:l € 7ZF, o € A, generates the group
ZF. O

Theorem 4.3. Let v; = (Via)aca, 1 < i < k be a basis of the group Z- N F(T).
Then the cocycle ¢ : I — ZF given by o = (¢1,. .., pr) with ©; =Y. 4 ViaX1, for
i=1,...,k is ergodic.

If R is a (k — 1) x k-real matriz satisfying (3.10), then the cocycle @ : I — RF~!
given by o(x) = Ry(x), which is constant over exchanged intervals, is ergodic.
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Proof. By (4.7), for every a € A we have

P () = (A 1)y (AN or)a) = (V1)as- -+ (Uh)a) = wa

for z € C{. In view of Lemma 4.1, we can apply Corollary 2.6. Thus w, € E(p)
for all « € A. Since E(yp) is a group, by Lemma 4.2, we obtain E(yp) = Z*.

It is easy to show that RE(p) C E(Ryp). Since E(p) = Z* and E(Ryp) is closed,
by Remark 3.8, we obtain E(p) = E(Ry) D RZF = RF1, O

Remark 4.4. Note that Remark 3.8 indicates how to construct matrices R satisfying
(3.10).

5. ERGODICITY OF CORRECTED COCYCLES

In this section, using a method from [24], we present a procedure of correction
of functions in BVO(I_IQGAIéO)) by piecewise constant functions (in FE)O)) in order to
obtain better control on the growth of Birkhoff sums. It will allow us to prove the

ergodicity of some corrected cocycles.

5.1. Rauzy-Veech induction for cocycles.
For every cocycle ¢ : I®) — R for the IET T®) : 1) — [() and [ > k denote by
S(k,1)¢ : I® — R the renormalized cocycle for T given by

Sk De(x) = Y o(TW)z) for e I
0<i<Qg(k,0)

Note that the operator S(k,[l) maps BV(I_IQGAISC)) into BV(I_IaeALgl)) and

(5.1) Var S(k, 1)y < Var o,
(5.2) 1Sk, Dellsup < QR Dllellsup  and
(5.3) Sk, Dp(z)dx = / o(x)dx
o) 1(k)
for all ¢ € BV(Uaeal). In view of (5.3), S(k,1) maps BVo(UaeaI¥) into
BVo(Uacall),
Recall that I'®) is the space of functions ¢ : I®) — R which are constant on

each interval Iék), a € A and ng) is the subspace of functions with zero mean.
Then

S(k,)T® =1® and Sk, NI =1,
Moreover, every function ) . . haXLgk) from T'®) can be identified with the vector
h = (ha)aca € RA. Under this identification,

I = Ann(A®)) := {h = (ha)aca € R : (h,A®)) = 0}

and the operator S(k,l) is the linear automorphism of R* whose matrix in the
canonical basis is Q(k, 1)t. Moreover, the norm on I'®) inherited from the supremum
norm coincides with the norm of vectors.
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5.2. Correction of functions of bounded variation.
Suppose now that 7' is of periodic type. Let us consider the linear subspaces

1 1
I = {h e ™ : limsup 7log [S(k, DAl = limsup + log [ Q(, Dih|| < 0},
l—o0 l—o0

1 1
r'®) = {h e ™ : limsup 7108 [S(k, DAl = limsup 7 log [ Q(k, D'h|| > 0}.
l—o0

l—o0 l
Denote by
U™ BV (Uaeal") = BV (Uaeal)/TE)
the projection on the quotient space. Let us consider the linear operator Pék) :
BVo(Uaeald”) = BVo(Uacall”) given by

1
Pk = - / if 2 € IR,
o () = p(z) T oo p(t)dt if z € I

Theorem 5.1. For every @ € BVO(I_IQGAISC)) the sequence

(5.4) (UM o 8(k,0)" o B 0 S(k, D}k

converges in the quotient norm on BVO(uaeALS’“))/Pﬁ’? induced by || - ||Bv-

Notations. Let P® : BVo(Uaeal™) — BVo(Uaeal)/T® stand for the limit
operator. Note that if ¢ € I‘ék) then Pék)gp =0, and hence P*)p = 0.

We denote by BVO(I_IaeAIa) the subspace of functions ¢ € BV(Uaecaln) such
that ¢_(z) = ¢4 (z) for every x = T",, o € A, mo(a) # 1, n € Z\ {0}.

Recall that, in general, the growth of (S(k)¢)r>1 is exponential with exponent
02/01 (see Theorem 2.2). Nevertheless, the growth can be reduced by correcting
the function ¢ by a function & constant on the exchanged intervals.

Theorem 5.2. Suppose now that T' = T y) is of periodic type and M is the
mazimal size of Jordan blocks in the Jordan decomposition of its periodic matriz.

Let ¢ € BVO(I_IaeAIéO)). There exist Cq,Cy > 0 such that if o+ I‘g) = POy, then
p—pE I‘éo) and
(55)  ISK) @ lsup < C1EM Var g + Cok™ |Gl for every natural k.
For every ¢ € BVQ(l_laeAIéO)) there exists h € PS,O) N I‘((JO) such that ¢ + h + I‘&g) =
POy, Moreover, the vector h € RSO) N F((JO) 1S unique.

If additionally T has non-degenerated spectrum and ¢ € BVS(I_IaeAIéO)) then

1S(k)(@)]lsup < C1Var ¢ + Co||@||sup for every natural k.
For completeness the proofs of these theorems will be given in Appendix C.
Remark 5.3. If we restrict the choice of h to the subspace Fq(lo) N Féo), then the

correction h € PS,O) N I‘E)O) is unique. In what follows, ¢ will stand for the function
@ corrected by the unique correction h € ¥ n I‘((JO) (i.e. D=+ h).

If o : 1 — R" with ¢ = (¢1,...,¢¢), we deal with the corrected function @ :=
(p1,-..,92), and we have

1S (k) (@)lsup < Ch ax Var ¢; + C2||@||sup for every natural k.
_Z_
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5.3. Ergodicity of corrected step functions.

We now consider piecewise constant zero mean cocycles ¢ : I — R, ¢ > 1 which
are also discontinuous in the interior of the exchanged intervals. Suppose that
v € I,i=1,...,s are discontinuities of ¢ different from [,, @ € A. Denote by
d; € R’ the vector describing the jumps of coordinate functions of ¢ at ~;, this
is, di = o4 () — ¢_(7:) € RE In this section we will prove the ergodicity of
@ for almost every choice of discontinuities. Note that the corrected cocycle @ is
also piecewise constant and it is discontinuous at v; with the jump vector d; for
i=1,...,s, and hence it is still non-trivial.

Theorem 5.4. Suppose that T' =T, ) is an IET of periodic type and it has non-
degenerated spectrum. There exists a set D C I° of full Lebesgue measure such that
if

(i) (v1,---57s) € D5 B B B

(ii) the subgroup Z(dy,...,ds) C R generated by dy,...,ds is dense in R,

then the cocycle @ : I — R’ is ergodic.

Proof. As we already mentioned we can assume that 7+ c I{™ for every natural
n, where oy = (W(()"))’l(l) =75 *(1). Fix a € A and choose by < a3 < by < ... <
as < bs < asy1 so that [by, as1) = I, Let

FW = U T/t b/, for 1 <i<s,
B <i<hG D
= | T/ asa /), for0<i < s
0<j<hlY

1 is the Perron-Frobenius eigenvalue of the periodic matrix A of T). Since
P g
[bo/pT T, asy1/ptTh) = I8 | the sets Ci(”), Fi(”) are towers for which each level

is an interval. Moreover, Ci(n) C C&n) for 0 <i<sand

B =) > ST =) > A,

BeA
In view of (4.9), it follows that
(n) (n)
(n) han Poin — @it1 —bi
w(C;) = (aiv1 — bi) =7 = (@ip1 — bi) =27 > > 0,
T = T T = Cu(A)py
" R — iy W bi—a
,U(Fi( )):(bi—ai)TlZ(bi—ai) min > a > 0.

1 P = Tu(A)e,
Recall that if T : (X, B, p) — (X, B, ) is ergodic and (E,),>1 is a sequence of
towers for T for which

liminf u(Z,) > 0 and height(Z,,) — oo,

n—oo

then (see King [20], Lemma 3.4)
(5.6) w(BNZ,) — w(B)u(E,) — 0 for all B C B.

It follows that, for p-almost every x € X, the point = belongs to =, for infinitely
many 7.
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Applying this fact for subsequences of (Fi(n))nzl successively for i = 1,...,s,
we conclude that for a.e. (y1,...,7s) € I® there exists a subsequence (ky),>1 such
that

vi€ F¥) forall 1 <i<sandn>1.
Denote by D C I° the subset of all such (y1,...,7s) for which 4; does not belong to
the union of orbits of I, a € A, for i =1,...,s. Therefore ¢ € BVO(I_IQGAIQ,RZ).
Suppose that for some n > 1 we have ~; € Fi(") for all 1 < i < s. Then the sets
TjC’i(n), 0<ji< h((lnﬂ), 0 <7 < s do not contain discontinuities of ¢. Thus similar

(h("+

arguments to those from the proof of (4.7) show that @ ") is constant on each

Ci(n) and equals say gl(") € RC.

Let 2 € [bi_1/p} ™ ai/ptt) and y € [bi/p} ™, a1 /p0 ). By assumption, v; €
T7[a;/p T, b; /p ) for some R < jo < RSV Tt follow that P(T7x) = p(T7y)
for all 0 < j < A", j # jo and G(TIoy) — G(T90z) = d;. Consequently,

_(n _(n _(p(n+1) (B(nt+D)
g =g =" ) - 6 (@) = de

It follows that

@(hff“))(x) = gé") + Z d; for all 2 € Ci(n), 0<i<s.
=1

Since ¢ € BVQ(I_IaeAIa, R?), by Theorem 5.2 there exists C' > 0 such that
18 D @)l = 1S + V@) < C for all @ € I,

and hence ||§6")|| < C. Therefore for each (y1,...,7s) € D there exists a subse-
quence (ky)p>1 such that

M N (@) = g+ Y dyfor al z e €, 0< i < s
=1
and gok") — Go in R, Since lim infu(Ci(k")) > 0 for each 0 < i < s, Corollary 2.6
implies go + >y, d € E(p) for each 0 < i < s. Therefore d; € E(p) for each

1 <1<s. Since dy,...,d, generate a dense subgroup of R® and E() is closed, it
follows that E(p) = R’. O

Remark 5.5. Notice that the condition (ii) implies s > ¢. On the other hand, if
s > ¢, in view of Remark 3.8, we can easily find a collection of vectors dy, . . .,ds € R’

such that Z(dy,...,ds) = R’

In order to have a more specific condition on the discontinuities v;, i =1,...,s
guaranteeing ergodicity, we can use a periodic type condition.

Let us consider a set {v1,...,7s} € I\ {la : @« € A}. The points v1,...,7s
together with [, a € A give a new partition of I into d + s intervals. Therefore
T can be treated as a d + s-IET. Denote by (7, \') the combinatorial data of this
representation of T'.

Definition. We say that the set {v1,...,7s} is of periodic type with respect to T »)
if the IET T{, »ry is of periodic type as an exchange of d + s intervals.

Remark 5.6. By the definition of periodic type, (X, 7’) satisfies the Keane condition.
Therefore, each 7; does not belong to the orbit of any [, o € A.
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In view of Theorem 23 in [27], each admissible interval ") (p is a period) for
T ay is also admissible for T(. ). Therefore T(, ) is of periodic type as an
exchange of d-intervals as well. It follows that, for every n > 0 and ¢ = 1,...,s if
v; € I, then ~; = T(jm)\) (vi/p™) for some 0 < j < h((ln). Therefore similar arguments
to those in the proof of Theorem 5.4 give the following result.

Theorem 5.7. Suppose that T' =T, ) is an IET of periodic type and it has non-
degenerated spectrum. Let ¢ : I — R’ be a zero mean piecewise constant cocycle
with additional discontinuity at ~; € I\ {lo : o € A} with the jump vectors d; € R’
fori=1,... s. If

(i) the set {y1,...,7s} is of periodic type with respect to T, x);

(i) Z(dy,...,ds) = R,
then the cocycle @ : I — R’ is ergodic. ([

6. RECURRENCE AND ERGODICITY OF EXTENSIONS OF MULTIVALUED
HAMILTONIANS

In this section we deal with a class of smooth flows on non-compact manifolds
which are extensions of so called multivalued Hamiltonian flows on compact surfaces
of higher genus. Each such flow has a special representation over a skew product of
an IET and a BV cocycle. This allows us to apply abstract results from previous
sections to state some sufficient conditions for recurrence and ergodicity whenever
the IET is of periodic type.

6.1. Special flows.

In this subsection we briefly recall some basic properties of special flows. Let T be
an automorphism of a o-finite measure space (X, B, u). Let f : X — R be a strictly
positive function such that

(6.1) Z f(T"z) = 400 for ae. x € X.

n>1

By T/ = (T/);cr we will mean the corresponding special flow under f (see e.g. [8],
Chapter 11) acting on (X7, Bf, uf), where X/ = {(z,s) € X xR: 0 < s < f(x)}
and B/ (u) is the restriction of B x B(R) (1 x mg) to X/. Under the action of the
flow T/ each point in X moves vertically at unit speed, and we identify the point
(z, f(x)) with (Tz,0). More precisely, for every (z,s) € X we have

T/ (z,5) = (T"w,s +t — [ (2)),
where n € Z is a unique number such that (") (z) < s+t < f+D ().

Remark 6.1. If T is conservative then the condition (6.1) holds automatically and
the special flow T/ is conservative as well. Moreover, if T is ergodic then T7 is
ergodic.

6.2. Basic properties of multivalued Hamiltonian flows.

Now we will consider multivalued Hamiltonians and their associated flows, a model
which has been developed by S.P. Novikov (see also [2] for the toral case). Let
(M,w) be a compact symplectic smooth surface and 3 be a Morse closed 1-form

on M. Denote by 7 : M — M the universal cover of M and by B the pullback of
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B by 7: M — M. Since M is qunply connected and 6 is also a closed form, there
exists a s smooth function H : M — R, called a multivalued Hamiltonian, such that
dH = ﬁ. By assumption, H is a Morse function. Suppose additionally that all
critical values of H are distinct.

Denote by X : M — T'M the smooth vector field determined by

f=ixw=w(X, ).

Let (¢¢)ter stand for the smooth flow on M associated to the vector field X. Since
df = 0, the flow (¢;):cr preserves the symplectic form w, and hence it preserves the
smooth measure v = v, determined by w. Since [ is a Morse form, the flow (¢¢):cr
has finitely many fixed points (equal to zeros of 8 and equal to images of critical
points of H by the map m). The set of fixed points will by denoted by F(5). All
of them are centers or non-degenerated saddles. By assumption, any two different
saddles are not connected by a separatrix of the flow (called a saddle connection).
Nevertheless, the flow (¢;)icr can have saddle connections which are loops. Each
such saddle connection gives a decomposition of M into two nontrivial invariant
subsets.

By Theorem 14.6.3 in [18], the surface M can be represented as the finite union
of disjoint (¢¢)rer—invariant sets as follows

M=PuSsu|JT,
Tex
where P is an open set consisting of periodic orbits, S is a finite union of fixed
points or saddle connections, and each 7 € ¥ is open and every positive semi-orbit
in 7, that is not a separatrix incoming to a fixed point, is dense in 7. It follows
that 7 is a transitive component of (¢;);cr. Each transitive component 7 is a
surface with boundary and the boundary of 7 is a finite union of fixed points and
loop saddle connections.

Remark 6.2. Let X be a smooth tangent vector field preserving a volume form w
on a surface M. A parametrization « : [a,b] — M of a curve is called induced if

V(s
/ ixw=s—s forall s,s €a,b)].
v(s)

Let 7 : [a,b] — M and 7 : [a,b] — M be induced parameterizations of two curves.
Suppose that for every = € [a, b] the positive semi-orbit of the flow through ~(z) hits
the curve 4. Denote by T,z (z) € [a,b] the parameter and by 7,5(x) > 0 the time
of the first hit. Using Stokes’ theorem, it is easy to check that 7.3 : [a,b] — [a, D]
is a translation and 7.5 : [a,b] — R is a smooth function.

Fix 7 € ¥ and let J C 7 be a transversal smooth curve for (¢;)icr such that
the boundary of J consists of two points lying on an incoming and an outgo-
ing separatrix respectively, and the segment of each separatrix between the cor-
responding boundary point of J and the fixed point has no intersection with J.
Let v : [0,a] — J stand for the induced parametrization such that the boundary
points (0) and y(a) lie on the incoming and outgoing separatrixes respectively (see
Figure 1). Set I = [0,a). We will identify the interval I with the curve J.

Denote by T' :=T.,, the first-return map induced on J; T' can be seen as a map
T:1— I ByRemark6.2,T:1 — Iisan exchange interval transformation. Then
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T = T(x), where 7 € 8Y for some finite set A and (m,)) € S x R+ satisfies
Keane’s condition. Recall that l,, o € A stand for the left end points of the
exchanged intervals. Let Z = F(8) N 7. Since 7 is a transitive component, each
element of Z is a non-degenerated saddle. Let us decompose the set of fixed points
Z into subsets Zy, Z; and Z_ of points z € Z such that z has no loop connection,
has a loop connection with positive orientation and has a loop connection with
negative orientation respectively. For each z € Z; U Z_ denote by 0j00p(2) the
corresponding loop connection.

Denote by z € Z the fixed point such that 7(0) belongs to its incoming separatrix
0~ (z). Then «(0) is the first backward intersection with J of c7(z). Set a =
77 1(1) € A. Then each point v(l,) with a # a corresponds to the first backward
intersection with J of an incoming separatrix of a fixed point, denoted by z;, € Z
(see Figure 1). The point y(l,) corresponds to the second backward intersection
with J of 07 (2) and T, = 0.

Denote by 7 : I — Ry the first-return time map of the flow (¢;):er to J. This
map is well defined and smooth on the interior of each interval I, o € A, and 7 has
a singularity of logarithmic type at each point I, @ € A (see [21]) except for the
right-side of l,; here the right-sided limit of 7 exists. Moreover, the flow (¢¢)wer on
(7, v|7) is measure-theoretical isomorphic to the special flow T7. An isomorphism
is established by the map I' : I” — T, T'(z,s) = ¢sy(x).
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FIGURE 1. Separatrices of (¢)

6.3. Extensions of multivalued Hamiltonian flows.
Let f : M — R’ be a smooth function. Let us consider a system of differential
equations on M x RY of the form

{‘Z—f = X(x),

@ = [

for (z,y) € M x R’. Then the associated flow (®{)icr = (P¢)ier on M x RY is
given by

Qy(z,y) = (ﬁbt%,y + /Otf((bsm) ds) .
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It follows that (®;);cr is a skew product flow with the base flow (¢¢)ier on M and
the cocycle F : R x M — R’ given by

Pt z) = /O F(buz) ds.

Therefore (®;);cr preserves the product measure v X mpe. The deviation of the
cocycle F' was studied by Forni in [10], [11] for typical (¢¢)ier with no saddle
connections. Recall that the ergodicity of (®]);cg has been already studied in [9)]
in the simplest case where M = T? and ¢ = 1.

In this section we will study recurrence and ergodic properties of the flow (@{)teﬂg
for functions f : M — R’ such that f(x) = 0 for all x € F(B). By obvious
reason (®;);er will be restricted to the invariant set 7 x RY, 7 € T. Let us
consider its transversal submanifold J x R ¢ 7 x RY. Note that every point
(v(z),y) € y(Int I,) x R returns to J x R? and the return time is 7(z,y) = 7(z).
Denote by ¢ : [Jye 4 Int 1o — R* the smooth function

7(z)
o@) = Fr@@) = [ foa@)ds. for ve |l

acA
Notice that

(6.2) /1 () dz = /[ Fdv.

Let us consider the skew product T, : (I x R pu x mge) — (I x R p x mpe),
T, (z,y) = (Tz,y + ¢(x)) and the special flow (T},)” built over T,, and under the
roof function 7 : I x R — R, given by 7(z,y) = 7(z).

Lemma 6.3. The special flow (Tw)? is measure-theoretical isomorphic to the flow
(®;) on (T x R, v|1 x mpe). O
Remark 6.4. If fodV # 0 then, by (6.2), the skew product T, is dissipative. In
view of Lemma 6.3, the flow (®;) on (7 x R, v|7 x mpe) is dissipative, as well.

On the other hand, if £ = 1 and (¢¢) on (T ,v|7) is ergodic, then [ fdv =0
implies the recurrence of (®;) on (7 x R, v|7 x mp).

The following lemma will help us to find out further properties of . Since the
proof is rather straightforward and the first part follows very closely the proof of
Proposition 2 in [14], we leave it to the reader.

Lemma 6.5. Let g: [—1,1] x [-1,1] — R be a C'-function such that g(0,0) = 0.
Then the function & : [0,1] — R,

. fsl g (u, %) %du, if s>0,
5@‘{ﬁ@mwwmw&m i s,

is absolutely continuous. If additionally g is a C?-function, ¢’(0,0) = 0, and
9"(0,0) =0, then &' is absolutely continuous. O

Remark 6.6. Note that the second conclusion of the lemma becomes false if the
requirement g”(0,0) = 0 is omitted. Indeed, if g(x,y) = z-y then £(s) = —logs—1,
s > 0, is not even bounded.

For each z € Z{ U Z_ choose an element u, of the saddle loop gj00p(2).
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Theorem 6.7. If f(x) = 0 for all x € F(B), then ¢ is absolutely continuous on
each interval I, o € A, in particular o € BV(Uaealn, RY). Moreover,

/@/(x) dr = Z /f(¢suz) ds — Z /f(¢su2) ds.
I zez, /R zez_ VYR
If additionally f'(z) = 0 and f"(z) = 0 for all z € F(B3), then ¢ € L'(I,R"),
in particular, ¢ € BV (Uqealy, RY).

Proof. First note that it suffices to consider the case £ = 1. Since df = 0, there
exists a family of pairwise disjoint open sets U, C M, z € Z such that z € U,
and there exists a smooth function H : |J,.z U. — R such that dH = 3 on U, for
every z € Z. By the Morse Lemma, for every z € Z there exist a neighborhood
(0,0) € V, € R? and a smooth diffeomorphism T, : V, — U, such that Y,(0,0) = z
and
H,(z,y) :=HoY,(z,y) =x-yfor all (z,y) € V..

Denote by w? € Q2(V,) the pullback of the form w by Y, : V, — U,. Since w?
is non-zero at each point, there exists a smooth non-zero function p =p, : V, = R
such that

Wiz = p(z,y)dz A dy.

Let (¢7) stand for the pullback of the flow (¢¢) by T, : V. — U,, i.e. the local
flow on V, given by ¢7 = Y10 ¢; 0 T,. Denote by X* : V, — R? the vector field
corresponding to (¢7). Then dH, = w*(X?, -), and hence

. (% (o), %= (0.9)) (5 —y)
X (x,y) = = .
p(x,y) p(z,y)
Let § be a positive number such that [—4,d] x [=4§,d] C V, for every z € Z. Let
us consider the C®—curves v, v : [-62,§%] — M given by

’Y;t’o(s) = TZ(:ES/(S, :t&)a 7;71(8) = Tz(:téa :I:S/(S)

Notice that 7 establishes an induced parametrization for the form w(z,y) and
the vector field X. Indeed, we have for every s € [—§2,62] and i = 0, 1,

yEi(s) yEi(s) ) )
/ p= / dH = H(yE(s) — H(yEH(0) = +s/6- 6 = 5.
~E4(0) ~E1(0)

We consider the functions 7+ and ¢F from [—§2,0)U(0, 2] to R, where 7 () is
the exit time of the point v0(z) for the flow (¢;) from the set Y, ([—6, 8] x [~6, §])
and

7 ()
ct) = [ Hentonas
0
Note that 7F(z) is the passage time from (dz/6, +8) to (& sgn(x)d, £ sgn(z)z/8)
for the local flow (¢7). Let f, : V. — R be given by f, = f o Y,. By assumption,
f» is a smooth function such that f,(0,0) = 0. Furthermore,
7 ()
)= [ L6 a/s )ds,
0
Let (x5,ys) = ¢%(£x/0,£0). Then

(6.3) (d d ) — X (g, —ya) = T2 Y1)

%$57%ys p(ﬂcs,ys) )
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and hence
Ts*Ys = Hz(x57ys) - Hz(manO) = Hz(:tili/(s, :l:(S) =T

Since x # 0, it follows that xs # 0 for all s € R. By using the substitution u = z;,
we obtain du = %xsds = ds and

p(z y)

N (z) (@) 2
o; (x) = / Ja(ws,ys)ds = / Iz (msa _) ds
0 0 Ls

+ sgn(z)d
L. )T

By Lemma 6.5, the functions ¢F : [-62,0) U (0,6%] — R is absolutely continuous
and

+6 +45

Jim o2 @) = [ L 0pw0 T+ [ r0.wp00 5
It follows that
(6.4) lim o7 (z) = /O+Oo F(¢si00)ds +/ F(¢s72"0)ds
Similar arguments to those above show that
(6.5) Jim. pr () = /;OO F(ps7E00)ds +/ flpnF0)d

In view of Remark 6.2, we conclude that ¢ : I — R is absolutely continuous on
each interval I, a € A and

+oo 0
(6.6) i (la) = /0 F(6ey(la))ds + /_ F(6y(Tl))ds

whenever « # a and z;, € Z_UZy. If a # a and 2, € Z,, then computing ¢4 (1)
we have cover also a distance along the loop separatrix ojo0p (21, ), s0 that

+oo

+oo
67) ula) = /0 F(é(la))ds + / (6 (Tla))ds + / F(doruzy )ds

oo

Moreover, if f/(z,) = 0 and f”(z;,) = 0 then the derivative " is integrable on
a neighborhood of 1. It follows that if f/(z) = 0 and f”(z) = 0 for each z € F(5)
then ¢” is integrable.

If @ = @, then, by definition, the positive semi-orbit through ~(l,) returns to
before approaching the fixed point z. It follows that

""v'v(l
(6.8) i (la) = / F(éer(l))ds

Let @ = 7y *(d), i.e. rq = |I|. Similar arguments to those used for the right-sided
limits show that for every a # @ we have

“+o0 0 N
(69) o (ra) = / F(der(ra))ds + / F (61 (Tra))ds if 2, € ZoU 24,

+oo

“+o0 0 N
(6.10) _(ra) = / F(6s1(ra))ds + / F (& (Tra))ds + / f(beuis,, )ds,

— 00
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if 2., € Z_. Moreover, since y(rg) lies on an outgoing separatrix, the positive
semi-orbit through ~(r,) returns to the curve v, so that

T~ (1)
(6.11) o_(ra) = o (1)) = / F(6ey(r))ds.

In view of (6.6) - (6.11), we have

/ v)de =Y / z)de =" (p-(ra) — ¢1(la))

acA acA
+oo
(bsuz dS - (bsuz
ZGZZ / ZGZZ+/
(6.12) . / F@rTra)ds — 30 / F(@51(T1a))ds
acA,afa” acA,a#a”
+oo
+ %7 ra))ds - (bs’\/
ae.,%;éa/ ae%;éa/

Ty (Tar) Ty (la)
N / F(6sy(ra))ds — / F(6ey(la))ds

Since @ = 77 (1) and @ = 7, ' (d), in view of (2.1), (2.2), we have

{ra;ae A, a#at={rqo:ac A, mo(a) #d} ={la: a € A, mo(a) # 1},
{Tly:ae A ata}l={Tly:ac A m(a)#1} ={Trq:ac A, m(a) #d}.

Moreover, [, =1(;) = 0 = Tl and TT‘ Sy = = |I| = rg. Tt follows that

3 / F6rTra)ds — Y / F(6:9(Tl)

acA,afa acAa#a

_ / F(6s(ra))ds — / J(6(Tra))ds
S [T eataas- X[ st

acA,a#a acAa#a

+oo too
:/ f(d)s’)/(lg))ds — / f((bs'}/(Tlg))dS
0 0

Since the negative semi-orbit, of frg visits rg before approaching the fixed point
z and the positive semi-orbit of [/, visits T'l, before approaching the fixed point z
(see Figure 1), we have

0 ~ 0 Ty (ra)
/_ F(ouy(Fra))ds — / F(buy(ra))ds = / F (a1 (r))ds,

+oo +oo Ty~ (la)
/0 F(6:v(la))ds — / F(6u(Tla))ds = / F(6e7(1a))ds
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In view of (6.12), it follows that

/ r)dr = Z /+OO f(¢suz)ds — Z/ f(¢suz)d

zEZ_ zEZy
U

Remark 6.8. Notice that, in view of Remark 6.6, the assumption on the vanishing
of derivatives of f at fixed points is necessary to control the smoothness of ¢;.

Theorem 6.9. Suppose that the IET T is of periodic type. Let f : M — R’
be a smooth function such that f(z) = 0 for all x € F(B) and fodV =0. If
02(T)/01(T) < 1/¢ then the flow (®;) on T x R’ is conservative.

Proof. By Lemma 6.3, Theorem 6.7 and (6.2), the flow (®;) on 7 x R is isomorphic
to a special flow built over the skew product T,,, where ¢ : I — Rf is a function of
bounded variation with zero mean. In view of Corollary 2.4, the skew product is
conservative. Now the conservativity of (®;) follows from Remark 6.1. O

Let g be a Riemann metric on M. Let us consider 1-form 97 € Q' (M \ F(B))
on M\ F(B) defined by
(Y, X(2))
9oy — 9%, .
92 (X (2), X ()
Then 92 X (x) = 1, and hence

5 b s b
/{Ww}fﬂ _ / F(6s) - 05 (X (p5))ds = / f(gez)ds

It follows that

fﬁB—Z/ ¢suzds—2/+oo ¢suzd8—/ '(z) dw.

oT 2€Z_ €2,

Theorem 6.10. Suppose that the IET T is of periodic type. Let f: M — R be a
smooth function such that f(x) =0, f'(x) =0 and f"(x) =0 for all x € F(3),

/deuz()(md /an-ﬁﬁ;éo.

Then the corresponding flow (®¢) on T x R is ergodic.

Proof. By Lemma 6.3, Theorem 6.7 and (6.2), the flow (®;) on 7 x R is isomorphic
to a special flow built over the skew product T, where ¢ € BVl(I_IaeAIa) has zero

mean and
@)= [¢we= [ 0720

By Lemma 3.2, the cocycle ¢ is cohomologous to a cocycle ¢, € PL(Uqealy) with
J epi(z)dz =0 and s(¢p) = s(¢) # 0. In view of Theorem 3.4, the skew product

Ty, is ergodlc Consequently, the skew product T, and hence the flow (®;) on
T x R are ergodic, by Remark 6.1. O

Suppose that the IET T is of periodic type and 65(T)/61(T) < 1/€ (£ > 2). Let
f: M — R’ be a smooth function such that f(z) =0, f/(z) =0 and f"(x ) =0 for
all z € F(5),

/fduanndRZBU: f-0°#£0.
T oT
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Let ag,...,as be a basis of the subspace {v}+ and let f, : M — R‘"! be given by

Jo= (<a27f>a"'7<a’faf>)'

Theorem 6.11. If the flow (®*) on T x R is ergodic then (®]) on T x R is
ergodic.

Proof. Without loss of generality we can assume that v = (1,0,...,0), as =
(0,1,0,...,0),...,a¢ = (0,...,0,1). Then ¢ = (p1,92), where ©; : I — R,
@2 : I — R’ are functions with [, ¢} (z)dz # 0 and [} ph(x)dz = 0. Applying
Proposition 3.1 we can pass to cohomological cocycles which are piecewise linear
with constant slope. Now we can apply Theorem 3.5 to prove the ergodicity of T,
which implies the ergodicity of the flow (®;) on 7 x Rf. O

7. EXAMPLES OF ERGODIC EXTENSIONS OF MULTIVALUED HAMILTONIAN FLOWS

In this section we will apply Theorems 5.7, 6.10 and 6.11 to construct explicit
examples of recurrent ergodic extensions of multivalued Hamiltonian flows.

7.1. Construction of multivalued Hamiltonians.
Let T' = Tz x) : I — I be an arbitrary IET satisfying the Keane condition. We
begin this section by recalling a recipe for constructing multivalued Hamiltonians
such that the corresponding flows have special representation over 7. Let us start
from any translation surface (M, «) built over T by applying the zipped rectangles
procedure (see [30] or [33]). Denote by ¥ = {p1,...,p.} the set of singular point
of (M,a). Let J C M\ X be a curve transversal to the vertical flow and such that
the first return map to J is T. We will constantly identify J with the interval I.
Denote by S C M the union of segments of all separatrices connecting singular
points with J.

We will consider so called regular adapted coordinates on M \ X, this is coordi-
nates ¢ relatively to which a¢ = d¢. If p € ¥ is a singular point with multiplicity
m > 1 then we consider singular adapted coordinates around p, this is coordinates

3::11 = ("™ d(. Then all changes of regular coordinates
are given by translations. If ¢’ is a regular adapted coordinate and ( is a singular
adapted coordinate, then ¢’ = (™*1/(m+1)+c. Let us consider the vertical vector
field Y and the associated vertical flow (¢¢)ier on (M, ), this is a, Y (z) = ¢ and
%@btx =Y (¢px) for x € M \ 3. Then for a regular adapted coordinate ¢ we have

Y (¢) =i and ¥ = ¢ + it. Moreover, for a singular adapted coordinate ¢ we have
(™Y (¢) =14, and hence Y (¢) = ‘?‘%

For each € > 0 and p € ¥ denote by B.(p) the € open ball of center p and let
g = ge : [0,400) — [0,1] be a monotonic C*°-function such that g(xz) = = for
x € [0,¢] and g(z) =1 for > 2¢. Fix € > 0 small enough. In what follows, we will
deal with regular adapted coordinates on M \ |J, .y Ba:(p) and singular adapted

¢ relatively to which a¢ = d

peEX
coordinates on Bs.(p) for p € X. Let us consider a tangent C*-vector field Y on
M such that in adapted coordinates ( we have

~ Y(¢) =i, on M\U,cs Ba:(p),
Y(<>={ ©) \Upes Ba:(0)

2m =m
A on Ba(p), pE S
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Denote by (@t)teR the associated C°°-flow on M. Then (@t)teR on M\ X is
obtained by a C*° time change in the vertical flow (1¢)ier, and (1;)ier coincides

with (¢¢)ter on M\ Upez Ba(p).
Denote by @ the symplectic C*°-form on M such that in adapted coordinates
( =z + iy we have

} { dx A dy, on M\ U,ex B2:(p),
w¢

(I\CI\)Q"’ dz ANdy, on Bs.(p), p€ 2.

Let us consider the C> 1-form on M given by 3 = igw. Then in adapted
coordinates ( = x + 1y we have

B _ —dﬂf, on M \ UPEE BQE(p)7
T\ -R¢Mdr +S¢™dy, on  Ba(p), p€ X

By Cauchy-Riemann equations, %%C’"—i— %SCT’L =0, and hence df = 0. There-
fore (¥¢)ier is a multivalued Hamiltonian C°°-flow whose orbits on M \ ¥ coincide
with orbits of the vertical flow. It follows that (@t)te]g has a special representation
over the IET T( ). If the multiplicity of a singularity p € X is equal to m = 1 then
in singular adapted coordinates ¢ = z + iy on B:(p ) we have 3 = —adz + ydy, and
hence the multivalued Hamiltonian H is equal to H(z,y) = (y2 — 2%) /2 + const, so
p is a non-degenerated critical point of H.

Let us consider the symplectic form v = ce?*dx A dy, ¢ # 0 on the disk D =
{(z,y) € R? : (x — 1/2)? + y? < (3/2)?} and the Hamilton differential equation

Ccll—g; =—y, % =x(z —1)+y>
Then the function —ce?*((x—1)2+y?)/2 is the corresponding Hamiltonian. Denote
by (h:) the associated local Hamiltonian flow. It has two critical points: zy = (0, 0)
is a non-degenerated saddle and (1,0) is a center The poin‘r (0,0) has a loop saddle
connection which coincides with the curve e?*((z —1)? +y?) = 1, z > 0. Inside this
loop connection all trajectories of (h;) are periodic (see Flgure 2). Such domains
are called traps. It is easy to show that the corresponding Hamiltonian vector field

FIGURE 2. The phase portrait of the Hamiltonian flow for ¢ > 0

Z does not vanish on 9D, and that it has two contact points (2,0) and (—1,0)
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and two arcs Ay and A_ connecting them with the same length (with respect to
v). Let us cut out from M \ S a disk Bs(q), 6 > 0 such that Bas(q) is disjoint
from the transversal curve J and from each Bs.(p), p € ¥. The vector field Y does
not vanish on dBs(q), has two contact points and two arcs A, and A_ connecting
them with the same length (with respect to @). Choose ¢ # 0 such that all four
arcs Ay, A_, A_ and A_ have the same length. Note that ¢ is unique up to sign.
Therefore, by Lemma 1 in [4], there exists a C*°-diffeomorphism f : 0D — 9Bs(q),
a symplectic C°-form w on (M \ B;s(q)) Us D and a tangent C*° vector field X
such that

Lxw = 0;

w=aand X =Y on M\ Bas(q);

w=vand X = Z on D;

the orbits of X on M \ Bys(q) are pieces of orbits of the flow (¢;).

Of course, (M \ Bs(q)) Uy D is diffeomorphic to M, and so the vector field X and
the symplectic form w can be considered on M. Since d(ixw) = Lxw = 0, X
is a Hamiltonian vector field with respect to w. Denote by (¢;)ier the Hamilton
flow associated to X. Since the dynamics of (¢;)tcr and (¢;)ter coincide on M \
(Upes B2e(p) U Bas(q)) and J C M\ (U, ex; B2:(p) U B2s(q)), the first return map
to J for (¢¢)ier is T. Denote by v € I the first backward intersection with J of
the separatrix incoming to zg. Note that v may be an arbitrary point of I different
from the ends of the exchanged intervals. Tt suffices to choose the point ¢ € M \ S
and ¢ > 0 carefully enough. Recall that the saddle point zy has a loop connection
which will be denoted by ¢jo0p(20). Then the orientation of gye0p(20) is positive if
¢ > 0 and negative if ¢ < 0.

Remark 7.1. We can repeat the procedure of producing new loop connections (posi-
tively or negatively oriented) as many times as we want. Therefore for any collection
of distinct points {y1,...,7s} C UyeqInt Io and 0 > 0 small enough we can con-
struct a multivalued Hamiltonian flow (¢;)tcg on M which has s non-degenerated
saddle critical points z1, ..., zs such that each z; has a loop connection 6;50p(2;)
included in Bs(z;) for i = 1,...,s. Moreover, (¢;)ier and (¢:)ter coincide on
M\ (Upes Ba:(p) U \U_; Ba2s(2:))) and ~; € I corresponds to the first backward
intersection with J of the separatrix incoming to z; fort =1,...,s.

We denote by Trap; the trap corresponding to z;, by €(z;) € {—,+} the sign
of the orientation of oyeep(2;) for i = 1,...,s, and by T the surface M with the
interior of the traps Trap;, i = 1,...,s removed.

Remark 7.2. Choose 0 < §' < § such that oye0p(2:) N (M \ Bs(2:)) # 0 for ¢ =
1,...,s. Let f: M — R be a C*°-function with fT fw = 0and such that f vanishes
on each Bo.(p), p € ¥ and Bs(z;), i =1,...,s. Then the corresponding function

7(x)
or i T—R, pp(z) = p(z) = / F(ger) dt

(7 : I — Ry is the first-return time map of the flow (¢;)¢cr to J) can be extended to
a C°°-function on the closure of any interval of the partition P({l, : o« € A} U{~; :
t=1,...,s}). Moreover,

—+o0

(T1)  di(f) = o () — o () = e(z2) /

— 00

f($ruz,) dt and s(p) = Zdim,
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where u, is an arbitrary point of gjeep(2;) for i =1,...,s.

Lemma 7.3. For every (di,...,ds) € R® there ezists a C™-function f: M — R
which vanishes on a neighborhood of each fized point of (¢1) such that fT fw=0

and (di(f), ..., ds(f)) = (du,. .., dy).

Proof. Let us start from f = 0. Since 0j00p(2i) N (Bas (i) \ Bs(2:)) # 0, we can
modify f smoothly on Bas/(z;) \ Bs(2;) such that

“+o0
e(zi)/ f(pru,,) dt = d; and / fwu=0

—o0 (Bys (2i)\Bsr (2:))\Trap;
for i = 1,...,s. In view of (7.1), it follows that d;(f) = d; for i = 1,...,s.

Moreover,
dw = / fw=0.
‘/T ; (Basr (2i)\Bs/ (2:))\Trap;

Lemma 7.4. For every h € H, there exists a C*-function f : M — R such that
©f = > neahaxi, (cf Remark 7.2). If h € Hr NTq then [, fw=0.

Proof. Following [33], for every a € A denote by [v,] € Hi(M,R) the homology
class of any closed curve v, formed by a segment of the orbit for (v;);cr starting at

any point z € Int I, and ending at Tz together with the segment of J that joins Tz
and z. Let ¥ : H'(M,R) — R4 be given by ¥([g]) = (/. 0)aca. By Lemma 2.19

in [33], the map ¥ : H'(M,R) — H, establishes the isomorphism of linear spaces.
Therefore for every h € H, there exists a closed 1-form p such that ¥([g]) = h and
o vanishes on an open neighborhood of J. Let f : M — R be given by f(z) = 0, X,
for x € M.

For every x € Int I, let v, be the closed curve formed by the segment of orbit for
(¢1)ier starting at « and ending at Tx together with the segment of J that joins
Tz and . Then [v,] = [vy]. Therefore, ho = [ 0= [ o.

Since the form p vanishes on .J, we have : :

7(z) 7(z)
/U o= / 000 X (0 dt = / F(ge) dt = oy (x).

Consequently, pf(x) = ho for all & € Intl, and o € A. If we assume that

h e H; NIy, then
0=(\h) z/gpf(m)da::/ fw.
I T

7.2. Examples.
Let us consider an IET T' = T{, ) and a set {y1,...,7s} C I\ {la:a € A}, s > 3.
Set £ = s — 1. Suppose that

(7.2) {7,...,7s} is of periodic type with respect to T and 62(T)/0:(T) < 1/¢.
Recall that T has to be of periodic type as well. An explicit example of such data

for s = 3 is given at the end of this section.

By Remark 7.1, there exists a multivalued Hamiltonian flow (¢;):cr with s traps
(determined by saddle points z;, i = 1,...,s) on a symplectic surface (M,w) such
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that (¢¢)ier on 7 has a special representation over T, ) and ; corresponds to the
first backward intersection with the transversal curve of the separatrix incoming to
zifori=1,...,s.

By Lemma 7.3 and (7.1), there exists a C*™°-function f; : M — R such that
J7 fiw =0 and s(¢y,) # 0. In view of Theorem 6.10, the flow (@' )4er on T x R
is ergodic.

Let di,...,ds be vectors in R*~1 such that Z(d1,...,ds) =R 1 and Y7, d; =
0. Since s = (£ — 1) + 2, the existence of such collection follows directly from
Remark 3.8. By Lemma 7.3, there exists a C*-function f3 : M — R*! such
that f5 vanishes on a neighborhood of each fixed point of (¢¢), [ fow = 0 and
(1) (i) — (pgy)— (i) = di for i = 1,...,s. Then ¢y has zero mean and, by
(7.1), S(QOfé) = Zf:l d; = 0.

Denote by @ : I — R the piecewise constant function with zero mean whose
discontinuities are v;, i = 1,...,s and @4 (v;) — @_(y) = d; for i = 1,...,s.
In view of (7.2) and Remark 5.6, ¢ € BV (Uacala, R*"1). By Remark 7.2, ¢y
can be extended to a C'°°-function on the closure of any interval of the partition
P({la:a€ Ay U{vi:i=1,...,s}). It follows that ¢z — ¢ € BV!(Unea, REY).
Moreover, ¢ — ¢ has zero mean and s(py; — @ = s(¢ys;) — s(p) = 0. Therefore,
by Proposition 3.1, ¢y, — @ is cohomologous to h' = (h{,...,h;_,), where h} € Ty
fori=1,...,0—1.

In view of Theorem 5.2 applied to the coordinate functions of the function @ +
h' € BV§(Uneala, REY), there exists h? = (h),...,h2 ) with h? € T, N T for
i =1,...,£ — 1 such that @ﬂ + h? = @+ hl. Moreover, by Theorem 5.7,
the cocycle @ + h' + h? = @+ hl is ergodic. As ep + h? is cohomologous to
@ + h' + h2, it is ergodic as well. By Lemma 7.4, there exists a C°°-function
f3 M — R with [ ffw = 0 such that ¢z = h?. Setting fo = f5 + f4, we
have [ fow =0, @5, = @z + b, and s(pyp,) = s(pp) = Yo7y di = 0. Tt follows
that the flow (@{2),56R on T x R! is ergodic. Finally applying Theorem 6.11 to
f=(f1, f2) : I — R’ we have the ergodicity of the flow (@{)teR on 7 x RE.

1 2 3 4 5 6 7
6 7 4 5 3 1 2
sponding pair 7’. On the Rauzy graph R(7’) let us consider the loop starting from
7" and passing through the edges labeled consecutively by
1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1, 1, 1.

Then the resulting matrix is

Ezample 1. Let us consider the permutation ( > and a corre-

9 8 20 20 15 5 5
1 2 4 4 3 2 2
22 6 5 4 11
A=12 2 5 6 4 1 1
11 2 2 2 00
22 4 4 3 21
11 3 3 2 1 2

and (A’)? has positive entries. Let X' € RY be a Perron-Frobenius eigenvector of A’.
Then T{,/ \y is of periodic type and A’ is its periodic matrix. Of course, T/ y/y is
an exchange of 4 intervals, more precisely, T(x )y = T(zsvm y), where A\; = A+,
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A2 = N5+ N, A3 = A and Ay = A\ + M. As we already noticed in Section 5.3,
T{xsvm ) has also periodic type and the family y1 = A}, 72 = A} + X5 + A3, 73 =
A+ A+ A5+ Ay + A5 + A is of periodic type with respect to T(rsvm ). Moreover,

10 24 18 7
4 11 8 2
A= 1 2 2 0
3 7 5 3

is the periodic matrix of T svm )y, so

13 1 1 13 1 1
pr =~ + 3VII5 + 51/280+ 26VII5, py = = — SVIT5 + 51/280 - 26V115.
Hence 02 /61 ~ 0.164 < 1/2, s0 T(zsvm y) and {y1,72,73} satisfy (7.2) with s = 3.

Remark 7.5. Similar examples can be constructed by matching the set {v1,...,7s}
for a fixed IET T = T; ) of periodic type. Let p > 1 be the period of T" and let
p > 1 be the Perron-Frobenius eigenvalue of the periodic matrix A of T'. For every
z € Ilet k(z) =inf{k > 0: T %z € I®}. Let us consider the map S : I — I,
S(x) = p-T~*=)z. Note that for every o € A the map S has at least A, — 2 fixed
points in the interior of I,. Therefore, multiplying the period of T, if necessary, for
every s > 1 we can find s distinct fixed points 71, ...,s different from [, a € A.
In view of Theorem 23 in |27], the set {71,...,7s} is of periodic type with respect
to T

Denote by Ms a compact C°°-surface of genus 2. We can apply the above
constructions to the sequence of IETs T with arbitrary small values of the ratio
02(T)/601(T) from Appendix B to obtain the following result:

Corollary 7.6. For every £ > 1 there exists a multivalued Hamiltonian flow (¢¢)ier
on My and a C™-function f : My — R’ for which the flow (@{)t@g on T x R is
ergodic. O

APPENDIX A. DEVIATION OF COCYCLES: PROOFS

Let T': I — I be an arbitrary IET satisfying Keane’s condition. For every x € T
and n > 0 set

m(z,n,T) =max{l >0: #{0 <k <n: Tk € I(l)} > 2}.
Proposition A.1 (see [36] or [33]). For every x € I and n > 0 we have
miﬁ Qa(m) <n < dmajl( Qua(m+1) =d||Q(m+1)|, where m =m(z,n,T). O
ae ac
Remark A.2. Assume that T' = T, ) is of periodic type and A is its periodic
matrix. Then there exists C' > 0 such that e/1*/C < ||A*|| < Ce%* for every

k > 1, where 6; is the greatest Lyapunov exponent of A. Let m = m(z,n,T).
Since ||A™|| = max,eca A%, by Proposition A.1 and (4.2), it follows that

. . 1 | A™| efhm
> o = AT > AT = >
n 2 miy Qalm) =min Ay 2 Zremax A = Tent 2 5

Thus

(A1) m < ~ log(Cv(A)n).
01
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Proposition A.3 (see [24]). For each bounded function ¢ : I — R, x € I and
n > 0 we have

(A.2) ™ @) <2 120+ DIISO¢llsup, where m =m(x,n,T).
=0
If additionally p € BVo(Uncaly) then
(A3) IS ¢llsup < D 1ZGHNISG Dl Var . O
1<5<t

Proof of Theorem 2.2. Since ) is a positive Perron-Frobenius eigenvector of A, by
Proposition 5 in [36], the restriction of A’ to the invariant space Ann(\) = {h €
R4 : (h, \) = 0} has the following Lyapunov exponents:

Oy >05>...20,>0=...=0>—0,>...> —fs>—0 > —0,.
Thus there exists C' > 0 such that for every k € N we have
[(ADYER|| < CEM =L exp(kfy)||h|| for all h € Ann()\).
Since TY) = Ann()) and S(j,1) = Q'(j,1) = (A")'=7 on T, by (A.3),

ISDellsup < D NANIAY | anney | Var ¢
1<5<i
< Z | A||CEM L exp(kbs) Var ¢ < || A||CIM exp(16) Var ¢.
0<k<l

In view of (A.2), it follows that

(@) < 2> JANISOellsup < 2 ) |AIPCIM exp(i6s) Var ¢
=0 =0
< 2||A|PCmMHL exp(mbsy) Var o,

where m = m(z,n,T). Consequently, by (A.1),

[A]*C?v(A)

log™ ™ (Cv(A)n)n2/% Var .

ApPPENDIX B. POSSIBLE VALUES OF 65/6;

In this section we will show that for each symmetric pair 7" there are IETs of
periodic type such that 65/6; is arbitrary small and the spectrum of the periodic
matrix is non-degenerated. As it was shown in [24] for every natural n the matrix

1 1 11
n n+l 0 0
M) = 0 2 1
n+l n+2 2 2

is a resulting matrix corresponding to a loop in the Rauzy class of 7™ and starting
from 7", Since M (n) is primitive, there exists an IET of periodic type for which
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M (n) is its periodic matrix. The eigenvalues p1(n) > pa(n) > 1 > p3(n) > ps(n) >
0 of M(n) are of the form
(i + /= 4).

p1<n>=1(a:+ <a¢>2_4), () = L (a
<af§— (af{)2—4>,

2
1
at = §(n+6:|:\/n2—|—4).

Since a;f — +oo and a,, — 3 as n — +o0, it follows that

f2(n) _ logpa(n)
01(n)  logpi(n)

1

1
2
ps(n) =5 (a; — 1/ (an)? —4) , pa(n) = %

where

— 0 as n — +oo.

ApPPENDIX C. DEVIATION OF CORRECTED FUNCTIONS

Proof of Theorem 5.1. First note that for every natural k the subspace Fglz) CRA
is the direct sum of invariant subspaces associated to Jordan blocks of A! with
non-positive Lyapunov exponents. It follows that there exists C' > 0 such that

(C.1) [(AD)"h|| < Cn™~1||n|| for all L € T®) and n > 0.
It is easy to show that I‘g;) C ng).
Next note that S(k, l)l"g;) = I‘Els) and the quotient linear transformation
Su(k,1) : BV (Uaeal{?)/TLY — BV (Uaeal) /T
is invertible. Moreover,

(C.2) Sk, 1) o UR o =TUWD 0 S(k, )¢ for ¢ € BV (UaeaI®).

Since I‘q(f) C RA the direct sum of invariant subspaces associated to Jordan
blocks of A? with positive Lyapunov exponents, R4 = I'®) = I‘El;) ® I‘T(Lk) is an
invariant decomposition. Moreover, there exist # > 0 and C > 0 such that

[(AH)~"h|| < Cexp(—nb)||h| for all h € T*) and n > 0.

Since the linear operators A : I‘q(f) — I‘q(f) and At : r<’<>/F£’§) — F(k)/I‘g];) are
isomorphic, there exists C’ > 0 such that

(AN (h+ T8 < C" exp(—nb)||h + TP
for all h + I‘g;) S F(k)/Fg;) and n > 0. Consequently,
(C.3) 1(Su(k, 1) (R + T8 || < O exp(—(1 — k)04 ||+ T8

for all h + T e T® /T and 0 < k < 1.
Let us consider the linear operator C%) BVO(I_IaeAIék)) — I‘ék) given by

1 .

C® p(z) = Tl /1 L e if o e 1.
Then Po(k)@ = — C®y and
(C4) 1Pl < llllsup,

(C.5) 1P || qup < Var PM o = Var .
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Let ¢ € BVg(Uacaln). Note that for 0 < k <[ we have
PPo— Sk, 1) o PV o Sk, 1)

= > (Stkr)o P o S(k,r) = S(kyr+ 1) o P o Sk, r + 1))
E<r<l

= Z S(k,r+1)"to(S(r,r+1)o0 Pér) — PérJrl) oS(r,r+1)) oSk, r)p.
k<r<l

Next observe that
(S(r,r+1)o Pér) - PérJrl) 0S(r,r+1))=CU o S(rr4+1)0 Pér)d) eyt

for ¢ € BVo(Uacall). Indeed, if ¢ € BVo(Uaeall”) then ¢ = Py + (M)
and

P o S+ 1) = P o S(rr+1) 0 P+ B 0 S(r,r 4 1) 0 CW4p,
Since S(r,7+ 1) o C") € FE)TH), we obtain PO(TH) 08(r,r+1) 0 C"4 = 0; hence
S(r,r+1)o PO(T)dJ - PO(TH) o S(r,r+ 1)y
= Srr+1)o Py =P oS+ 1) 0 Y
CU o §(r,r + 1) 0 P,
Therefore
PP o — Sk, 1)~ o P o S(k, 1)

= Z S(k,r+1)"toC ) o S(r,r+1) 0 ér)OS(k,r)@el"ék).
k<r<l

In view of (C.2),
(U® o P — U™ o Sk, 1)~ o {7 0 S(k, 1))
= Y Sulk,r+1)toUTT ot o S(rr+1) 0 P o S(k,r)e.
k<r<l
Moreover, using (C.4), (5.2), (C.5) and (5.1) successively we obtain
[CTHD o S(r,r 4+ 1) 0 P o S(k,r)el| < [1S(r,r 4+ 1) 0 P& 0 S(k, 1) |sup
< 120+ DIPS” 0 Sk )l < 1Al Var S(k, 1) < [| Al Var .

Next let consider the series in I‘(()k)/Fg;)
(C6) D (Sulk,r+1) "L oUTH 0 00+ o 5(r,r + 1) 0 P 0 S(k, 7).

r>k

Since [|[UCHD)|| = 1 and UCHD 0 CT+D o S(r, r+1)0 P\ 0 S(k,r)p € T 0,
by (C.3), the norm of the r-th element of the series (C.6) is bounded from above
by C'||A]|exp(—(r — k + 1)04) Var p. As

Z C'||All exp(—(r — k + 1)85) Var ¢ < 400,
r>k

the series (C.6) converges in I‘ék)/I‘g;). Denote by AP(k)gp IS I‘ék)/Fg;) the sum of
(C.6). Then there exists K > 0 such that

(C.7) |AP® || < K Var g, for every ¢ € BVo(UaeaI™) and k > 0.
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It follows that the sequence (5.4) converges in BVO(I_IaeAIék))/Fg;) and

(C.8) P® =y®) o piF) _ Ap#),
O
Lemma C.1. For all 0 <k <l and ¢ € BVQ(I_IQGAISC)) we have
(C.9) Su(k,))o P®o = PO oSk Do,
(C.10) IPYell 0w < (14 K) Varp,
Proof. By definition and by (C.2),
Sulk,1) 0 PP = 5, (k,1) lim UM o S(k,r) " o P o S(k, 1)
= lim UV oS(lr)oStk,r)™" o P\ o S(k,r)p
= lim UV oS0, "o P o 8(1,r) 0 S(k,1)p = PD o S(k,1)ep.
Moreover, by (C.8), (C.5) and (C.7),
IPE @l o0 < P ellsup + 1APP]| < (14 K) Var .
U

Let p:{0,1,...,d,d+ 1} — {0,1,...,d,d + 1} stand for the permutation

p(g) = {mem @) 1< <d
J if j=0,d+1.

Following [30, 31|, denote by o = o the corresponding permutation on {0, 1,...,d},
a(j) =p M (p(j) +1) —1for 0 < j<d.

o) for all j #0,p~'(d). Denote by X() the set of
orbits for the permutation o. Let ¥g(7) stand for the subset of orbits that do not
contain zero. Then X(7) corresponds to the set of singular points of any translation

surface associated to 7 and hence #3(7) = k(7). For every O € X(7) denote by
b(O) € R the vector given by

b(0)a = xo(mo(a)) — xo(mo(a) — 1) for « € A.

Lemma C.2 (see [31]). For every irreducible pair m we have }_ ¢y () 0(O) =0, the
vectors b(0), O € () are linearly independent and the linear subspace generated
by them is equal to ker Q). Moreover, h € H if and only if (h,b(O)) = 0 for every
O € X(nm). O
Remark C.3. Let A™ : RA — R¥ (™) stand for the linear transformation given
by (A"h)o = (h,b(0)) for O € Xg(w). By Lemma C.2, H; = ker A™ and if
RA = F & H, is a direct sum decomposition then A™ : ' — R>0(7) establishes an
isomorphism of linear spaces. It follows that there exists Kz > 0 such that

k|| < Kp||A™h|| for all h e F.

Then T(,T’)\)’/’ﬂ_g%j) = T(ﬂ,)\)rﬂo*l(

Lemma C.4 (see [31]). Suppose that T ; 5y = R(I(x)). Then there exists a

bijection £ : X(m) — X(7) such that ©(m, /\Srflb(O) =b(€0) for O € X(7). O
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Let T' = T(x, ) be an IET satisfying Keane’s condition. For every O € ¥(r) and
© € BVO(Ugealy) let

Ole)= > olra)— > o)

aceA,mo(a)eO acA,mo(a)—1€0

Note that if h € T(©) (i.e. h is a function constant on exchanged intervals), then

Oh)= Y ha= Y ha= Y (xolmo(a)—xo(mo(a)=1))ha = (h,b0)).

mo(a)eO 7o (a)—1€O acA
Moreover,

(C.11) |O(@)| < 2d||@]|sup for every ¢ € BV (Uneals) and O € X(r).

. Let us consider Tax = R(T(x,»)) and the renormalized cocycle ¢ : I — R, this
is
P(x) = Z gp(T(iﬂ,A)x) for z € Iy.
0<i<©ga(m,\)

The proof of the following lemma is straightforward and we leave it to the reader.

Lemma C.5. If ¢ € BV®(Uyeals) then ¢ € BV®(Ugeals) and (£0)(@) = O(p)
for each O € 3(m). O

Let T' = T(x ) be an IET of periodic type and let A be its periodic matrix. By
Lemma C.4, there exists a bijection ¢ : ¥(7) — X(n) such that A=1b6(O) = b(€0O)
for O € X(r). Since £V = Idy () for some N > 1, multiplying the period of T' by N,
we can assume that § = Ids (). Therefore Ab(O) = b(O) for each O € ¥(7), and
hence Alxerq, = Id. It follows that the dimension of r&o) ={h e RA: Ath = h}

is greater or equal than x — 1. Denote by Fgo) C RA the direct sum of invariant

subspaces associated to Jordan blocks of A* with negative Lyapunov exponents.
Assume that 7' has non-degenerated spectrum, i.e. §; > 0. Then dimI‘gO) =

dimfgo) =g¢. Since 29+ k —1=4d and dimfgo) =r—1,
RA=TO =10 o170 ¢

is an A'-invariant decompositions. It follows that 1“§°) @I‘EO) = I‘E(S)) C I‘((JO). There-
fore

I =1 o1 e (0 nr{).

Recall that 1“§°) @F&O) C Hy. As T has non-degenerated spectrum, these subspaces
have the same dimension, and so they are equal. Denote by ng), I‘ék) and I‘q(f) the
subspaces of functions on I*) constant on intervals Iék), a € A corresponding to
the vectors from Fgo), r&o) and Fq(lo) respectively. Then

(€12) T® =TWar®er®, H, =1Waer® 1 =1®er® qr®ar)

for £ > 0 is a family of decomposition invariant with respect to the renormalization
operators S(k,l) for 0 < k < [.
As § = Ids(r), by Lemma C.5, for every ¢ € BVO(I_IQGAISC)) and [ > k we have

(C.13)  S(k,1)p € BV®(UneaIV) and O(S(k,1)¢) = O(p) for each O € %(x).
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Proof of Theorem 5.2. Since
U0 =PO0o=U®oPYp—-APOp=0U0p-U©®oc®yp_ APy,
we have
o—peUD oy APO, ¢ F(()O).
In view of (C.2) and (C.9),
UR o S(k)p = Su(k) o UG = 8,(k) o POy = P® o S(k)e.
Therefore, by (C.10) and (5.1), we have
IU™ o 5(k)2l| = IPP(S®)D) o0
< (14 K)Var(S(k)p) < (1+ K) Varo.

sup /F((:’_i)

It follows that for every k > 0 there exists ¢y € BVO(I_IaeAIék)) and hy, € Fg’;) such

that
(C.14) S = gn + e and [l loup < (1 + K) Var .
As
(C.15)  py1 +heyr = S(k+ 1)@ = S(k,k+1)S(k)p = S(k, k + 1)y + Ahy,
setting Ahgi1 = hgr1— Athg (Ahg = ho) we have Ahyy1 = —pri1+ Sk, k+1)pr.
Moreover, by (C.14),
[Ahgiall = llor+r — Sk, k + 1)grlsup
< lekt1llsup + 1SRy &+ Dpllsup < (1+[[A])(1 + K) Var .

and

[ARoll = 1|2 = ¢ollsup < [|@llsup + (1 + K) Var .
Since hy = << (A Ahy_; and Ahy € TS by (C.1)

el < D IAY Al < ) CIMH | ARy

0<i<k 0<i<k
CEM(L+ | AIN(L + K) Var ¢ + CE 7| Blsup-
In view of (C.14), it follows that
I1S(F)@llsup < llprllsup + 7kl < CEM(2 4+ [|AI)(1 + K) Var @ + CEM |G |sup-

IN

Since p—¢p € F((JO) = (I‘q(lo) ﬂF((JO))@ch), there exist h € (Fq(lo) ﬂI‘éO)) and b/ € I‘g)
such that ¢ + h = ¢ + h'. Hence
o+h+TO =5410 = pOy,

Suppose that hy, hy € RSO) N FE)O) are vectors such that

w+ hy —|—F£(S)) = <p+h2+F§2) = P(O)<p.

In view of (5.5), ||S(k)(¢+ h1)l|lsup and ||S(k)(¢ + h2)||lsup have at most polynomial
growth. Therefore, ||(AY)*(h1 — ha)|| = ||S(k)(h1 — h2)|| has at most polynomial

growth, as well. Since h; — hy € RSO), it follows that hy1 = hs.

Assume that T has non-degenerated spectrum. Then Fg’;) = I‘ék) @I‘gk). Suppose

YK, hi € FE’? satisfy (C.14). Let us decompose hy = hj, + hf,, where h§ € I‘Ek) and



42 J.-P. CONZF, K. FRACZEK
hi € T ¢ H,. By Remark C.3, A™(h3) = 0. In view of (C.14) and (C.13), it
follows that
O(@) = O(S(k)p) = O(pr) + O(h) for every O € X(n).
Moreover, by (C.11) and (C.14),
|0(ek)| < 2d|prllsup < 2d(1 + K) Var g and [O(9)] < 2d]|@||sup
for every O € ¥(w). Therefore
(R, b(O)] = [O(})] < 2d((1 4 K) Var @ + [|@]|sup) for every O € E(m),
so that
(C.16) [AT(R)N < 2d((1 + K) Var ¢ + || @l|sup)-
By (C.12), we have RA = T(0) = '™ g H., so in view of Remark C.3, there exists
K’ > 1 such that ||h|| < K'||ATh]| for every h € ™. By (C.16), it follows that
(C.17) [1h&]l < 2dK"((1+ K) Var @ + || @l|sup)-
Let Ahj = hj,, — Ak} for k> 0 and Ah§ = h§. Then from (C.15), we have
Ah} = —prp1+S(k, k+1)or—hi  +A'hE = —pri1 +S(k, k+1)pr—hj +hi.
Therefore, by (C.14) and (C.17),

[ARE Ll < llertallsup + [[Al o llsup + [Pl + [kl
< 1+ ||A|| +4dK")(1 + K) Var ¢ + 4d K" || 3| sup,
ARG = 118 = %0 = hillsup < (1 + 2dK")([[Pllsup + (1 + K) Varp).
Notice that for every 0 < §_ < 6, there exists C' > 1 such that

A

[(AH)"h|| < C exp(—nf_)| k|| for all h € T*) and n > 0.
Since hj = Y2 <, (A" Ahi_, and Ak € T{ | it follows that

il < >0 IAY' ARGl < Y Cexp(—16-)[|ARE ]

0<i<k 0<I<k
C(1+ || Al +4dK")
- 1 —exp(—6-)
In view of (C.14) and (C.17), it follows that
I1SE)@llsup < [lewllsup + [1AE + 127

C(2+||A] +6dK") ~
1 —eXp(—H_) ((1 +K)Va1"g0—|— ||90||sup)a

which completes the proof. O

(1 + K) Var ¢ + [|®]lsup)-

N

IN

Theorem C.6. There exist C3,Cy > 0 such that
18T lsup < Cslog™ ™ n Var o + Calog™ 1|3l sup
for every natural n. If additionally T has non-degenerated spectrum then

37 |sup < C3logn Var ¢ + Cylog n|@|sup-
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Proof. By Proposition A.3 and Theorem 5.2, for every x € I we have

1B @) < 204 (CLk™ Var o + Cok™ | Blsup)
k=0
< 2 A(CmMH Var g + Com™ || B]lsup),
where m = m(z,n,T). Now the assertion follows directly from (A.1). O

APPENDIX D. EXAMPLE OF NON-REGULAR STEP COCYCLE

Let T'= T(; ) be an IET of periodic type with periodic matrix is A. Then there
exists C' > 0 and 6 > 0 such that

(AR < C exp(—nB)||h|| for all h € T®) and n > 0.

Lemma D.1. Suppose that h € Féo) and ¢ : I — R is the associated step cocycle.
If h € P&O) then ¢ is a coboundary. If h ¢ I‘E(S)) then ¢ is not a coboundary.

Proof. Assume that h € Fgo). Since
IS ellsup = 1(A")'R|| < Cexp(=16)||R],
by Proposition A.3, we have

20 All[IA]

(n) < < 1) =
" [lsup < 22 1Z(T+ D[S ellsup < 2C[A[[[R]] Zexp( 19) = exp(—0)

1=0 =0

for every natural n. But each bounded cocycle in R? is a coboundary.

Now suppose that h € l"éo) and ¢ is a coboundary. Set
e =inf{u(CM™):n>0,ac A}

(see Section 4 for the definition of the tower C&n)). In view of (4.6), € > 0. Since
¢ is a coboundary, there exist M > 0 and a sequence (Bj)r>o of measurable
sets with p(By) > 1 — ¢ for n > 0 such that | (z)| < M for all z € By, and
k > 0. Recall that for every z € CS" we have (<™ (z) = ((AY)"+1h),. Since
cin B # 0, it follows that |((A")"T1h),| < M for every n > 0 and o € A.

Thus ||(AY)"+1h| < M for every n > 0, and hence h € (Y. O

Ezample 2. Let us consider an IET T = T(ﬂgym,x) of periodic type whose periodic
matrix is equal to
18 28 31 38 18
10 16 8 9 6
A= 13 20 36 46 18
2 3 16 22 6
39 61 63 77 37

The existence of such IET was shown in [29]. The Perron-Frobenius eigenvalue of
A is 55 + 124/21 and X is equal to

(14V21,2,1+v21,2,7 4 V21)
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up to multiplication by a positive constant. Moreover, the eigenvalues and eigen-
vectors of A? are as follows:

p1 =55+ 12v/21, v = (—1++v21,1+ 21,3+ 21,5+ V/21,4)
p2 =9+ 45, vy = (=2, -1 —1v5,2,1 ++/5,0)

p3 = 1, V3 = (—1,—2,0,—1,1)

ps=9— 45, vy = (=2, -1+ 1v5,2,1 —/5,0)

ps =55 —12v21, w5 = (=1 — /21,1 — /21,3 — 21,5 — /21,4).

Note that vy, v, v4, V5 € I‘((JO). Denote by ¢; : I — R the step function corresponding
to v; for 1 < ¢ < 5. Since |p2] > 1 > |p4|, by Lemma D.1, ¢4 is a coboundary and
(2 is not a coboundary.

We will show that @9 is a non-regular cocycle. Note that the cocycles oo + 4
and @y — @4 take values in Z and /57 respectively. Since ¢4 is a coboundary, it
follows that E(p2) C Z and E(p2) C v/5Z, and hence E(p2) = {0}. Since s is

not a coboundary, E(p2) = {0,000}, and hence it is non-regular.
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