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Aurélien Bellet, Marc Bernard, Thierry Murgue, Marc Sebban
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Abstract

During the past few years, several works have been done to derive string
kernels from probability distributions. For instance, the Fisher kernel uses
a generative model M (e.g. a hidden markov model) and compares two
strings according to how they are generated by M . On the other hand, the
marginalized kernels allow the computation of the joint similarity between
two instances by summing conditional probabilities. In this paper, we adapt
this approach to edit distance-based conditional distributions and we present
a way to learn a new string edit kernel. We show that the practical compu-
tation of such a kernel between two strings x and x′ built from an alphabet
Σ requires (i) to learn edit probabilities in the form of the parameters of
a stochastic state machine and (ii) to calculate an infinite sum over Σ∗ by
resorting to the intersection of probabilistic automata as done for rational
kernels. We show on a handwritten character recognition task that our new
kernel outperforms not only the state of the art string kernels and string edit
kernels but also the standard edit distance used by a neighborhood-based
classifier.
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1. Introduction

With the success of kernel-based learning methods [1], a number of struc-
tural kernels have been proposed in the literature to handle structured data
such as strings. A first natural way to design string kernels consists in rep-
resenting each sequence by a fixed-length numerical vector. In this con-
text, the spectrum kernel proposed in [2] was one of the first string kernels.
It relies on the principle that two strings should be considered as similar if
they share a large number of contiguous subsequences. In the specific case
of a p-spectrum, a string is represented by a histogram of frequencies of all
contiguous subsequences of length p. Then, a dot product can be performed
between two feature vectors to compute the kernel. To overcome the in-
conveniences of such an exact matching, the mismatch kernel [3] generalizes
the spectrum one by comparing the frequencies of subsequences which are
not exactly the same, i.e. allowing a given number of mismatches. Another
extension of the spectrum kernel, called subsequence kernel [4], considers fea-
tures made of possibly non-contiguous subsequences. Finally, in the specific
context of protein remote homology detection, the distant segments kernel
[5] extends the spectrum kernel to include positional information of polypep-
tide segments. Each component of the feature vector denotes the number of
times a segment x is located at a given distance following a segment x′.

Another way to build string kernels while admitting error-tolerant match-
ing consists of deriving kernels from similarity measures. For instance,
Saigo et al. [6] designed a local alignment kernel to detect remote homolo-
gies in protein sequences. This kernel assesses the similarity between two
sequences by summing up scores computed from local alignments allowing
gaps. Other kernels have been derived from the edit distance [7], which corre-
sponds to the minimal number of operations (in terms of insertion, deletion
or substitution of symbols) to transform a string into another one. The edit
distance is a metric and tightly related to the optimal alignment between
two sequences. The resulting kernels based on the edit distance are usu-
ally called string edit kernels. Using this kind of kernels in classification
tasks is interesting for a double reason: first, it enables us to better measure
the dissimilarity between two strings by considering more possible structural
distortions than the previously mentioned string kernels (i.e. spectrum, mis-
match, subsequence kernels); second, it allows us to take advantage of pow-
erful learning algorithms such as the support vector machines (svm) to leave
the constrained context of nearest-neighbor classifiers that are usually used
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with the edit distance [8]. For these reasons, string edit kernels have seen
an increasing amount of interest in recent years [8, 9, 10]. It is important
to note that these kernel functions usually assume that the edit distance is
negative definite. Indeed, to guarantee the convergence of the learning al-
gorithm (e.g. svm), this condition is required to ensure that the resulting
kernel functions are valid kernels. However, in [9], the authors proved that
the edit distance over a non-trivial alphabet Σ is not negative definite. This
constitutes a theoretical drawback of the state of the art string edit kernels.
Moreover, from a practical point of view, they usually use a standard version
of the edit distance, i.e. the costs of the edit operations are a priori fixed
(often to the same value). This is actually the case when no background
knowledge is available. Parallel to this work on edit kernels, a recent line of
research has investigated the ways to automatically learn the edit parame-
ters from a learning sample in the form of state machines [11, 12, 13, 14, 15].
These edit parameters can then be used in neighborhood-based classifiers.
Given a pair of strings (x, x′), the output of these models is not an edit cost
anymore, but rather an edit probability to change x into x′ by edit opera-
tions. It is important to note that these edit parameters no more allow us
to obtain a true distance (the symmetry and reflexivity properties are often
violated) that prevents us from using them in standard edit kernels such as
those presented in [8, 9, 10]. To overcome this problem, we show in this pa-
per how one can derive a new positive definite string edit kernel from these
learned edit probabilities. Indeed, a third possibility to design string kernels
is to exploit probability distributions issued from stochastic models

as done in the Fisher kernel or its variants [16]. For instance, as shown by
Haussler [17], the joint probability p(x, x′) of emitting two strings x and x′

under a pair-Hidden Markov Model (pair-HMM) is a valid kernel that can
be used to obtain by convolution new valid string kernels. In this paper, we
show how to exploit edit probabilities that have been learned in the form of
conditional state machines to create a new performing string edit kernel. We
show that the computation of our new kernel requires to perform the inter-
section of two probabilistic automata, that is a special case of composition
of stochastic transducers, as shown in [9] for designing rational kernels.

The rest of this article is organized as follows: Section 2 is devoted to
the presentation of the state of the art string edit kernels. After having in-
troduced in Section 3 our new string edit kernel, we briefly recall in Section
4 the main available approaches dealing with the learning of the edit pa-
rameters. Section 5 is devoted to the computation of our kernel based on a
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specific case of composition of stochastic transducers. Finally, we present a
large experimental study in Section 6, comparing our new learned edit kernel
with the state of the art string kernels. We show that our approach provides
significant improvements on a pattern recognition task.

2. Related work on string edit kernels

A common method used to define a string edit kernel from the standard
edit distance ed is the following [9, 10]:

k(x, x′) = e−t·ed(x,x′),∀x, x′ ∈ Σ∗, (1)

where t is a positive real value. However, as mentioned in [9], there
exists t > 0 for which this kernel is not positive definite, that does not
guarantee the convergence of training for learning algorithms such as svm.
In [10], the authors show that t can be experimentally tuned according to the
training data, but this remains a difficult task. Moreover, note that a slight
modification of t can result in large differences of performance (see Section
6).

In [8], Neuhaus and Bunke present the following string edit kernel assum-
ing the symmetry of the edit distance:

k(x, x′) = kx0
(x, x′) =

1

2

(

ed(x, x0)
2 + ed(x0, x

′)2 − ed(x, x′)2
)

, (2)

where x0 is called a zero string. This kernel describes a measure of the
squared distance from string x to x0 and from x0 to x′ in relation to the
squared distance from x to x′. Neuhaus and Bunke show that two more
complex kernels can be obtained by selecting a set I of zero strings and
combining the resulting kernels in a so-called sum kernel k+

I (x, x′) and product
kernel k∗

I (x, x′):

k+
I (x, x′) =

∑

x0∈I

kx0
(x, x′), (3)

k∗
I (x, x′) =

∏

x0∈I

kx0
(x, x′). (4)

In these previous two edit kernels, the set I of zero strings plays an im-
portant role. In their experiments, the authors employ an iterative greedy
selection strategy based on a validation set. Their experimental study shows
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that this edit kernel outperforms a nearest-neighbor classifier using the stan-
dard edit distance. However, it is compared neither to other edit kernels nor
to the state of the art string kernels.

In [6], Saigo et al. present a string alignment kernel specifically dedi-
cated to detect remote homologies in biological sequences. This kernel, com-
puted from a matrix of substitution between amino acids, is called LA (Local
Alignment) kernel. It can be derived from Eq.1, where all the possible local
alignments π for changing x into x′ are taken into account and where an
alignment score s(x, x′, π) is used instead of the edit distance ed:

kLA(x, x′) =
∑

π

et·s(x,x′,π), (5)

where t is a parameter and s(x, x′, π) is the corresponding score of π and
defined as follows:

s(x, x′, π) =
∑

a,b

na,b(x, x′, π) ·S(a, b)−ngd
(x, x′, π) ·gd−nge

(x, x′, π) ·ge, (6)

where na,b(x, x′, π) is the number of times that symbol a is aligned with
letter b, S(a, b) is the substitution score between a and b, gd and ge (and their
corresponding number of occurrences ngd

(x, x′, π) and nge
(x, x′, π)) are two

parameters dealing respectively with the opening and extension of gaps.

As mentioned in the introduction, another way to use the kernel described
in Eq.1 is to compute it from edit probability distributions [10]. Indeed, the
edit process can be viewed as a sequence of probabilistic events. In that way,
the edit distance between x and x′ can be computed from the summation of
the negative logarithms of the transformation probabilities, as follows:

ed(x, x′) = −
∑

i

log p(x′
i|xi),∀xi, x

′
i ∈ Σ ∪ {λ} (7)

where λ is the empty symbol, p(x′
i|xi) is the probability to change the

symbol xi into x′
i at the ith operation of the optimal script changing x into

x′. Plugging Eq.7 in Eq.1, we get the following edit kernel presented by Li
& Jiang [10]:

k(x, x′) =

(

∏

i

p(x′
i|xi)

)t

. (8)
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As mentioned in [10], this kernel assumes that p(x′
i|xi) = p(xi|x

′
i) which

may not always be true. To guarantee the symmetry property, a solution
consists of interpreting the edit distance as:

ed(x, x′) = −
1

2

(

∑

i

log p(x′
i|xi) +

∑

i

log p(xi|x
′
i)

)

.

Beyond the fact that our previous remark on the parameter t still holds
(how t can be tuned to satisfy the property of positive definiteness?), defining
a relevant value for p(x′

i|xi) is a difficult problem. In specific domains, some
background knowledge is available allowing the use of such kernels. For
instance, in molecular biology, some edit matrices have become standards
to deal with amino acids (e.g. pam [18] and blosum [19]). These matrices
describe similarity scores for amino acids and can be transformed (see [10]) to
be used as relevant estimates of p(x′

i|xi). However, in many other domains,
such an information is not available. A solution to overcome this problem is
to automatically learn those edit probabilities from learning examples. We
will present some approaches that deal with this problem in Section 4.

3. New edit distance-based kernel

Before that, let us introduce our new string edit kernel, which is a specific
case of the marginalized kernels as described in [20]. Let p(x, x′, h) be the
probability of observing jointly a hidden variable h ∈ H and two visible
strings x, x′ ∈ Σ∗. p(x, x′) can be obtained by marginalizing, i.e. summing
over all variables h ∈ H, the probability p(x, x′, h), such that:

p(x, x′) =
∑

h∈H

p(x, x′, h) =
∑

h∈H

p(x, x′|h) · p(h).

A marginalized kernel computes this probability making the assumption that
x and x′ are conditionally independent given h:

k(x, x′) =
∑

h∈H

p(x|h) · p(x′|h) · p(h). (9)

Note that the computation of this kernel is possible since it is assumed
that H is a finite set. Let us now suppose that p(h|x) is known instead of
p(x|h). Then, as described in [16], we can use the following marginalized
kernel:
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k(x, x′) =
∑

h∈H

p(h|x) · p(h|x′) · Kz(z, z
′), (10)

where Kz(z, z
′) is the joint kernel depending on combined variables

z = (x, h) and z′ = (x′, h).
An interesting way to exploit kernel of Eq.10 as a string edit kernel is to

use the following features:

• the finite set H of variables h is replaced by the infinite set of possible
strings y ∈ Σ∗,

• as p(y|x), we use pe(y|x) which is the conditional probability to trans-
form a string x into a string y by using edit operations,

• the Dirac kernel (that returns 1, ∀(z, z′)) is used as kernel Kz(z, z
′).

Therefore, we obtain a new string edit kernel:

k(x, x′) =
∑

y∈Σ∗

pe(y|x) · pe(y|x
′), (11)

which is positive definite as it corresponds to the dot product in the feature
space defined by the following mapping: Φ : x → {pe(y|x)}y∈Σ∗ . However,
the practical use of this edit kernel raises two crucial questions:

1. Is it possible to learn a unique model that provides an estimate of the
probability pe(y|x) for any pair of strings (x, y)?

2. If so, how can we compute from such a model the infinite sum over
y ∈ Σ∗?

While recent papers have already answered the first question (see the next
section for a survey), the reply to the second one is the matter of the rest of
the article.

4. How to learn the edit parameters?

Let us recall that the edit distance between two strings x and y (built
from an alphabet Σ) is the cost of the best sequence of edit operations that
changes x into y. Typical edit operations are symbol deletion, insertion and
substitution, and to each of them is assigned a cost. Since tuning these costs
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can constitute a difficult task in many applications, supervised learning has
been used during the last decade for learning the edit parameters.

In the context of the alignment of biological sequences, Saigo et al. [21]
optimized from a learning set the blosum substitution matrix by classi-
cal gradient descent. In order to control the optimization procedure, they
designed an objective function that measures how well the local alignment
kernel discriminates homologs from non-homologs. The learned substitution
matrix S(a, b) can then be incorporated in the LA kernel already presented
in Eq.5. In order to avoid to call on positive and negative examples, another
solution to learn the edit parameters is to use a probabilistic framework and
control the optimization process by resorting to statistical constraints. In
this context, that will be used in the rest of this paper, a widespread ap-
proach uses the maximum likelihood paradigm to learn probabilistic state
machines (e.g. probabilistic automata, stochastic transducers, pair-hidden
markov models) that can be used to model edit probability distributions.
When there is no reason that the cost of a given edit operation changes
according to the context where the operation occurs, memoryless machines
(i.e. that contain only one state) are sufficient and very efficient from an
accuracy and algorithmic point of view. In this case, training boils down
to learning a single matrix of |Σ ∪ {λ}|2 parameters, i.e. a probability for
each possible edit operation. A pioneer work that aimed to learn a memo-
ryless transducer for modeling the edit probabilities has been presented by
Ristadt and Yianilos in [12]. This generative model takes the form of a
one state machine whose parameters (i.e. the edit probabilities) are learned
by using an Expectation Maximization (EM)-based algorithm [22]. Using
a forward procedure, it is then possible to deduce the joint edit probability
pe(x, y) from the probabilities of the successive edit operations for changing
x into y. However, to perform a classification task, one often requires pe(y|x)

rather than pe(x, y). A solution consists in computing pe(y|x) = pe(x,y)
p(x)

, but
it is common knowledge that this can induce a statistical bias. To overcome
this drawback, a relevant strategy consists in directly learning a conditional
model (that allows an unbiased computation of pe(y|x) [23]) by adapting the
maximization step of the EM algorithm, as done in [14]. In this context,
the learned parameters are conditional edit probabilities. The authors of
[14] show on a handwritten digit recognition task that such a discriminative
model outperforms the generative one of Ristad and Yianilos.

Note that many applications can be treated by such memoryless models,
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such as the correction of typing errors made with a computer keyboard, the
recognition of images represented with Freeman codes, or in recognition of
musical pieces [24].

However, learning a single matrix of edit costs can be viewed as insuffi-
cient in some applications, particularly when the operation plays a part more
or less important in the string transformation according to its location. This
is the case in molecular biology, where the edit operation on a symbol can de-
pend on its presence in a transcription factor binding site. To deal with such
situations, non-memoryless approaches have been proposed in the literature
in the form of probabilistic state machines that are able to take into account
the string context. They are mainly based on pair-HMM [11, 25], proba-
bilistic deterministic automata (PDFA) [15], or stochastic transducers [26].
The string context is taken into account in each state by a specific statistical
distribution over the edit operations. However, these models are generative
and so do not allow the integration of constraints on the input string x. To
overcome this limitation, two recent approaches have been presented to learn
discriminative non memoryless edit models. In [13], McCallum et al. adapted
the conditional random fields to the finite-state string edit distance. Note
that this model, unlike the others, requires the use of positive and negative
examples of matches of strings. More recently, in [27], the authors presented
constrained state machines dedicated to the learning of edit distance satisfy-
ing domain constraints. The main difficulty of this approach is to have such
background knowledge that can be expressed in the form of constraints.

Whatever the learning method we use, we have shown in this section that
it is possible to learn a state machine T which models a distribution over the
edit operations. As we noted before, memoryless transducers are suitable
machines to deal with pattern recognition problems for whose the location
of the edit operation does not play an important role. This is the case for
the recognition of digits represented with Freeman codes as shown in [14].
Since we will use in this paper the same experimental framework to assess the
relevance of our new edit kernel, we will consider in the rest of this paper that
a memoryless transducer T is learned with the learning algorithm proposed
in [14]. To ensure the self consistency of our paper, Annex 1 presents the
main features of this learning algorithm that returns the machine T .

Such a machine can then be used to compute the joint or conditional
edit probability between two strings. In the next section, we show how we
can use T to compute the infinite sum of our string edit kernel. Rather
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than computing each pe(y|x),∀y ∈ Σ∗, we show that one can deduce from T

two probabilistic automata modeling respectively the conditional distribution
pe(y|x) and pe(y|x

′), given x and x′. Then, drawing our inspiration from the
rational kernels [9], we show that the infinite sum of Eq.11 can be efficiently
calculated by calling on a composition of these two probabilistic automata.

5. How to compute the edit kernel over Σ∗?

While the original marginalized kernel of Eq.9 assumes that H is a finite
set of variables [16], our string edit kernel computes an infinite sum over Σ∗,
such that k(x, x′) =

∑

y∈Σ∗ pe(y|x) · pe(y|x
′). We show in the following that

(i) given two strings x and x′, pe(y|x) and pe(y|x
′) can be represented in

the form of two probabilistic automata, (ii) the product pe(y|x) · pe(y|x
′) can

be performed by intersecting the languages represented by those automata
and (iii) the infinite sum over Σ∗ can be computed by resorting to algebraic
methods.

5.1. Definitions and Notations

Definition 1. A weighted finite-state transducer (WFT) is an 8-tuple T =
(Σ, ∆, Q, S, F, w, τ, ρ) where Σ is the input alphabet, ∆ the output alphabet,
Q a finite set of states, S ⊆ Q the set of initial states, F ⊆ Q the set of
final states, w : Q × Q × (Σ ∪ {λ}) × (∆ ∪ {λ}) → ℜ+ the transition weight
function, τ : S → ℜ+ the initial weight function, and ρ : F → ℜ+ the final
weight function. For convenience, we denote w(q1, q2, xi, yj) by wq1→q2

(xi, yj).

Definition 2. A joint probabilistic finite-state transducer (jPFT) is a WFT
J = (Σ, ∆, Q, S, F, w, τ, ρ) which defines a joint probability distribution over
the pairs of strings {(x, y) ∈ Σ∗ × ∆∗}. A jPFT satisfies the following three
constraints:

i)
∑

i∈S τ(i) = 1;

ii)
∑

f∈F ρ(f) = 1;

iii)

∀q1 ∈ Q :
∑

q2∈Q,xi∈Σ∪{λ},yj∈∆∪{λ}

wq1→q2
(xi, yj) = 1.
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Definition 3. A conditional probabilistic finite-state transducer (cPFT) is
a WFT C = (Σ, ∆, Q, S, F, w, τ, ρ) which defines a conditional probability
distribution over the output strings y ∈ ∆∗ given an input string x. We
denote the transition wq1→q2

(xi, yj) in the conditional form wq1→q2
(yj|xi). A

cPFT satisfies the same first two constraints as those of a jPFT and the
following third constraint (see [14] for a proof):

∀q1 ∈ Q,∀xi ∈ Σ :
∑

q2∈Q,yj∈∆∪{λ}

(wq1→q2
(yj|xi) + wq1→q2

(yj|λ)) = 1.

In the following, since our string edit kernel is based on conditional edit
probabilities, we will assume that a cPFT has already been learned by one
the previously mentioned methods (see Annex 1 for the details of a specific
EM-based algorithm). Note that this transducer cPFT is learned only one
time and then is used to compute our edit kernel for any pair of strings. For
instance, a memoryless cPFT is described in Fig.1, where Σ = ∆ = {a, b}
and Q,S and F are composed of only one state of label 0. Note that if a
generative learning model would have been used to learn the edit parameters,
the resulting jPFT could be a posteriori renormalized into a cPFT .

0

a|a
λ|a

b|a

a|λ b|λ

λ|b
a|b
b|b

Figure 1: Memoryless cPFT . To each transition is assigned an edit probability (not
shown here for the sake of legibility) which can be used to compute the edit conditional
probability of any pair of strings.

5.2. Modeling pe(y|x) and pe(y|x
′) by probabilistic automata

Since our kernel k(x, x′) depends on two observable strings x and x′,
it is possible to represent in the form of probabilistic state machines the
distributions pe(y|x) and pe(y|x

′), where only y is a hidden variable.
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Given a cPFT C modeling the edit probabilities and a string x, we can
define a new cPFT denoted by C|x that models pe(y|x) while being driven
by the specific observable string x.

Definition 4. Let C = (Σ, ∆, Q, S, F, w, τ, ρ) be a cPFT that models pe(y|x),
∀y ∈ ∆∗,∀x ∈ Σ∗. We define C|x as a cPFT that models pe(y|x),∀y ∈ ∆∗

but for a specific observable x ∈ Σ∗. C|x = (Σ, ∆, Q′, S ′, F ′, w′, τ ′, ρ′) with:

• Q′ = {[x]i} × Q where [x]i is the prefix of length i of x (note that
[x]0 = λ); In other words, Q′ is a finite set of states labeled by the
current prefix of x and its corresponding state during its parsing in of
C1.

• S ′ = {(λ, q)} where q ∈ S;

• ∀q ∈ S, τ ′((λ, q)) = τ(q);

• F ′ = {(x, q)} where q ∈ F ;

• ∀q ∈ F, ρ′((x, q)) = ρ(q);

• the following two rules are applied to define the transition weight func-
tion:

– ∀a ∈ ∆,∀q1, q2 ∈ Q,w′
([x]i,q1)→([x]i+1,q2)(a|xi+1) = wq1→q2

(a|xi+1);

– ∀a ∈ ∆,∀q1, q2 ∈ Q,w′
([x]i,q1)→([x]i,q2)(a|λ) = wq1→q2

(a|λ).

As an example, given two strings x = a and x′ = ab, Fig.2(a) and Fig.2(b)
show the cPFT C|a and C|ab constructed from the memoryless transducer C

of Fig.1. Roughly speaking, C|a and C|ab model the output languages that
can be respectively generated from x and x′. Therefore, from these state
machines, we can generate output strings and compute the conditional edit
probabilities pe(y|x) and pe(y|x

′) for any string y ∈ ∆∗. Note that since we
are in an edit-based framework, the cycles outgoing from each state model the
different possible insertions before and after the reading of an input symbol.

Since the construction of C|x and C|x′ are driven by the parsing of x

and x′ in the transducer C, we can omit the input alphabet Σ. Therefore,

1This specific notation is required to deal with non memoryless cPFT .
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a transducer C|x = (Σ, ∆, Q, S, F, w, τ, ρ) can be reduced to a finite-state
automaton A|x = (∆, Q, S, F, w′, τ, ρ). The transitions of A|x are derived
from w in the following way: w′

q1→q2
(a) = wq1→q2

(a|b),∀b ∈ Σ∪{λ},∀a ∈ ∆∪
{λ},∀q1, q2 ∈ Q. For example, Fig.3(a) and 3(a) are the resulting automata
deduced from the cPFT C|a and C|ab of Fig.2(a) and 2(b).

0 1

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

(a)

0 1 2

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ

(b)

Figure 2: On the left: a cPFT C|a that models the output distribution conditionally to
an input string x = a; note that for the sake of legibility, state 0 stands for (λ, 0), and
state 1 for (a, 0). On the right: a cPFT C|ab that models the output distribution given
x′ = ab, here again, 0 stands for (λ, 0), 1 for (a, 0), and 2 for (ab, 0).

0 1

a

b

λ
a

b

a

b

(a)

0 1 2

a

b

λ
a

b

a

b

λ
a

b

a

b

(b)

Figure 3: The transducers C|a and C|ab represented in the form of automata.

5.3. Computing the product pe(y|x) · pe(y|x
′)

The next step for computing our kernel k(x, x′) requires the calculation
of the product pe(y|x) · pe(y|x

′). This can be performed by modeling the
language that describes the intersection of the automata modeling pe(y|x)
and pe(y|x

′). This intersection can be obtained by performing a composition
of transducers as described by Cortes et al. in [9]. As mentioned by the au-
thors, composition is a fundamental operation on weighted transducers that

13



can be used to create complex weighted transducers from simpler ones. In
this context, we can note that the intersection of two probabilistic automata
(such as those of Fig.3(a) and 3(b)) is a special case of composition where the
input and output label of transitions are identical. This intersection takes
the form of a probabilistic automaton as defined below.

Definition 5. Let C be a cPFT modeling conditional edit probabilities. Let
x and x′ be two strings of Σ∗. Let A|x = (∆, Q, S, F, w, τ, ρ) and A|x′ =
(∆, Q′, S ′, F ′, w′, τ ′, ρ′) be the automata deduced from C given the observable
strings x and x′. We define the intersection of A|x and A|x′ as the automaton
Ax,x′ = (∆, QA, SA, FA, wA, τA, ρA) such that:

• QA = Q × Q′;

• SA = {(q, q′)} with q ∈ S and q′ ∈ S ′;

• FA = {(q, q′)} with q ∈ F and q′ ∈ F ′;

• wA
(q1,q′

1
)→(q2,q′

2
)(a) = wq1→q2

(a) · w′
q′
1
→q′

2

(a);

• τA((q, q′)) = τ(q) · τ(q′)

• ρA((q, q′)) = ρ(q) · ρ(q′)

Fig.4 describes the intersection automaton of automata of Fig.3(a) and
3(b).

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

a b

a
b

ab a
b

λ

a b

a
b

ab a
b

λ

a b

a b

a

b

a
b

a b

a
b

a

b
Figure 4: Resulting automaton modeling the intersection of the automata of Fig.3(a) and
3(b).

Let us now describe how this resulting automaton can be used to compute
the infinite sum of our kernel over Σ∗.
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5.4. Computing the sum over Σ∗

To simplify the notations, let p(z) = pe(y|x) · pe(y|x
′) be the distribution

modeled by an intersection automaton A = {Σ, Q, S, F, w, τ, ρ}. Let Σ =
{a1, . . . , a|Σ|} be the alphabet.

Let Mak
be the square matrix defined over Q × Q and providing the

probabilities Mak
(qi, qj) = wqi→qj

(ak),∀ak ∈ Σ. In other words, Mak
(qi, qj)

is the probability that the symbol ak ∈ Σ is emitted by the transition going
from state qi ∈ Q to state qj ∈ Q in A. In this context, given a string
z = z1...zt, p(z) can be rewritten as follows:

p(z) = p(z1...zt) = τττT Mz1
...Mzt

ρρρ = τττT Mzρρρ, (12)

where τττ and ρρρ are two vectors of dimension |Q| whose components are
the values returned by the weight function τ (∀q ∈ S) and ρ (∀q ∈ F ), and
0 otherwise, and where Mz = Mz1

...Mzt
.

¿From 12, we can deduce that:

∑

z∈Σ∗

p(z) =
∑

z∈Σ∗

τττT Mzρρρ. (13)

To take into account all the possible strings z ∈ Σ∗, Eq.13 can be rewritten
according to the size of the string z.

∑

z∈Σ∗

p(z) =
∞
∑

i=0

τττT (Ma1
+ Ma2

+ ... + Ma|Σ|
)iρρρ = τττT

∞
∑

i=0

M iρρρ, (14)

where M = Ma1
+Ma2

+ ...+Ma|Σ|
. Let us replace

∑∞
i=0 M i by B. Therefore,

B = I + M + M2 + M3 + . . . , (15)

where I is the identity matrix. Multiplying B by M we get

MB = M + M2 + M3 + . . . . (16)

Subtracting Eq.15 from Eq.16, we get:

B − MB = I ⇔ B = (I − M)−1. (17)

Plugging Eq.17 in Eq.14, we get our kernel:

k(x, x′) =
∑

y∈Σ∗

pe(y|x) · pe(y|x
′) = τττT

∞
∑

i=0

M iρρρ = τττT (I − M)−1ρρρ. (18)
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5.5. Tractability

Given two strings x and x′, we deal here with the complexity of computing
k(x, x′). As we just wrote, this involves the computation of an infinite sum
computed by solving a matrix inversion.

Let us denote C the cPFT that models the edit probabilities, and let be
t the number of states of C. We denote by n the length of the string x and
by m the length of the string x′.

First, recall that in the case of the classical edit distance with non learned
costs, the complexity is n · m for the calculation of de(x, x′).

The weighted automaton C|x describing pe(y|x) has (n+1) · t states, and
C|x′ describing pe(y|x

′) has (m+1)·t states (e.g. see Fig.3). Thus the matrix
(I − M) is of dimension (n + 1) · (m + 1) · t2. The computation cost of each
element of this matrix linearly depends on the alphabet size |Σ|. Therefore,
the computation cost of the entire matrix is n2 · m2 · t4 · |Σ|. Since M is
triangular, the matrix inversion (I − M)−1 can be performed by back sub-
stitution, avoiding the complications of general Gaussian elimination. The
cost of the inversion is of order of the square of the matrix dimension, that
is n2 · m2 · t4. This leads to a cost of

n2 · m2 · t4 · |Σ|.

Note the factor t4 stands for the size of C that models edit probabilities.
In the case of memoryless models (that will be used in the experimental study
of Section 6), we have t = 1 and thus a cost reduced to

n2 · m2 · |Σ|.

Therefore, in the case of a conditional memoryless transducer, and for small
alphabet sizes, the computation cost of our edit kernel is “only” the square
of that of the standard edit distance.

Despite the advantage of triangular matrices, the algorithmic complex-
ity remains a problem in the case of learning processes with long strings
and/or large alphabet sizes. To overcome this problem, we can efficiently
approximate our kernel k(x, x′) by computing a finite sum only considering
the strings y that belong to the learning sample. Therefore, we get

k̂(x, x′) =
∑

y∈S

pe(y|x) · pe(y|x
′)
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where S is the learning sample. Since the computation of each probability
pe(y|x) requires a cost of n+ |y|, the average cost of each kernel computation
is

(n + m + |y|) · |S|

where |y| is the average length of the learning strings.
In conclusion, even if our kernel is a priori rather costly from a complexity

point of view, it has the advantage to be usable from any transducer modeling
edit probabilities, and its calculation remains reasonable. Moreover, the
analysis of this kernel must also take into account the gain in accuracy it
implies in a pattern recognition task. This is the aim of the next section.

6. Experiments

6.1. Database and Experimental Setup

To assess the relevance of using learned edit distances in the design of
a new string edit kernel, we carried out some experiments. We studied the
behavior of our approach on the well known NIST Special Database 3 of the
National Institute of Standards and Technology, describing a set of hand-
written characters.

Starting point

0

1

2

3

4

5

6

7

Freeman Codes

222234445533445666660222217760021107666501

coding string

Figure 5: A digit and its string representation.

We focus on handwritten digits consisting of 128 × 128 bitmaps images.
We use a learning set of about 8000 digits and a test sample of 2000 instances.
Each instance is represented by a string. To code a given digit, the algorithm
scans the bitmap left to right and starting from the top until encountering
the first point. Then, the algorithm builds the string following the border of

17



the character until it returns to the starting pixel. The string is constructed
considering the succession of Freeman codes as described in Fig.5.

To compare our approach with other string kernels, we used SVM-Light
6.02 [28]. In order to deal with our multi-class task, we learn 10 binary SVM
models Mi. The model Mi, ∀i ∈ {0, ..., 9}, is learned from a positive class
composed by all the handwritten characters labeled i and a negative class
grouping all the other digits. Then, the class of an unknown example x is
determined as follows: we compute for each model Mi the margin γMi

(x) and
the class of x is given by argmaxi γMi

(x). Obviously, a high positive value of
margin γMi

(x) represents a high probability for x to be of class i.

6.2. Edit Kernels versus Edit Distance

As done by Neuhaus and Bunke [8], our first objective was to show the
interest of our edit kernel in comparison with the edit distance used in a
nearest-neighbor algorithm. To achieve this task, we first used a standard
edit distance dl with costs of all edit operations (deletion, insertion and
substitution) set to 1. On the other hand, we used the SEDiL platform [29]
to learn a matrix of edit probabilities from which one can deduce conditional
edit probabilities pe(y|x) and compute a so-called stochastic edit distance

de(x, y) = − log pe(y|x).

We assessed the performance of a 1-nearest neighbor algorithm using both
edit distances dl and de, and compared them with our new string edit kernel
(using SVM-Light 6.02) on a test set composed of 2000 instances. Note that
the conditional probabilities pe(y|x) required in our edit kernel are the same
as those used in de(x, y). Results are presented in Fig.6 according to an
increasing number of learning examples (from 100 to 8000).

We can make the following remarks:

• First, learning a stochastic edit distance de on this classification task
leads to better results than using the standard edit distance dl. Indeed,
whatever the size of the learning set we use, the accuracy computed
from de is always higher.

• Second, our string edit kernel outperforms not only the standard edit
distance dl, but also the stochastic edit distance de. This clearly shows
the usefulness of our string edit kernel to take advantage of power-
ful classifiers such as SVMs. To estimate the statistical significance
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Figure 6: Comparison of our edit kernel with edit distances on a handwritten digit recog-
nition task.

of these results, comparisons between the three approaches were per-
formed using a Student paired-t test. Table 1 presents the so-called
p-values obtained while comparing our kernel with de and dl. Using
a risk of 5%, a p-value of less than 0.05 means that the difference is
significant in favor of our kernel (in bold font in the table). We can
note that this is always the case except for the two learning samples of
size 2000 and 6000.

Learning set size 1000 2000 3000 4000 5000 6000 7000 8000
EK vs learned ED 1E-02 6E-02 2E-02 2E-02 2E-02 9E-02 3E-02 3E-01

EK vs standard ED 6E-06 4E-04 1E-03 3E-03 2E-03 8E-03 2E-03 3E-02

Table 1: Statistical comparison between our edit kernel (EK) and a (learned or standard)
Edit Distance (ED). Using a risk of 5%, a p-value of less than 5E-02 means that the
difference is significant in favor of our kernel

However, these previous remarks are not sufficient to prove the relevance
of our edit kernel. Indeed, as presented in Section 2, other string kernels have
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been proposed in the literature that can also take advantage of SVMs. How
does our edit kernel behave in comparison with those state of the art string
kernels? This is the matter of the next section.

6.3. Comparison with State of the Art String Kernels

In this second series of experiments, we compared our learned string edit
kernel with other string kernels presented in Section 1 and 2, that is, Li
& Jiang kernel [10], Neuhaus & Bunke kernel [8], spectrum kernel [2] and
subsequence kernel [4]2. Even if these last two kernels have already been
introduced in section 1, let us briefly present them and precise values of
parameters we used in our experiments. The spectrum kernel considers a
feature space of dimension N

k where k denotes the number of substrings over
Σ∗ of length smaller than a parameter p. In this space, each example x is
represented by the vector of the number of occurrences of substrings. Thus,
the spectrum kernel of x and y is trivially computed using the inner product
between the two string representations. In our experiments, the parameter
p has been fixed to 2.

The subsequences gap weighted kernel extends the spectrum kernel con-
sidering subsequences instead of substrings. Thus, this kernel is able to take
into account long term dependencies information using sets of letters with
gaps. The same parameter p is used to limit the size of subsequences. More-
over, a weight λ is defined in order to give less importance to subsequences
with large gaps. In our experiments, λ has been set to 2 which leads in our
case to the best results with this kernel.

Fig.7 shows the results we obtained with the different mentioned kernels.
We can first note that the best results are obtained with edit distance based
kernels. As we did before, Table 2 presents the p-values of the Student
paired-t test. Except the kernel of Li & Jiang, our edit kernel significantly
outperforms all the other string kernels. Second, even if their behaviors are
quite similar, we can note that our kernel almost always outperforms that of
Li & Jiang (even if the difference is not statistically significant). It is also
important to note in this analysis that the parameter t required in the Li &
Jiang kernel is very difficult to tune. In [10], the authors indicated that the
best results were obtained with a value t = 0.00195. In order to optimally

2We did not use the LA kernel which is too specific (it searches for remote homologies
between biological sequences by achieving local alignments) to be easily compared in this
series of experiments with the state of the art string kernels.
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Figure 7: Comparison of our edit kernel with the state of the art edit kernels on a hand-
written digit recognition task.

tune this parameter, we tested many values of t (from t = 0 to t = 0.2).
Figure 8 shows that the best performances are obtained on 2000 test strings
with a value of 0.02, while using t > 0.1 leads to a dramatic drop of the
accuracy. Therefore, we used t = 0.02 throughout our comparison.

Learning set size 1000 2000 3000 4000 5000 6000 7000 8000
EK vs spectrum 0 0 0 0 0 0 0 0

EK vs subsequence 4E-04 8E-04 5E-04 2E-04 2E-04 4E-04 2E-05 4E-05

EK vs Li & Jiang 3E-01 4E-01 3E-01 3E-01 3E-01 4E-01 4E-01 7E-01
EK vs Neuhaus & B. 6E-06 6E-06 1E-03 2E-10 6E-09 4E-08 4E-07 1E-04

Table 2: Statistical comparison between our edit kernel (EK) and the state of art string
kernels. Using a risk of 5%, a p-value of less than 5E-02 means that the difference is
significant in favor of our kernel.
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Figure 8: Tuning of the parameter t in Li & Jiang kernel.

7. Conclusion

The common way to use the edit distance in classification tasks consists in
exploiting it in a classical k-Nearest-Neighbor algorithm. Recently, machine
learning techniques have been used to automatically learn the probabilities
of the edit operations to capture background knowledge and so improve the
performance of the edit distance. On the other hand, in order to take advan-
tage of the widely used framework of Support Vector Machines, recent works
have been done to derive edit kernels from the edit distance. In this article,
we suggested to embed the advantages of both approaches by designing a
learned string edit kernel. We experimentally showed that such a strategy
allows significant improvements in terms of classification accuracy.

A first perspective of our work is to improve the algorithmic complexity of
our kernel. A crucial point in its calculation concerns the size of the product
automaton allowing the computation of pe(y|x) · pe(y|x

′). To reduce this
size, a possible solution would consist in simplifying the original conditional
transducers C|x and C|x′ by only considering the most probable transitions
and states. A simplification of C|x and C|x′ would have a direct impact on
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the dimension of the matrix we have to invert.
A second natural perspective of this work relies on the extension of our

method to the elaboration of tree edit kernels. Indeed, some recent papers
dealing with the learning of tree edit distance in the form of stochastic models
[30, 31] would allow us to generalize our method to the learning of more
complex structured data-based edit kernels.

Annex 1

This annex describes the way to learn the parameters of a conditional
memoryless transducer as proposed in [14].

Let us suppose that we have a learning set S of pairs of strings (x, y) and
for the sake of simplicity that the input and the output alphabets are the
same, noted Σ. Let Σ∗ be the set of all finite strings over Σ. Let x ∈ Σ∗ be
an arbitrary string of length |x| over the alphabet Σ. In the following, unless
stated otherwise, symbols are indicated by a, b, . . . , strings by u, v, . . . , z, and
the empty string by λ. R

+ is the set of non negative reals. Let f(·) be a
function, from which [f(x)]π(x,... ) is equal to f(x) if the predicate π(x, . . . )
holds and 0 otherwise, where x is a (set of) dummy variable(s).

Let c be the conditional probability function that returns for any edit
operation (b|a) the probability to output the symbol b given an input letter
a. The aim of this annex is to show how we can automatically learn the
function c from the learning sample S. The different values c(b|a),∀a ∈
Σ ∪ {λ}, b ∈ Σ ∪ {λ} represent the parameters of the memoryless machine
T . These parameters are trained using an EM-based algorithm that calls on
two auxiliary functions called forward and backward.

The conditional probability p : Σ∗ × Σ∗ → [0, 1] of the string y given an
input one was a x (noted p(y|x)) can be recursively computed by means of
an auxiliary function (forward) α : Σ∗ × Σ∗ → R

+ as:

α(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · α(y′|x′)]x=x′a∧y=y′b

+ [c(λ|a) · α(y|x′)]x=x′a

+ [c(b|λ) · α(y′|x)]y=y′b.
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Using α(y|x), we get,

p(y|x) = α(y|x) · γ,

where γ is the probability of the termination symbol of a string (note that
γ and c(λ|λ) are synonyms). In a symmetric way, p(y|x) can be recursively
computed by means of an auxiliary function (backward) β : Σ∗ × Σ∗ → R

+

as:

β(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · β(y′|x′)]x=ax′∧y=by′

+ [c(λ|a) · β(y|x′)]x=ax′

+ [c(b|λ) · β(y′|x)]y=by′ .

And we can deduce that,

p(y|x) = β(y|x) · γ.

Both functions can be computed in O(|x| · |y|) time using a dynamic pro-
gramming technique and will be used in the following to learn the current
function c. In this model a probability distribution is assigned conditionally
to each input string. Then

∑

y∈Σ∗

p(y|x) ∈ {1, 0} ∀x ∈ Σ∗.

The 0 is in the case the input string x is not in the domain of the function.It
can be shown that the normalization of each conditional distribution can be
achieved if the following conditions over the function c and the parameter γ

are fulfilled,

γ > 0, c(b|a), c(b|λ), c(λ|a) ≥ 0 ∀a ∈ Σ, b ∈ Σ (19)
∑

b∈Σ

c(b|λ) +
∑

b∈Σ

c(b|a) + c(λ|a) = 1 ∀a ∈ Σ (20)

∑

b∈Σ

c(b|λ) + γ = 1 (21)

The expectation-maximization algorithm [22] can be used in order the
find the optimal parameters of the function c. Given an auxiliary (|Σ|+1)×
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(|Σ|+ 1) matrix δ, the expectation step aims at computing the values of δ

as follows: ∀a ∈ Σ, b ∈ Σ,

δ(b|a) =
∑

(xax′,yby′)∈S

α(y|x) · c(b|a) · β(y′|x′) · γ

p(yby′|xax′)

δ(b|λ) =
∑

(xx′,yby′)∈S

α(y|x) · c(b|λ) · β(y′|x′) · γ

p(yby′|xx′)

δ(λ|a) =
∑

(xax′,yy′)∈S

α(y|x) · c(λ|a) · β(y′|x′) · γ

p(yy′|xax′)

δ(λ|λ) =
∑

(x,y)∈S

α(y|x) · γ

p(y|x)
= |S|.

The maximization step allows us to iteratively deduce the current edit
costs.

c(b|λ) =
δ(b|λ)

N
(insertion)

γ =
N − N(λ)

N
(termination symbol)

c(b|a) =
δ(b|a)

N(a)
·
N − N(λ)

N
(substitution)

c(λ|a) =
δ(λ|a)

N(a)
·
N − N(λ)

N
(deletion)

where:

N =
∑

a∈Σ∪{λ}
b∈Σ∪{λ}

δ(b|a) N(λ) =
∑

b∈Σ

δ(b|λ) N(a) =
∑

b∈Σ∪{λ}

δ(b|a)
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