Hitting and returning into rare events for all alpha-mixing processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Hitting and returning into rare events for all alpha-mixing processes

Miguel Abadi
  • Fonction : Auteur
  • PersonId : 850298
Benoit Saussol

Résumé

We prove that for any $\alpha$-mixing stationnary process the hitting time of any $n$-string $A_n$ converges, when suitably normalized, to an exponential law. We identify the normalization constant $\lambda(A_n)$. A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem by Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any $n$-string in $n$ consecutive observations, goes to zero as $n$ goes to infinity.
Fichier principal
Vignette du fichier
allalpha2.pdf (148.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00462595 , version 1 (10-03-2010)
hal-00462595 , version 2 (25-03-2010)

Identifiants

Citer

Miguel Abadi, Benoit Saussol. Hitting and returning into rare events for all alpha-mixing processes. 2010. ⟨hal-00462595v2⟩
208 Consultations
89 Téléchargements

Altmetric

Partager

More