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Abstract

Contrary to the finite dimensional case, Weyl and Wick quantizations are no more asymptotically
equivalent in the infinite dimensional bosonic second quantization. Moreover neither the Weyl calculus
defined for cylindrical symbols nor the Wick calculus definedfor polynomials are preserved by the action
of a nonlinear flow. Nevertheless taking advantage carefully of the information brought by these two
calculuses in the mean field asymptotics, the propagation ofWigner measures for general states can be
proved, extending to the infinite dimensional case a standard result of semiclassical analysis.

2000 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55

1 Introduction

Our main result is briefly presented in this introduction. Accurate definitions will be found in Section 2.
Let H = Γs(Z ) be the bosonic Fock space constructed over the complex separable Hilbert-spaceZ ,
Γs(Z ) = ⊕∞

n=0
∨n

Z where
∨n

Z is the symmetricn-th hilbertian tensor power ofZ . Consider the
Hamiltonian

Hε = dΓ(A)+ (
r

∑
j=2

〈z⊗ j ,Q̃ jz
⊗ j〉)Wick

defined for the self-adjoint operator(A,D(A)) on Z andQ̃ j = Q̃ j
∗ ∈L (

∨ j
Z ). It is the Wick quantized

version of the classical Hamiltonian

h(z, z̄) = 〈z, Az〉+
r

∑
j=2

〈z⊗ j ,Q̃ jz
⊗ j〉 , z∈D(A)⊂Z .

WhenZ = L2(Rd) , the operatorHε is formally written

Hε =
∫

R2d
A(x,y)a∗(x)a(y) dxdy+

r

∑
j=2

∫

R2d j
Q̃ j(x1, . . . ,x j , y1, . . . ,y j)a

∗(x1) . . .a
∗(x j)a(y1) . . .a(y j) dxdy,

with theε-dependent canonical commutation relations[a(x) , a∗(y)] = εδ (x− y) . HereA(., .) andQ̃ j(., .)
denote the kernels of the operatorsA andQ̃ j . The mean field asymptotics is concerned with the limit as
ε → 0, where1

ε = Nε represents a large number of particles and whereε enters in the CCR-relations by

∀ f ,g∈Z , [a( f ) , a∗(g)] = ε〈 f , g〉 I .
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The number operator isN = dΓ(IZ ), with Nz⊗n = εnz⊗n. For a normal stateρε ∈L 1(
∨Nε Z )⊂L 1(H )

with Z = L2(Rd), a standard tool considered in the mean field limit is the BBGKY hierarchy of reduced
density matrices:

γ(p)
ε (x,y) =

∫

R2d(Nε−p)
ρε(x,X,y,X) dX , p∈N ,

and such a definition will be extended to generalZ and normal statesρε ∈L 1(H ) fulfilling the condition
Tr
[
ρεNk

]
< +∞ for all k∈ N .

For a cylindrical function,b(z) = b(℘z) for some finite rank projection℘ andb belonging to the Schwartz
classS (℘Z ), the Weyl quantization can be given by

bWeyl =

∫

℘Z

F [b](z) W(
√

2πz) Lp(dz) ,

whereW(
√

2πz) = eiπ(a(z)+a∗(z)) and whereLp andF are respectively the Lebesgue measure on℘Z and
the (ε-independent) Fourier-transform onS (℘Z ). Associated with a family(ρε)ε∈(0,ε̄), Wigner measures
can be defined by

lim
k→∞

Tr
[

ρεkb
Weyl
]

=

∫

Z

b(z) dµ(z)

after extracting subsequences under the sole uniform estimate Tr
[
ρεNδ ]≤Cδ for someδ > 0 .

The problem of the mean field dynamics questions whether the asymptotic quantities asε → 0 associ-
ated with

ρε(t) = e−i t
ε Hε ρεe−i t

ε Hε , t ∈R

are transported by the flowFt generated by the classical Hamiltonianh(z, z̄) and given, after writingzt =
Ft−s(zs), by

i∂tzt = (∂z̄h)(zt , z̄t ) = Azt +
r

∑
j=2

j〈z⊗ j−1
t , Q̃ j z

⊗ j
t 〉 . (1)

The finite dimensional case enters in the standard frameworkof semiclassical analysis and has been studied
extensively in the 80’s and 90’s by various authors and with various methods ([48][35][29][42] [18][43][24]
and references therein).
It was first considered by Hepp in [36] and extended by Ginibreand Velo in [30][31] by the squeezed
coherent states method well-known as the Hepp method (see also [49][6]). More recently the question
of the mean field dynamics has been tackled with the so-calledBBGKY-hierarchy approach inspired by
the BBGKY-method of classical kinetic theory (see [52][13][22][14] [32][1] [3][23] and also the related
works [37][17]). In [25][26][27] a specific use of the structure of the Wick calculus in the bosonic Fock
space was used to make work truncated Dyson expansions for the mean field dynamics of specific states.
The aim of our work started in [7] was to restore the phase-space geometric nature of the problem in the
spirit of [11][33][38][39] and to extend as much as possibleto the infinite dimensional case, the methods
well understood for the semiclassical finite dimensional problem. In this first article, we explained the
construction of Wigner measures, analyzed accurately the gap of information carried by Weyl observables
and Wick observables and use these Wigner (or semiclassical) measures to reformulate known propagation
results. In [8], we reconsidered the truncated Dyson expansion method of [25][26][27] in order to prove the
propagation of Wigner measures for some specific families ofstates. We are now able to state the following
general result (still with a regular interaction term contrary to many other works cited above).

Theorem 1.1 Let (ρε)ε∈(0,ε̄) be a family of normal states onH with a single Wigner measureµ0 and such
that

∀α ∈ N, lim
ε→0

Tr[ρεNα ] =
∫

Z

|z|2α dµ0(z) < +∞ . (2)

Then for all t∈ R, the family(ρε(t) = e−i t
ε Hε ρεei t

ε Hε )ε∈(0,ε̄) has a unique Wigner measureµt = (Ft)∗µ0,
which is the initial measureµ0 pushed forward by the flow associated with(1).
Moreover the convergence

lim
ε→0

Tr
[

ρε(t)b
Wick
]

=
∫

Z

b◦Ft(z) dµ0(z)
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holds for any b∈Palg(Z ) =⊕alg
p,q∈N

Pp,q(Z ) .
Finally, the convergence of the reduced density matrices

lim
ε→0

γ(p)
ε (t) =

1
∫

Z
|z|2p dµt(z)

∫

Z

|z⊗p〉〈z⊗p| dµt(z) =: γ(p)
0 (t) ,

holds in theL 1(
∨p

Z )-norm for all p∈N .

Comments: The existence of Wigner measures as Borel probability measures requires a uniform estimate
Tr
[
ρεNδ ]≤Cδ for someδ > 0, but such an assumption would be redundant with the existence of bounded

limits stated in (2).
The uniqueness of the Wigner measureµ0 is not really a strong assumption since it suffices to replacethe
whole family (ρε)ε∈(0,ε̄) by a suitable extracted sequence(ρεk)k∈N, limk→∞ εk = 0, in order to fulfill this
requirement. Such a reduction argument after extraction will often be used.
The fact that the quantities Tr[ρεNα ] are uniformly bounded w.r.tε ∈ (0, ε̄) is also very natural within the
mean field framework and satisfied by all known physical examples.
Actually the strong assumption which is not satisfied in all cases is that the limit in (2) equals

∫

Z
|z|2α dµ0.

This condition prevents from the phenomenon of “infinite dimensional defect of compactness” identified
in [7] and which was shown to appear in the physical example ofthe Bose-Einstein free gas (the non
condensated phase is responsible for a discrepancy betweenthe left- and right-hand sides of (2)). The
analysis of this phenomenon is improved in Section 2.
Finally our proof no more uses truncated Dyson expansions ofthe quantum flow and relies only on the
good properties of the classical flow, after exploiting all the a priori information given by the Weyl and
Wick calculus.

Outline: The Section 2 introduces the various objects used for our analysis, Wick and Weyl calculuses,
Wigner measures, reduced density matrices. The conditionspresented in [8] are reduced to the simple
equivalent form (2) in Subsection 2.7. After this the Subsection 2.8 is devoted to the notion of states local-
ized in a ball.
The dynamics is studied in Section 3. First a simple condition is proved to ensure, via some equicontinuity
argument, the possibility of a common extraction process(εk)k∈N for all timest ∈R . Then the propagation
of Wigner measures is proved for states localized in a ball. Then the truncation is removed and all the argu-
ments are gathered for the proof of Theorem 1.1 in Subsection3.4. Finally, additional simple consequences
are listed in Subsection 3.5.
Examples are presented in Section 4. It is recalled that the regular interactions are physically relevant within
the modelling of the rapidly rotating Bose condensates in the Lowest Landau Level approximation. Details
are given about the propagation of non trivial Wigner measures supported on a torus, which shows the ad-
vantage of this formulation compared to the BBGKY hierarchymethod. Finally, the propagation of Wigner
measures provides a nice formulation of the Hartree-von Neumann limit.

2 Information carried by Wigner measures

After introducing the symmetric Fock space withε-dependent CCR’s and recalling some properties of
the Wick quantization, the connection between infinite dimensional Wigner measures and the BBGKY
presentation of the many body problem is explicitly specified. This section ends with the notion of states
localized in a ball, which will be usefull in the proof of Theorem 1.1.

2.1 Fock space

Consider a separable Hilbert spaceZ endowed with a scalar product〈., .〉 which is anti-linear in the left
argument and linear in the right one and with the associated norm |z| =

√

〈z,z〉. Let σ = Im〈., .〉 and
S= Re〈., .〉 respectively denote the canonical symplectic form and the real scalar product overZ . The
symmetric Fock space onZ is the Hilbert space

H =
∞⊕

n=0

∨
n
Z = Γs(Z ) ,
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where
∨n

Z is then-fold symmetric tensor product. Almost all the direct sums and tensor products are
completed within the Hilbert framework. This is omitted in the notation. On the contrary, a specificalg

superscript will be used for the algebraic direct sums or tensor products.
For anyn∈ N, the orthogonal projection of

⊗n
Z onto the closed subspace

∨n
Z will be denoted by

Sn. For any(ξ1,ξ2, . . . ,ξn) ∈Z n, the vectorξ1∨ξ2∨·· ·∨ξn ∈
∨n

Z will be

ξ1∨ξ2∨·· ·∨ξn = Sn(ξ1⊗ ξ2 · · ·⊗ ξn) =
1
n! ∑

π∈Sn

ξπ(1)⊗ ξπ(2) · · ·⊗ ξπ(n) , (3)

whereSn is the symmetric group of degreen. The family of vectors(ξ1∨·· ·∨ξn)ξi∈Z is a total family of
∨n

Z and thanks to the polarization identity

ξ1∨ξ2∨·· ·∨ξn =
1

2nn! ∑
εi=±1

ε1 · · ·εn
( n

∑
j=1

ε jξ j)
⊗n , (4)

the same property holds for(ξ⊗n)n∈N,ξ∈Z
.

For two operatorsAk :
∨ik Z →∨ jk Z , k = 1,2, the notationA1

∨
A2 stands for

A1

∨

A2 = S j1+ j2 ◦ (A1⊗A2)◦Si1+i2 ∈L (
∨

i1+i2Z ,
∨

j1+ j2Z ) .

Any z∈ Z is identified with the operator|z〉 :
∨0

Z = C ∋ λ 7→ λz∈ Z =
∨1

Z while 〈z| denotes the
linear formZ ∋ ξ 7→ 〈z, ξ 〉 ∈C. The creation and annihilation operatorsa∗(ξ ) anda(ξ ), parametrized by
ε > 0, are then defined by:

a(ξ )|∨n
Z =

√
εn 〈ξ |⊗ I∨n−1Z

a∗(ξ )|∨nZ =
√

ε(n+1) Sn+1◦ ( |ξ 〉⊗ I∨n
Z ) =

√

ε(n+1) ξ
∨

I∨n
Z

and satisfy the canonical commutation relations (CCR):

[a(ξ1),a(ξ2)] = [a∗(ξ1),a
∗(ξ2)] = 0, [a(ξ1),a

∗(ξ2)] = ε〈ξ1,ξ2〉I . (5)

We also consider the canonical quantization of the real variablesΦ(ξ ) = 1√
2
(a∗(ξ )+ a(ξ )) andΠ(ξ ) =

Φ(iξ ) = 1
i
√

2
(a(ξ )−a∗(ξ )). They are self-adjoint operators onH and satisfy the identities:

[Φ(ξ1),Φ(ξ2)] = iεσ(ξ1,ξ2)I , [Φ(ξ1),Π(ξ2)] = iεS(ξ1,ξ2)I .

The representation of the Weyl commutation relations in theFock space

W(ξ1)W(ξ2) = e−
iε
2 σ(ξ1,ξ2)W(ξ1 + ξ2) (6)

= e−iεσ(ξ1,ξ2)W(ξ2)W(ξ1),

is obtained by settingW(ξ ) = eiΦ(ξ ). The number operator is also parametrized byε > 0,

N|∨n
Z = εnI|∨n

Z .

It is convenient to introduce the subspace

H f in =
alg
⊕

n∈N

∨
n
Z

of H , which is a set of analytic vectors forN.
For any contractionS∈L (Z ), |S|L (H ) ≤ 1, Γ(S) is the contraction inH defined by

Γ(S)|∨n
Z = S⊗S· · ·⊗S.

More generallyΓ(B) can be defined by the same formula as an operator onH f in for any B ∈ L (Z ).
Meanwhile, for any self-adjoint operatorA : Z ⊃ D(A)→Z , the operator dΓ(A) is the self-adjoint oper-
ator given by

e
it
ε dΓ(A) = Γ(eitA)

dΓ(A)|∨n,alg
D(A) = ε





n

∑
k=1

I ⊗·· ·⊗ A
︸︷︷︸

k

⊗·· ·⊗ I



 .

For exampleN = dΓ(I) .
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2.2 Wick operators

The Wick symbolic calculus on (homogenous) polynomials as introduced in [7] is recalled with its basic
properties.

Definition 2.1 For p,q∈ N, Pp,q(Z ) denotes the set of(p,q)-homogeneous polynomial functions onZ

which fulfill :
b(z) =

〈
z⊗q , b̃z⊗p〉 with b̃∈L (

∨
p
Z ,

∨
q
Z ) .

The subspace ofPp,q(Z ) made of polynomials b such thatb̃ is a compact operator̃b∈L ∞(
∨p

Z ,
∨q

Z )
(resp. b∈L r(

∨p
Z ,

∨q
Z )) is denoted byP∞

p,q(Z ) (resp.P r
p,q(Z )).

On those spaces, the natural norms are

|b|Pp,q = |b̃|L (
∨pZ ,

∨qZ ) and |b|Pr
p,q

= |b̃|L r (
∨pZ ,

∨qZ ) , 1≤ r .

The set of non homogeneous polynomials, the algebraic direct sum⊕alg
p,q∈N

Pp,q(Z ) (resp.⊕alg
p,q∈N

P r
p,q(Z )

with 1≤ r ≤ ∞), will be denoted byPalg(Z ) (resp.P r
alg(Z )) .

Owing to the conditioñb ∈L (
∨p

Z ,
∨q

Z ) for b ∈Pp,q(Z ), this definition implies that any Gâteaux
differential∂ j

z ∂ k
z b(z) at the pointz∈Z belongs toL (

∨ kZ ,
∨ jZ ) with

〈ϕ ,∂ j
z ∂ k

z b(z)ψ〉= p!
(p−k)!

q!
(q− j)!

〈z⊗q− j ∨ϕ , b̃z⊗p−k∨ψ〉 .

In particular, we recover the operatorb̃ from b(z) via the relation

b̃ =
1
p!

1
q!

∂ p
z ∂ q

z b(z) ∈L (
∨

p
Z ,

∨
q
Z ) .

With any ”symbol”b∈Pp,q(Z ), a linear operatorbWick called Wick monomial can be associated according
to:

bWick : H f in→H f in,

bWick
|∨nZ

= 1[p,+∞)(n)

√

n!(n+q− p)!
(n− p)!

ε
p+q

2

(

b̃
∨

I∨n−p
Z

)

∈L (
∨

n
Z ,

∨
n+q−p

Z ) , (7)

with b̃ = (p!)−1(q!)−1∂ p
z ∂ q

z b(z) . The basic symbol-operator correspondence:

〈z,ξ 〉 ←→ a∗(ξ )
〈ξ ,z〉 ←→ a(ξ )

√
2S(ξ ,z) ←→ Φ(ξ )√
2σ(ξ ,z) ←→ Π(ξ )

〈z,Az〉 ←→ dΓ(A)

|z|2 ←→ N ,

and more generally

(
p

∏
i=1
〈z,ηi〉×

q

∏
j=1
〈ξ j ,z〉

)Wick

= a∗(η1) · · ·a∗(ηp)a(ξ1) · · ·a(ξq).

We have the following properties.

Proposition 2.2 The following identities hold true onH f in for every b∈Pp,q(Z ):
(i)
(
bWick

)∗
= b̄Wick.

(ii)
(
C(z)b(z)A(z)

)Wick
= CWickbWickAWick, if A ∈Pα ,0(Z ), C∈P0,β (Z ).

(iii) e i t
ε dΓ(A)bWicke−i t

ε dΓ(A) =
(
b(e−itAz)

)Wick
, if A is a self-adjoint operator onZ .

A consequence of i) says thatbWick is symmetric whenq = p andb̃∗ = b̃. Moreover the definition (7) gives

(
q = p and b̃≥ 0

)
⇒
(

bWick≥ 0 onH f in

)

, (8)
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which is false for general non negative polynomial symbols1. For an increasing net of non negative opera-
tors(b̃α)α , b̃α ∈L (

∨p
Z ) (againq = p), it also gives

(

b̃ = sup
α

b̃α in L (
∨

p
Z )

)

⇒
(

∀ϕ ∈H f in , 〈ϕ , bWickϕ〉= sup
α
〈ϕ , bWick

α ϕ〉
)

. (9)

WhenZ = L2(Rd,dx), the general formula forbWick with b∈Pp,q(Z ) is simply

bWick =

∫

Rd(p,q)
b̃(y1, . . . ,yq,x1, . . . ,xp)a∗(y1) . . .a

∗(yq)a(x1) . . .a(xp) dx1 · · ·dxpdy1 · · ·dyq ,

whereb̃(y,x) is the Schwartz kernel of̃b and wherea(xk) = a(δxk) according to the usual convention.

Proposition 2.3 For b∈Pp,q(Z ), the following number estimate holds
∣
∣
∣〈N〉−

q
2 bWick〈N〉−

p
2

∣
∣
∣
L (H )

≤ |b|
Pp,q

. (10)

The relations (8) and (9) now become forb∈Pp,p(Z ) or bα ∈Pp,p(Z )

(
q = p and b̃≥ 0

)
⇒
(
〈N〉−p/2bWick〈N〉−p/2≥ 0 in L (H )

)
, (11)

(
b̃ = supα b̃α in L (

∨p
Z )
)
⇒
(
〈N〉−p/2bWick〈N〉−p/2 = supα 〈N〉−p/2bWick

α 〈N〉−p/2 in L (H )
)

.(12)

An important property of our class of Wick polynomials is that a composition ofbWick
1 ◦bWick

2 with b1,b2 ∈
Palg(Z ) is a Wick polynomial with symbol inPalg(Z ). For b1 ∈Pp1,q1(Z ), b2 ∈Pp2,q2(Z ), k ∈
N and any fixedz∈ Z , ∂ k

z b1(z) ∈ L (
∨k

Z ;C) while ∂ k
z̄ b2(z) ∈

∨k
Z . TheC-bilinear duality product

∂ k
z b1(z).∂ k

z̄ b2(z) defines a function ofz∈ Z simply denoted by∂ k
z b1.∂ k

z̄ b2 . We also use the following
notation for multiple Poisson brackets:

{b1,b2}(k) = ∂ k
z b1.∂ k

z̄ b2− ∂ k
z b2.∂ k

z̄ b1, k∈N ,

{b1,b2}= {b1,b2}(1).

Proposition 2.4 Let b1 ∈Pp1,q1(Z ) and b2 ∈Pp2,q2(Z ) .
For any k∈ {0, . . . ,min{p1,q2}}, ∂ k

z b1.∂ k
z̄ b2 belongs toPp2−k,q1−k(Z ) with the estimate

|∂ k
z b1.∂ k

z̄ b2|Pp2,q1
≤ p1!

(p1−k)!
q2!

(q2−k)!
|b1|Pp1,q1

|b2|Pp2,q2
.

The formulas

(i) bWick
1 ◦bWick

2 =

(
min{p1,q2}

∑
k=0

εk

k!
∂ k

z b1.∂ k
z̄ b2

)Wick

=
(

eε〈∂z,∂ω̄ 〉b1(z)b2(ω) |z=ω

)Wick
,

(ii) [bWick
1 ,bWick

2 ] =

(
max{min{p1,q2} ,min{p2,q1}}

∑
k=1

εk

k!
{b1,b2}(k)

)Wick

,

hold as identities onH f in.

2.3 Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections onZ and for a givenp∈ P let Lp(dz) denote
the Lebesgue measure on the finite dimensional subspacepZ . A function f : Z →C is said cylindrical if
there existsp∈ P and a functiong on pZ such thatf (z) = g(pz), for all z∈Z . In this case we say thatf
is based on the subspacepZ . We setScyl(Z ) to be the cylindrical Schwartz space:

( f ∈Scyl(Z ))⇔ (∃p∈ P,∃g∈S (pZ ), f (z) = g(pz)) .

1This property should not be confused with the positivity of the finite dimensional Anti-Wickquantization which associates a non
negative operator to any non negative symbol.

6



The Fourier transform of a functionf ∈Scyl(Z ) based on the subspacepZ is defined as

F [ f ](z) =

∫

pZ

f (ξ ) e−2π iS(z,ξ ) Lp(dξ )

and its inverse Fourier transform is

f (z) =

∫

pZ

F [ f ](z) e2π iS(z,ξ ) Lp(dz) .

With any symbolb∈Scyl(Z ) based onpZ , aWeyl observablecan be associated according to

bWeyl =
∫

pZ

F [b](z) W(
√

2πz) Lp(dz) . (13)

After the tensor decompositions

H = Γs(Z ) = Γs(pZ )⊗Γs((1− p)Z ) due to Z = pZ
⊥
⊕(1− p)Z

∀z∈ pZ , W(
√

2πz) = WpZ (
√

2πz)⊗ IΓs(1−p)Z

whereWpZ denotes the reduced representation inΓs(pZ ), one sees that the Weyl quantization of cylin-
drical observables based onpZ amounts to the usual finite-dimensional Weyl quantization.Hence more
general classes of symbols can be considered.
For p∈ P, the symbol classes defined for 0≤ ν ≤ 1 on the finite dimensional phase spacepZ ,

Sν
pZ =⊕alg

n∈Z
S(〈z〉npZ ,

dz2

〈z〉2ν
pZ

) , (14)

where〈z〉2p = 1+ |z|2pZ
, are natural Weyl-Hörmander algebras associated with thefinite dimensional har-

monic oscillator Hamiltonian,Np = (|z|2pZ
)Wick = (|z|2pZ

)Weyl− dim pZ

2 ε. They contains the polynomial
functions onpZ . The associated class of Weyl quantized operators after tensorization withIΓs((1−p))Z is
denoted by OpSν

pZ
. For a cylindrical polynomialb∈Palg(Z ) based onpZ , b(z) = b(pz), the asymptotic

equivalence of the Weyl and Wick quantization in finite dimension says for anyν ∈ [0,1]

bWick = bWeyl+Ob(ε) in OpSν
pZ . (15)

Such polynomials have finite rank kernels and make a dense setin P∞
alg(Z ) but not inPalg(Z ).

2.4 Wick observables and BBGKY hierarchy

WhenZ = L2(Rd), mean field results are often presented or even analyzed in terms of reduced density

matrices or more precisely in terms of a sequence(γ(p)
ε )p∈N with γ(p)

ε ∈ L 1(
∨p

Z ) . This follows the
general BBGKY approach of the kinetic theory and theγ p

ε correspond in the classical case to the empirical
distributions.
The basic example is whenρε ∈L 1(

∨n
Z ), n =

[ 1
ε
]

: For anyp∈N, p≤ n, γ(p)
ε ∈L 1(

∨p
Z ) is defined

as the partially traced operator with the kernel

γ(p)
ε (x1, . . . ,xp;y1 . . .yp) :=

∫

Rd(n−p)
ρε(x1, . . . ,xp,X,y1, . . .yp,X) L

Rd(n−p)(dX) .

With the polarization identity (4), the family(|ψ⊗n〉〈ψ⊗n|)ψ∈Z forms a total set ofL 1(
∨n

Z ). Hence the
formal identity

ε p n!
(n− p)!

|ψ |2(n−p)ψ(x1) . . .ψ(xp)ψ(y1) . . .ψ(yp) = 〈a(y1) . . .a(yp)ψ⊗n , a(x1) . . .a(xp)ψ⊗n〉

= Tr
[
a∗(y1) . . .a

∗(yp)a(x1) . . .a(xp)|ψ⊗n〉〈ψ⊗n|
]

carries over toρε ∈L 1(
∨n

Z ) :

∀p∈ {1, . . . ,n} , ε p n!
(n− p)!

γ(p)
ε (x1, . . . ,xp,y1 . . . ,yp) = Tr [a∗(y1) . . .a

∗(yp)a(x1) . . .a(xp)ρε ] .
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The correct meaning of this definition is

Tr
[

γ(p)
ε b̃

]

=
1[p,+∞)(n)

ε pn(n−1) . . .(n− p+1)
Tr
[

ρεbWick
]

, ∀b∈Pp,p(Z ) .

Moreover after noticing that the factorε pn(n− 1) . . .(n− p+ 1) is nothing but Tr
[
ρε(|z|2p)Wick

]
when

Tr [ρε ] = 1 andρε ∈L 1(
∨n

Z ), it becomes

Tr
[

γ(p)
ε b̃

]

=
Tr [ρε ]

Tr [ρε(|z|2p)Wick]
Tr
[

ρεbWick
]

, ∀b∈Pp,p(Z ) , (16)

with the convention that the right-hand side is 0 when Tr
[
ρε(|z|2p)Wick

]
= 0 . The extension to general

ρε ∈L 1(H ) requires an assumption. Moreover it works for a general separable Hilbert spaceZ .

Proposition 2.5 Assume thatρε ∈L 1(H ) satisfiesρε ≥ 0 andNk/2ρεNk/2∈L 1(H ) for all k∈N . Then

for any p∈ N, the relation(16)defines a unique elementγ(p)
ε ≥ 0 of L 1(

∨p
Z ) .

Proof. Suppose Tr
[
ρε(|z|2p)Wick

]
> 0 . Writing

Tr
[

ρεbWick
]

= Tr
[

(1+N)p/2ρε(1+N)p/2(1+N)−p/2bWick(1+N)−p/2
]

with our assumptions and the estimates (10) ensures thatb̃→ Tr
[
ρεbWick

]
defines a continuous linear form

onL (
∨p

Z ) . The positivity comes from (11) and the normality of the associated state after normalization,

which saysγ(p)
ε ∈L 1(

∨p
Z ), is a consequence of (12) . �

We end with this discussion with a natural definition.

Definition 2.6 Whenρε ∈L 1(Z ) satisfiesρε ≥ 0 andNk/2ρεNk/2 ∈L 1(H ) for all k ∈ N, the reduced

density matrixγ(p)
ε , p∈ N, associated withρε is the element ofL 1(

∨p
Z ) defined by

Tr
[

γ(p)
ε b̃

]

=
Tr [ρε ]

Tr [ρε(|z|2p)Wick]
Tr
[

ρεbWick
]

, ∀b∈Pp,p(Z ) , (17)

with γ(p)
ε = 0 in the case whenTr

[
ρε(|z|2p)Wick

]
= 0 .

2.5 Wigner measures

The Wigner measures are defined after the next result proved in [7, Theorem 6.2].

Theorem 2.7 Let(ρε)ε∈(0,ε̄) be a family of normal states onH parametrized byε. AssumeTr[ρεNδ ]≤Cδ
uniformly w.r.t. ε ∈ (0,ε) for some fixedδ > 0 and Cδ ∈ (0,+∞). Then for every sequence(εn)n∈N with
limn→∞ εn = 0 there exists a subsequence(εnk)k∈N and a Borel probability measureµ onZ such that

lim
k→∞

Tr[ρεnk
bWeyl] =

∫

Z

b(z) dµ(z) ,

for all b ∈ ∪p∈P F−1 (Mb(pZ )).

Moreover this probability measureµ satisfies
∫

Z

|z|2δ dµ(z) < ∞.

Definition 2.8 The set of Wigner measures associated with a family(ρε)ε∈(0,ε̄) (resp. a sequence(ρεn)n∈N)
which satisfies the assumptions of Theorem 2.7 is denoted by

M (ρε ,ε ∈ (0, ε̄)) , (resp.M (ρεn,n∈N)) .

Wigner measures are in practice identified via their characteristic functions according to the relation

M (ρε ,ε ∈ (0, ε̄)) = {µ}⇔ lim
ε→0

Tr[ρε W(
√

2πξ )] = F (µ)(ξ ) .
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The expressionM (ρε ,ε ∈ (0, ε̄)) = {µ} simply means that the family(ρε)ε∈(0,ε̄) is ”pure” in the sense

lim
ε→0

Tr
[

ρεbWeyl
]

=
∫

Z

b(z) dµ ,

for all cylindrical symbolb without extracting a subsequence. Actually the general case can be reduced to
this after reducing the range of parameter toε ∈

{
εnk,k∈ N

}
.

A simple a priori estimate argument allows to extend the convergence to symbols which have a polyno-
mial growth and to test to Wick quantized symbols with compact kernels belonging toP∞

alg(Z ) (see [7,
Corollary 6.14]).

Proposition 2.9 Let (ρε)ε∈(0,ε̄) be a family of normal states onL (H ) parametrized byε such that
Tr[ρεNα ]≤Cα holds uniformly with respect toε ∈ (0, ε̄) for all α ∈ N and such thatM (ρε ,ε ∈ (0, ε̄)) =
{µ}. Then the convergence

lim
ε→0

Tr[ρεbquantized] =
∫

Z

b(z) dµ(z) , (18)

holds for the Weyl quantization of any b∈ Sν
pZ

with p∈ P andν ∈ [0,1], and for the Wick quantization of
any b∈P∞

alg(Z ).

Wigner measures are completely identified by testing with Weyl-quantized observable and possibly by re-
stricting to some countable subset∪n∈N Dn,pn whereDn,pn is a countable dense subset ofF−1(Mb(pnZ )),
and(pn)n∈N is a sequence ofP such that supn∈N pn = IZ (see [7]). One may question whether testing on
all thebWick with b∈P∞

alg(Z ) also identifies the Wigner measures. WhenZ is finite dimensional, this
amounts to the well-known Hambürger moment problem of identifying a probability measureν onR from
its momentsan =

∫

R
xndν(x), n∈N, for which uniqueness fails without growth conditions on the sequence

(an)n∈N ([47] [5]), which can be translated in our case to growth conditions of (supε∈(0,ε̄) Tr [ρεNα ])α∈N.
We shall circumvent this difficulty, by identifying the Wigner measures in two steps by approximating the
states(ρε)ε∈(0,ε̄) by states(ρapp

ε )ε∈(0,ε̄) for which the growth condition is satisfied. We shall reconsider the
moment problem later, but the comparison argument is given below.

Proposition 2.10 Let (ρ j
ε )ε∈(0,ε̄), j = 1,2, be two families (or sequences) of normal states onH such that

Tr
[

ρ j
ε Nδ

]

≤Cδ uniformly w.r.t. ε ∈ (0, ε̄) for someδ > 0 and Cδ ∈ (0,+∞). Assume furtherM (ρ j
ε ,ε ∈

(0, ε̄)) =
{

µ j
}

for j = 1,2. Then
∫

|µ1− µ2| ≤ lim inf
ε→0

|ρ1
ε −ρ2

ε |L 1(H ) .

Proof. For a symbolb∈Scyl(Z ), the finite dimensional Weyl semiclassical calculus says|bWeyl|L (H ) ≤
‖b‖∞ +Ob(ε) with ‖b‖∞ = ‖b‖L∞(pZ ) . This implies for a givenb∈Scyl(Z ),

|
∫

Z

b(z)d(µ1− µ2)(z)|= lim
ε→0

∣
∣
∣Tr[(ρ1

ε −ρ2
ε )bWeyl]

∣
∣
∣≤ ‖b‖∞ lim inf

ε→0
|ρ1

ε −ρ2
ε |L 1(H ) .

The measureµ1− µ2 is absolutely continuous with respect to the Borel probability measureµ1+µ2
2 . Hence

there exists a Borel functionλ onZ such thatµ1−µ2 = λ (z) µ1+µ2
2 with the additional property|λ (z)| ≤ 2

µ1+µ2
2 -almost everywhere. But for any Borel probability measureν on Z , it was checked in [7] that

Scyl(Z ) is dense inLp(Z ,ν) for p ∈ [1,∞) on the basis of a general measurable version of Stone-
Weierstrass theorem (see for instance [19]). Hence there exists a sequence(βn)n∈N in Scyl(Z ) such that

lim
n→∞
‖βn−

|λ |
λ

1{λ 6=0}‖L1(Z ,
µ1+µ2

2 )
= 0

and after extraction limk→∞ βnk(z) = |λ |
λ (z)1{λ 6=0}(z),

µ1+µ2
2 -almost everywhere. By settingbk = 2

βnk
1+|βnk|2

,

we get a sequence(bk)k∈N such that

∀k∈ N, bk ∈Scyl and ‖bk‖∞ ≤ 1,

lim
k→∞

bk(z) =
|λ |(z)
λ (z)

1{λ 6=0}(z)
µ1 + µ2

2
a.e.
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We conclude with
∫

|µ1− µ2|=
∫

Z

|λ (z)| d µ1 + µ2

2
(z) =

∣
∣
∣
∣
lim
k→∞

∫

Z

bk(z) d(µ1− µ2)(z)

∣
∣
∣
∣
≤ 1× lim inf

ε→0
|ρ1

ε −ρ2
ε |L 1(H ) .

�

When the two setsM (ρ j
ε ,ε ∈ (0, ε̄)) have more than one element, the extraction of subsequences,(εn)n∈N,

can be made simultaneously and the result has to be modified into:

inf
(µ1,µ2)∈M (ρ1

ε ,ε∈(0,ε̄))×M (ρ2
ε ,ε∈(0,ε̄))

∫

|µ1− µ2| ≤ limsup
ε→0

|ρ1
ε −ρ2

ε |L 1(H ) . (19)

2.6 Wigner measures and the BBGKY hierarchy

The compactness conditionb ∈P∞
alg(Z ) for the Wick quantization in Proposition 2.9 is not a technical

restriction and the convergence is no more true for a generalb ∈Palg(Z ). It was identified in [7] as a
“dimensional defect of compactness” and illustrated with examples, one of them being related with the
Bose-Einstein condensation of the free Bose gas.
This terminology comes from the idea that this defect of compactness does not come from the infinity in
the phase space like in the finite dimensional case (see [53][28]) but from the non compactness in the norm
topology of balls in infinite dimension. Actually this was made more accurate in [8]: under the assumptions
M (ρε ,ε ∈ (0, ε̄)) = {µ} and Tr

[
ρεNk

]
≤ λ k, we proved(T)⇒ (P) with

(P) ∀b∈Palg(Z ), lim
ε→0

Tr
[

ρεbWick
]

=

∫

Z

b(z) dµ(z) ;

(T) ∀η > 0,∃Pη ∈ P, Tr [(1−Γ(Pη))ρε ] < η ,

where(T) appears as a quantum Prokhorov condition (or tightness condition in the strong topology).
The condition(P) which will be simplified in the next subsection, actually contains, for allα ∈ N, the
uniform bound w.r.t. ε of Tr [ρεNα ] sinceNα = [(|z|2)Wick]α . It implies actually a strong relationship
between the Wigner measure formulation and the convergenceof reduced density matrices.

Proposition 2.11 Assume that(ρε)ε∈(0,ε̄) is a family ofL 1(H ) with ρε ≥ 0, Tr[ρε ] = 1, M (ρε ,ε ∈
(0, ε̄)) = {µ} with the condition(P) and assumeµ 6= δ0. Define for p∈ N

γ(p)
0 :=

1
∫

Z
|z|2p dµ(z)

∫

Z

|z⊗p〉〈z⊗p| dµ(z) (20)

Then for all p∈ N, the reduced density matrixγ(p)
ε converges toγ(p)

0 in theL 1-norm.

Proof. For p = 0, the result is nothing but 1=
∫

µ = limε→0 Tr[ρε ] = 1.
For p∈ N∗, the condition(P) with µ 6= δ0 says first

lim
ε→0

Tr
[

ρε(|z|2p)Wick
]

=
∫

Z

|z|2p dµ(z) > 0.

Hence, the reduced density matrixγ(p)
ε is well defined according to Definition 2.6 forε < ε̄p small enough

(with Tr[ρε ] = 1). The condition(P) gives the general convergence:

lim
ε→0

Tr
[

γ(p)
ε b̃

]

= lim
ε→0

Tr
[
ρεbWick

]

Tr [ρε(|z|2p)Wick]
=

∫

Z
b(z) dµ(z)

∫

Z |z|2p dµ(z)
= Tr

[

γ(p)
0 b̃

]

,

for all b∈Pp,p(Z ), where the last equality is aµ-integration of the equality of continuous functions

b(z) = 〈z⊗p , b̃z⊗p〉= Tr
[
|z⊗p〉〈z⊗p|b̃

]
.

This proves the weak convergence ofγ(p)
ε to γ(p)

0 in L 1(
∨p

Z ). But sinceγ(p)ε andγ(p)
0 are non negative

with Tr[γ(p)
ε ] = 1 = Tr

[

γ(p)
0

]

, this implies the norm convergence according to [50][4][20]).2 �

2In a more general framework, it is said thatL 1(
∨p

Z ) has a uniform Kadec-Klee property (see [40] and references therein).
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2.7 A simple criterion for the reliability of Wick observabl es

The proof of Proposition 2.11 can be adapted in order to make an equivalent condition to(P) with a weaker
and easier to handle formulation:

(PI) ∀α ∈ N, lim
ε→0

Tr [ρεNα ] =

∫

Z

|z|2α dµ(z) < +∞.

Proposition 2.12 For a family (ρε)ε∈(0,ε̄) in L 1(H ) such thatρε ≥ 0, Tr[ρε ] = 1, M (ρε ,ε ∈ (0, ε̄)) =
{µ}, the condition(P) and(PI) are equivalent:

(

∀α ∈N, lim
ε→0

Tr [ρεNα ] =

∫

Z

|z|2α dµ(z)

)

⇔
(

∀b∈Palg(Z ), lim
ε→0

Tr
[

ρεbWick
]

=

∫

Z

b dµ
)

Proof. The condition(PI) is a particular case of(P). Let us prove(PI)⇒ (P) .
We start with two remarks:

• Fork∈ N∗, (|z|2k)Wick = N(N− ε) . . .(N− (k−1)ε). Hence the condition(PI) is equivalent to

∀α ∈ N, lim
ε→0

Tr
[

ρε(|z|2α)Wick
]

=

∫

Z

|z|2α dµ(z) .

• For p = 0 (respq = 0) the operators inL (C,
∨q

Z ) (resp. inL (
∨p

Z ,C)) are compact and
P0,q(Z ) = P∞

0,q(Z ) (resp.Pp,0(Z ) = P∞
p,0(Z )). Hence the convergence limε→0 Tr[ρεbWick] =

∫
b dµ , is consequence of Proposition 2.9 whenp = 0 orq = 0.

According to Proposition 2.11, there are two cases.
If µ = δ0: Then forb ∈Pp,p(Z ), p ∈ N∗, such that̃b≥ 0, the inequality 0≤ b̃≤ |b|Pp,pI

∨p
Z and the

positivity (11) says

0≤ lim
ε→0

Tr
[

ρεbWick
]

≤ lim
ε→0
|b|p,pTr

[

ρε(|z|2p)Wick
]

=

∫

Z

|z|2pδ0(z) = 0.

For a generalb∈Pp,p(Z ), p∈ N∗, the decompositioñb = b̃R,+− b̃R,−+ ib̃I ,+− ib̃I ,− with all the b̃• ≥ 0
now gives

∀p∈N
∗,∀b∈Pp,p(Z ), lim

ε→0
Tr
[

ρεbWick
]

= 0.

For p 6= q, p,q∈ N∗, write

∣
∣
∣Tr
[

ρεbWick
]∣
∣
∣=
∣
∣
∣Tr
[

ρ1/2
ε (ρ1/2

ε bWick)
]∣
∣
∣≤ Tr[ρε ]

1/2Tr
[

ρεbWickbWick,∗
]1/2

.

Proposition 2.4 says thatbWickbWick,∗ = ∑p
ℓ=0

εℓ

ℓ! ∂ ℓ
zb.∂ ℓ

z̄ b̄ belongs to⊕p+q
k=0Pk,k(Z ) with an O(ε) term in

P0,0(Z ). We have proved

∀p,q∈ N
∗, ∀b∈Pp,q(Z ), lim

ε→0
Tr
[

ρεbWick
]

= 0 =

∫

Z

b(z)δ0(z) ,

while the cases(0,q) and(p,0) are already known.

If µ 6= δ0: Then we know by Proposition 2.11 that limε→0‖γ(p)
ε − γ(p)

0 ‖L 1 = 0, which implies

∀b∈Pp,p(Z ) , lim
ε→0

Tr
[

ρεbWick
]

= lim
ε→0

Tr
[

γ(p)
ε b̃

]

= Tr
[

γ(p)
0 b̃

]

=

∫

Z

b(z) dµ(z) .

Let us consider the general caseb ∈Pp,q(Z ). The above convergence is still true when the kernelb̃ is
compact by Proposition 2.9. Consider now a generalb∈Pp,q(Z ). Since

∫

Z |z⊗p〉〈z⊗q| dµ(z) is nuclear
(or trace-class in

∨q
Z ⊕∨p

Z ), for anyn ∈ N there exists a compact operatorb̃n ∈ L ∞(
∨p

Z ,
∨q

Z )
such that|bn|Pp,q = |b̃n|L (

∨pZ ,
∨qZ ) = |b̃|L (

∨pZ ,
∨qZ ) = |b|Pp,q and

∣
∣
∣
∣

∫

Z

(b(z)−bn(z)) dµ(z)

∣
∣
∣
∣
=

∣
∣
∣
∣
Tr

[∫

Z

|z⊗p〉〈z⊗q| dµ(z)[b̃− b̃n]

]∣
∣
∣
∣
≤ 1

n+1
.
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The Lebesgue convergence theorem with

∀n∈ N, |b(z)−bn(z)|r ≤ (2|b|Pp,q)
r |z|r(p+q) ,

∫

Z

|z|r(p+q) dµ(z) < ∞ ,

∀z∈Z , lim
n→∞

bn(z) = lim
n→∞
〈z⊗q , b̃nz⊗p〉= b(z) ,

yields

lim
n→∞

∫

Z

|b(z)−bn(z)|r dµ(z) = 0.

Setηr(n) =
∫

Z
|b(z)−bn(z)|r dµ(z) and use again the Cauchy-Schwarz inequality
∣
∣
∣Tr
[

ρε(b
Wick−bWick

n )
]∣
∣
∣≤ Tr

[

ρε(b
Wick−bWick

n )(bWick,∗−bWick,∗
n )

]1/2
.

Owing to the result valid whenp = q we deduce

limsup
ε→0

∣
∣
∣Tr
[

ρε(b
Wick−bWick

n )
]∣
∣
∣≤
[∫

Z

|b(z)−bn(z)|2 dµ(z)

]1/2

= η2(n)1/2 .

Since forn∈N fixed, limε→0 Tr
[
ρεbWick

n

]
=
∫

Z
bn(z) dµ(z), we deduce

∀n∈ N, limsup
ε→0

∣
∣
∣
∣
Tr
[

ρεbWick
]

−
∫

Z

b(z) dµ(z)

∣
∣
∣
∣
≤ 1

n+1
+ η2(n)1/2 ,

while the right-hand side goes to 0 asn→ ∞ . �

2.8 States localized in a ball

The condition, Tr[ρεNα ]≤ λ α for all α ∈ N, used in [8] is actually equivalent to

ρε = 1[0,λ ](N)ρε1[0,λ ](N)

(locate the spectral measure ofρε for the self-adjoint operatorN). Such an assumption remains an important
step in the present analysis, andN = (|z|2)Wick suggests that such a state is localized in ball of the phase-
space.

Definition 2.13 A family(ρε)ε∈(0,ε̄) (or a sequence(ρεn)n∈N) of normal states onH , is said to be localized
in the ball of radius R> 0, if ρε = 1[0,R2](N)ρε1[0,R2](N) for all ε ∈ (0, ε̄) .

The meaning of the geometric intuition contained in the terminology “localized in a ball of radiusR”, can
be made more accurate.

Lemma 2.14 For a family(ρε)ε∈(0,ε̄) (or a sequence(ρεn)n∈N) of normal states onH localized in a ball
of radius R> 0, all its Wigner measures are supported in the ball{|z| ≤ R} .

Proof. A family (ρε)ε∈(0,ε̄) localized in a ball of radiusRsatisfies Tr
[
ρεNδ ]≤R2δ for all δ > 0. Therefore

the set of Wigner measuresM (ρε ,ε ∈ (0, ε̄)) is well defined and the convergence after extraction can be
tested with Weyl-quantized cylindrical functions in the symbol classSν

p introduced in (14) for anyp ∈ P.
Let µ ∈M (ρε ,ε ∈ (0, ε̄)) be associated with the sequence(εn)n∈N. For any finite rank projectionp∈ P, the
Wick quantized operator(|pz|2)Wick is Np⊗ IΓs((1−p)Z ) whereNp is the number operator onΓs(pZ ) and
equals(|z|2pZ

−Cpε)Weyl in the finite dimensional framework ofpZ . For any cut-off functionχ ∈ C ∞
0 (R)

such thatχ ≡ 1 on
[
0,R2

]
, the finite dimensional Weyl semiclassical calculus tells us (1− χ)(Np) = (1−

χ)(|z|2pZ
)Weyl+Op(ε) in L (Γs(pZ )). Further the commutative decompositionN = Np⊗ IΓs((1−p)Z ) +

IΓs(pZ )⊗N(1−p) ≥ Np⊗ IΓs((1−p)Z ) and choosingχ decreasing on[0,+∞) implies

(1− χ)(|pz|2)Weyl+Op(ε) ≤ (1− χ)(Np⊗ IΓ((1−p)Z ))≤ (1− χ)(N) .

We deduce

0≤
∫

Z

(1− χ(|pz)|2) dµ(z) = lim
n→∞

Tr
[

ρε(1− χ(|pz|2))Weyl
]

≤ lim
n→∞

Tr
[

ρεn1[0,R2](N)(1− χ(N))
]

= 0.

Hence the measureµ vanishes outside a cylinder{|pz| ≥ R}. This yields the result. �

With such localized states we can solve the moment problem.
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Proposition 2.15 Let (ρε)ε∈(0,ε̄) be a family (or a sequence(ρεn)n∈N) of normal states onH , localized in
the ball of radius R> 0 . If there exists a Borel measureµ onZ such that

∀b∈P
∞
alg(Z ) , lim

ε→0
Tr
[

ρεbWick
]

=

∫

Z

b(z) dµ(z) ,

then
M (ρε ,ε ∈ (0, ε̄)) = {µ} .

Proof. Although this is shown in [7, Proposition 6.15], we provide here a different proof.
Let p∈ P and consider the direct image byp of the measureµ :

∀E ∈B(pZ ) , µp(E) =

∫

Z

1p−1(E)(z) dµ(z) ,

whereB(pZ ) denotes the Borelσ -set onpZ .
For anyb∈P∞

alg(Z ), such thatb(pz) = b(z) we have

lim
ε→0

Tr
[

ρεbWick
]

=
∫

pZ

b(z) dµp(z) .

This holds in particular whenb(z) = |pz|2k with bWick = Nk
p +O(ε)≤ Nk +O(ε) with

∫

pZ

|z|2k dµp(z)≤ lim
ε→0

Tr
[

ρεNk
p

]

≤ lim
ε→0

Tr
[

ρεNk
]

≤ R2k .

Hence all the moments
∫

pZ |z|2k dµp(z) are bounded byR2k and the finite dimensional moment problem

applies (see [47][5]):µp is completely determined by the set of values
{
∫

pZ b dµp , b polynomial
}

. Let µ ′

be a Wigner measure of the family(ρε)ε∈(0,ε̄). It is supported in the ball{z∈Z , |z| ≤ R} so that its direct
image byp, µ ′p is supported in the ball{z∈ pZ , |z| ≤R}. Moreover there exists a sequence(εn)n∈N, such
that

∀b∈ Sν
pZ , lim

n→∞
Tr
[

ρεnbWeyl
]

=
∫

pZ

b(z) dµ ′p(z) ,

where thebWeyl can be replaced bybWick for any polynomialb such thatb(z) = b(pz) according to the finite
dimensional comparison of the Weyl and Wick calculus in (15). We deduceµp = µ ′p. Since this holds for
all the p∈ P, this ends the proof. �

Let χ be a continuous cut-off function supported in[0,1], with 0≤ χ ≤ 1 and such thatχ ≡ 1 in [0, 1
2].

Within the assumptions of Theorem 2.7 and especially Tr[ρεNδ ]≤Cδ , the difference between the stateρε
and the localized stateρ χ ,R

ε = 1

Tr
[

ρε χ2( N
R2 )
]χ( N

R2 )ρε χ( N
R2 ) can be made arbitrarily small according to

∀ε ∈ (0, ε̄) , |ρε −ρ χ ,R
ε |L 1(H ) ≤

Cδ
(R/2)2δ −Cδ

, (21)

where the right-hand side vanishes asR→ ∞. Then the comparison result in Proposition 2.10 or its variant
(19) says that the Wigner measures(ρε)ε∈(0,ε̄) can be identified by its approximation by states localized in
balls:

inf
(µ,µ ′)∈M (ρε ,ε∈(0,ε̄))×M (ρχ,R

ε ,ε∈(0,ε̄))

∫

|µ− µ ′| ≤ Cδ
(R/2)2δ −Cδ

. (22)

Then the question arises whether the family(ρ χ ,R
ε )ε∈(0,ε̄), or an extracted subsequence, satisfies the condi-

tion (PI) (or equivalently(P)) if the family (ρε)ε∈(0,ε̄) does.

Proposition 2.16 Assume that the family(ρε)ε∈(0,ε̄) of normal states onH satisfiesM (ρε ,ε ∈ (0, ε̄)) =

{µ} and the condition(PI) . Let the function f∈ C 0([0,+∞),R) be polynomially bounded such that the
quantityTr[ρε f 2(N)] is uniformly bounded from below forε ∈ (0, ε̄) . Then the family(ρ f

ε )ε∈(0,ε̄) given by

ρ f
ε = 1

Tr[ρε f 2(N)]
f (N)ρε f (N) has a unique Wigner measureM (ρ f

ε ,ε ∈ (0, ε̄)) =
{

f 2(|z|2)µ
∫

f 2(|z|2)dµ

}

and satisfies

the condition(PI) .
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We will need the next lemma

Lemma 2.17 Let the family(ρε)ε∈(0,ε̄) (or a sequence(ρεn)n∈N) of normal states be localized in the ball
of radius R and assume the condition(PI) with M (ρε ,ε ∈ (0, ε̄)) = {µ}. Then the equality

lim
ε→0

Tr
[

eα1Nρεeα2NbWick
]

=

∫

Z

e(α1+α2)|z|2b(z) dµ(z) (23)

holds for allα1,α2 ∈ C and all b∈Palg(Z ) .

Proof. The right-hand side of (23) is the sum of the double series

∑
k1,k2∈N

(α1)
k1(α2)

k2

k1!k2!

∫

Z

|z|2k1+2k2b(z) dµ(z) ,

for µ is a Borel probability measure supported in{|z| ≤ R} andb is a polynomial function.
Due toρε = ρε1[0,R2](N), the sum

SK2,k =
K2

∑
k2=0

ρε
(α2N)k2

k2!
(1+N)k , K2,k∈ N

and the remainder term

RK2,k = ρεeα2N(1+N)k−SK2,k =

∫ 1

0

(1− t)K2

K2!
ρε(α2N)K2+1eα2tN(1+N)k dt

satisfy

1[0,R2](N)SK2,k = SK2,k with |SK2,k|L 1(H ) ≤ e|α2|R2
(1+R2)k ,

and 1[0,R2](N)RK2,k = RK2,k with |RK2,k|L 1(H ) ≤ e|α2|R2
(1+R2)k (|α2|R2)K2+1

(K2 +1)!
.

Repeating the same estimate on the left hand side withSK2,k andRK2,k instead ofρε implies that theL 1(H )
norm of

(1+N)k

[

eα1Nρεeα2N−
K1

∑
k1=0

K2

∑
k2=0

(α1N)k1

k1!
ρε

(α2N)k2

k2!

]

(1+N)k

is bounded by

e|α2|R2+|α1|R2
(1+R2)2k

[
(|α1|R2)K1+1

(K1 +1)!
+

(|α2|R2)K2+1

(K2 +1)!
+

(|α1|R2)K1+1(|α2|R2)K2+1

(K1 +1)!(K2 +1)!

]

,

which vanishes as min(K1,K2)→ ∞ . We conclude with aδ/3-argument after noticing that(1+N)−kbWick

(1+ N)−k is bounded fork≥ kb and that the convergence asε → 0 holds forb∈Palg(Z ) fixed and for

the finite sums∑K1
k1=0∑K2

k2=0 owing to the condition(PI). �

Proof of Proposition 2.16:LetCf > 1 be a constant such that Tr
[
ρε f 2(N)

]
≥ 1

Cf
and sups∈[0,+∞) f (s)(1+

s)−ν ≤Cf . The inequalities Tr[ρ f
ε Nα ]≤C2

f Tr
[
ρεNα(1+N)2ν], α ∈ N, ensure that the family(ρ f

ε )ε∈(0,ε̄)

admits Wigner measures without any way to identify them for the moment. So take a sequence(εn)n∈N,
such that limn→∞ εn = 0 andM (ρ f

εn,n ∈ N) =
{

µ f
}

. We first prove that the sequence(ρ f
εn)n∈N satisfies

the condition(PI), then check thatµ f = f 2(|z|2)µ
∫

f 2(|z|2)dµ in the cases when(ρε)ε∈(0,ε̄) is localized in a ball and

then whenf is compactly supported, and finally conclude with approximation arguments.

1) The condition (PI) for the sequence: The uniform control of Tr
[

ρ f
εnN

α
]

≤ Cα , α ∈ N, implies
∫

Z
|z|2α dµ f (z) < +∞ and the Proposition 2.9 says that the convergence

lim
n→∞

Tr
[

ρ f
εnbWick

]

=
∫

Z

b(z) dµ f (z)

14



holds for anyb∈P∞
alg(Z ) with a compact kernel. In particular forb(z) = |pz|2k with p∈ P andk∈N,

lim
n→∞

Tr

[

ρ f
εn

(

(|pz|2)Wick
)k
]

= lim
n→∞

Tr
[

ρ f
εn(|pz|2k)Wick

]

=

∫

Z

|pz|2k dµ f (z) , (24)

while we assumed
∀b∈Palg(Z ) , lim

n→∞
Tr
[

ρεnb
Wick
]

=

∫

Z

b(z) dµ(z) . (25)

Fix α ∈ N∗ and takeδ > 0. By Lebesgue’s convergence, there existsp∈ P such that
∫

Z

∣
∣|z|2α −|pz|2α∣∣ dµ f (z)≤ δ

and
∫

Z

∣
∣|z|2α −|pz|2α∣∣(1+ |z|2)2ν dµ(z)≤ δ .

Remember that(|pz|2)Wick = Np⊗ IΓs((1−p)Z ) = Np with Nα
p ≤ Nα where both sides commute withf (N)

and we get:

0≤ Tr
[

ρ f
εn(N

α −Nα
p)
]

≤ Cf Tr
[

f (N)(Nα −Nα
p)1/2ρεn(N

α −Nα
p)1/2 f (N)

]

≤ Cf | f (N)(1+N)−ν |2
L (H )

×Tr
[

(1+N)ν(Nα −Nα
p)1/2ρεn(N

α −Nα
p)1/2(1+N)ν

]

≤ C3
f Tr
[
ρεn(N

α −Nα
p)(1+N)2ν] .

But we know by (25) that the right-hand side converges asn→ ∞ to

C3
f

∫

Z

(|z|2α −|pz|2α)(1+ |z|2)2ν dµ(z)≤C3
f δ ,

while (24) with(|pz|2)Wick = Np gives

lim
n→∞

Tr
[

ρ f
εnNα

p

]

=
∫

Z

|pz|2α dµ f (z) .

Hence there existnδ ∈ N such that

∀n≥ nδ ,

∣
∣
∣
∣
Tr
[

ρ f
εnN

α
]

−
∫

Z

|pz|2α dµ f (z)

∣
∣
∣
∣
≤ (C3

f +1)δ .

From
∫

Z
||z|2α −|pz|2α | dµ f (z)≤ δ , we deduce

limsup
n→∞

|Tr
[

ρ f
εnNα

]

−
∫

Z

|z|2α dµ(z)| ≤ (C3
f +2)δ .

Letting δ → 0 ends the proof of this part.
2) Identification of µ f when (ρε)ε∈(0,ε̄) is localized in a ball: Assume that(ρε)ε∈(0,ε̄) is localized in a
ball of radiusR> 0. The Lemma 2.17 tells us

∀t1, t2 ∈ R, ∀b∈Palg(Z ) , lim
n→∞

Tr
[

eit2Nρεneit1NbWick
]

=

∫

Z

ei(t1+t2)|z|2b(z) µ(z) ,

while the uniform boundedness of(1+N)−kbbWick(1+N)−kb entail
∣
∣
∣Tr
[

eit2Nρεneit1NbWick
]∣
∣
∣≤CbTr

[

ρεn(1+N)2kb

]

≤Cb(1+R2)2kb .

Hence forf ∈F−1(L1(R)), we get

lim
n→∞

Tr
[

f (N)ρεn f (N)bWick
]

Tr [ f (N)ρεn f (N)]
=

∫

Z
f (|z|2)2b(z) dµ(z)
∫

Z
f (|z|2)2 dµ(z)

.
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We have proved:

∀b∈Palg(Z ) , lim
n→∞

Tr
[

ρ f
εnbWick

]

=

∫

Z
f (|z|2)2b(z) dµ(z)
∫

Z f (|z|2)2 dµ(z)
.

The part 1) and 1[0,R2](N)ρ f
εn1[0,R2](N) = ρ f

εn ensure that(ρ f
εn)n∈N satisfies the sufficient conditions for

solving the moment problem (Proposition 2.15) andµ f = f (|z|2)2 µ
∫

Z f (|z|2)2 dµ in this case.

3) Identification of µ f when f is compactly supported: Assume thatf ∈ C 0
c ([0,+∞)) is supported in

[0,R0]. Consider forχ ∈ C 0
c ([0,+∞)), 0≤ χ ≤ 1, χ ≡ 1 on[0,1/2] and forR> 0, the truncated states

ρR
εn

=
1

Tr
[

ρεnχ2( N
R2 )
]χ(

N
R2 )ρεnχ(

N
R2 ) , n∈N .

ForR≥ 2R0, we have

∀n∈N
∗ , ρ f

εn =
1

Tr
[
ρR

εn
f 2(N)

] f (N)ρR
εn

f (N) .

By extracting a subsequence we can assumeM

(

ρR
εnk

,k∈ N

)

=
{

µR
}

, and Part 1) applied to(ρR
εnk

)k∈N

ensures that the pair(ρ f
εnk

,ρR
εnk

) fulfills all the assumptions of Part 2) iff ∈ C 0
c ([0,+∞))∩F−1L1(R).

Thus the measureµ f equals | f (|z|2)|2µR
∫

Z | f (|z|2)|2 dµR . From the comparison (22) we know
∫ |µR−µ |= O(R−1) and

since f is a bounded function
∫ ∣
∣
∣
∣
µ f − | f (|z|2)2µ

∫ | f (|z|2)|2 dµ

∣
∣
∣
∣
≤ C

R
.

Taking the limit asR→ 0 gives the result whenf ∈ C 0
c ([0,+∞))∩F−1L1(R) . Removing the condition

f ∈F−1L1(R) is obtained by a comparison argument betweenρ f
εn andρ fℓ

εn with fℓ ∈ C 0
c ∩F−1L1(R) and

sups∈[0,+∞] | f (s)− fℓ(s)| ≤ 1
ℓ+1 , for ℓ ∈ N .

4) Final approximation argument and uniqueness ofµ f : Consider now the complete problem with the

extracted sequence(ρ f
εn)n∈N. We again use the cut-offχ( N

R2 ) but now to compareρ f
εn with ρ f χ(R−2.)

εn . After

extracting a subsequence, we can assumeM

(

ρ f χ(R−2.)
εnk

,k∈ N

)

=
{

µ f χ(R−2.)
}

. The pair(ρ f χ(R−2.)
εn ,ρεn)

fulfills the assumptions of Part 3) and

µ f χ(R−2.) =
f 2(|z|2)χ2(R−2|z|2)µ

∫

f 2(|z|2)χ2(R−2|z|2) dµ
.

But from the inequalitiesf (s)(1− χ(R−2s))(1+s)−ν−1 ≤CR−2 and Tr
[
ρε(1+N)2ν+2

]
≤ C̃ν we deduce

the uniform estimate:

∀k∈ N ,
∣
∣
∣ρ f

εnk
−ρ f χ(R−2.)

εnk

∣
∣
∣
L 1(H )

≤
C′f
R2 .

Again the comparison argument (22) gives

∫ ∣
∣
∣
∣
µ f − f 2(|z|2)χ2(R−2|z|2)µ

∫
f 2(|z|2)χ2(R−2|z|2) dµ

∣
∣
∣
∣
≤

C′f
R2 ,

and we take the limit asR→ ∞. We have provedµ f = f 2(|z|2)µ
∫

f 2(|z|2) dµ for any sequence extracted from

(ρ f
ε )ε∈(0,ε̄) with a single Wigner measure. This provesM (ρε ,ε ∈ (0, ε̄)) =

{
f 2(|z|2)µ

∫
f 2(|z|2) dµ

}

while the condi-

tion (PI) was checked in Part 1). �

3 Dynamical mean field limit

Let Q be a real-valued polynomial inPalg(Z ) given by

Q =
r

∑
j=2

Q j , with Q j ∈P j , j(Z ) .
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We consider the many-body quantum Hamiltonian for a system of bosons

Hε = dΓ(A)+QWick, (26)

with A a given self-adjoint operator onZ . HereQWick is the operator∑r
j=2QWick

j with QWick
j given by

(7). Clearly,Hε acts as a self-adjoint operator on the symmetric Fock spaceH . WhenZ = L2(Rd), the
Schrödinger HamiltonianA =−∆ +V(x) and the semi-relativistic HamiltonianA =

√
−∆ +m2+V(x) are

among the typical examples (e.g. [21]).

3.1 Existence of Wigner measure for all times.

The first step to prove Theorem 1.1 is to show the existence of Wigner measures for all times. This is
accomplished in the Proposition 3.3 by following the same lines as in the proof of Theorem 2.7. For this
task two useful lemmas are stated below with the first one being proved in [7, Proposition 2.10].

Lemma 3.1 For any b∈Palg(Z ) we have:
(i) bWick is a closable operator with the domain of its closure containing

H0 = vect{W(ϕ)ψ ,ψ ∈H f in,ϕ ∈Z } .

(ii) For any ϕ ∈Z the identity

W(ξ )∗bWickW(ξ ) = (b(z+
iε√

2
ξ ))Wick

holds onH0 with b(·+ iε√
2
ξ ) ∈Palg(Z ) .

Lemma 3.2 For any k∈ N there exists aε-independent constant Ck > 0 such that

W(ξ )∗〈N〉kW(ξ )≤Ck〈ε̄〉k〈ξ 〉k〈N〉k , (27)

for anyξ ∈Z and uniformly inε ∈ (0, ε̄).

Proof. SinceN is a self-adjoint operator, the functional calculus provides the inequality

〈N〉k ≤ (1+N)k .

Therefore, it is enough to prove (27) with〈N〉 in the l.h.s replaced by(1+ N). The Wick calculus in
Proposition 2.4 tell us that(1+N)k is a Wick operator with symbolbk(z) in ⊕k

j=0P j , j(Z ), i.e.:

bk(z) =
k

∑
j=0
〈z⊗ j , b̃( j)

k z⊗ j〉 with b( j)
k ∈P j , j(Z ).

Now, applying Lemma 3.1 yields

W(ξ )∗ (1+N)kW(ξ ) = W(ξ )∗bWick
k W(ξ ) = (bk(z+

iε√
2

ξ ))Wick.

A Taylor expansion of the symbol gives us

bk(z+
iε√

2
ξ ) =

k

∑
j=0

(iε) j

j!
√

2 j
D( j)bk(z)[ξ ] ,

with D( j) is the jth derivatives andD( j)bk(z)[ξ ] ∈ ⊕k− j
m,n=0Pm,n(Z ). So, by the number estimate (2.3) we

can derive the following bound
∣
∣
∣
∣
〈N〉−k/2

(

D( j)bk(z)[ξ ]
)Wick

〈N〉−k/2

∣
∣
∣
∣
≤ C̃k〈ξ 〉 j
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with C̃k only depending onk∈ N. Hence, we obtain
∣
∣
∣
∣
∣
〈N〉−k/2

k

∑
j=0

(iε) j

j!
√

2 j

(

D( j)bk(z)[ξ ]
)Wick

〈N〉−k/2

∣
∣
∣
∣
∣
≤Ck〈ε̄〉k〈ξ 〉k ,

with Ck only depending onk ∈ N. Thus, we conclude thatW(ξ )∗ (1+ N)kW(ξ ) as a positive quadratic
form is bounded byCk〈ε̄〉k〈ξ 〉k〈N〉k. �

Proposition 3.3 Let(ρε)ε∈(0,ε̄) be a family of normal states onH satisfying the uniform estimateTr[ρεNr ]
≤Cr for some r> 0 .
Then for any sequence(εn)n∈N in (0, ε̄) such thatlimn→∞ εn = 0 there exists a subsequence(εnk)k∈N and a
family of Borel probability measures(µt)t∈R satisfying

M (e−i t
εn

Hεn ρεnei t
εn

Hεn ,n∈ N) = {µt} ,

for any t∈ R. Moreover, we have
∫

Z

|z|2r dµt(z)≤Cr .

Proof. We set

ρε(t) = e−i t
ε Hε ρε ei t

ε Hε and ρ̃ε(t) = ei t
ε dΓ(A)e−i t

ε Hε ρε ei t
ε Hε e−i t

ε dΓ(A) .

(i) Consider forε > 0 the function

Gε (t,ξ ) = Tr
[

ρ̃ε(t)W(
√

2πξ )
]

.

Write for any(s,ξ ),(t,η) ∈ R×Z

|Gε(t,η)−Gε(s,ξ )| ≤
∣
∣
∣Tr
[

(ρ̃ε(t)− ρ̃ε(s))W(
√

2πη)
]∣
∣
∣+
∣
∣
∣Tr
[

ρ̃ε(s)
(

W(
√

2πη)−W(
√

2πξ )
)]∣
∣
∣ .

By differentiation, we get

∣
∣
∣Tr
[

[ρ̃ε(t)− ρ̃ε(s)]W(
√

2πη)
]∣
∣
∣≤ 1

ε

∣
∣
∣
∣

∫ t

s
Tr
[

ρ̃ε(t
′)[QWick

t′ ,W(
√

2πη)]
]

dt′
∣
∣
∣
∣

(28)

with Qt′(z) = Q(e−it ′Az), while the second term is estimated by
∣
∣
∣Tr
[

ρ̃ε(s)
(

W(
√

2πη)−W(
√

2πξ )
)]∣
∣
∣≤ (1+Cr)

∣
∣
∣[W(
√

2πη)−W(
√

2πξ )](N+1)−1
∣
∣
∣
L (H )

. (29)

Now, we claim that there exists a constantc > 0 such that the r.h.s of (28) is bounded by

c|t−s|(
r

∑
j=2

||Q̃ j ||)
2r

∑
i=1

ε i−1|η |i . (30)

This can be proved by first writing

Tr
[

ρ̃ε(t
′)[QWick

t′ ,W(
√

2πη)]
]

= (31)

Tr
[

〈N〉r ρ̃ε(t
′)〈N〉r

(

〈N〉−rW(
√

2πη)〈N〉r
)

〈N〉−r [W(
√

2πη)∗QWick
t′ W(

√
2πη)−QWick

t′ ]〈N〉−r
]

and second estimating the r.h.s of (31) using Lemma 3.2 and Lemma 3.1 (ii) so that
∣
∣
∣
∣

∫ t

s
Tr
[

ρ̃ε(t
′)[QWick

t′ ,W(
√

2πη)]
]

dt′
∣
∣
∣
∣
≤ c|t−s| sup

t′∈[s,t]

∣
∣
∣
∣
〈N〉−r [Qt′(.+

iε√
2

η)Wick−QWick
t′ ]〈N〉−r

∣
∣
∣
∣
L (H )

.
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Thus, the bound (30) follows from the number estimate in Proposition 2.3.
We recall the inequality proved in [7, Lemma 3.1],

∣
∣
∣[W(
√

2πη)−W(
√

2πξ )](N+1)−1/2
∣
∣
∣≤ C̃ |η− ξ | [min(ε|η |,ε|ξ |)+max(1,ε)] .

This leads to the following bound on the r.h.s of (29)

C̃〈ε̄〉 |η− ξ |
(

1+
√

|η |2 + |ξ |2
)

.

Thus, we conclude that∀(s,ξ ),(t,η) ∈ R×Z ,

|Gε (t,η)−Gε(s,ξ )| ≤ c̃

(

|t−s|(|η |+1)2r + |η− ξ |
√

|η |2 + |ξ |2
)

, (32)

uniformly w.r.t. ε ∈ (0,ε). Recall also that we have the uniform estimate|Gε(s,ξ )| ≤ 1.
Now, we apply an Ascoli type argument:

• SinceR×Z is separable, it admits a countable dense setN = {(tℓ,ξℓ), ℓ ∈ N}. For anyℓ ∈ N the
set{Gε(tℓ,ξℓ)}ε∈(0,ε̄) remains in{σ ∈ C, |σ | ≤ 1}. Hence for any sequence(εn)n∈N such thatεn→ 0
there exists by a diagonal extraction process a subsequence, still denoted by(εn)n∈N, such that for all
ℓ ∈N, Gεn(tℓ,ξℓ) converges in{σ ∈ C, |σ | ≤ 1} asn→ ∞. Set

G(tℓ,ξℓ) := lim
n→∞

Gεn(tℓ,ξℓ)

for all ℓ ∈ N.

• The uniform estimate (32) implies that the limitG is uniformly continuous on any set

N ∩{(t,z) ∈ R×Z : |t|+ |z| ≤ R} .
Hence it admits a continuous extension still denotedG in (R×Z , | |

R×Z ). An “epsilon/3”-argument
shows that for any(t,ξ ) ∈ R×Z , limn→∞ Gεn(t,ξ ) exists and equalsG(t,ξ ).

Finally for anyt ∈ R, G(t, .) is a norm continuous normalized function of positive type since

G(t,0) = lim
n→∞

Tr [ρ̃ε(t)] = 1

N

∑
i, j=1

λiλ j G(t,ξi− ξ j) = lim
n→∞

N

∑
i, j=1

λiλ j Tr
[

ρ̃εn(t)W(
√

2π(ξi− ξ j))
]

eiεnπ2σ(ξi ,ξ j ) ≥ 0.

The positivity in the last statement follows by Weyl commutation relations (6). Therefore, according to the
Bochner theorem (e.g. [12, Corollary 1.4.2]) for anyt ∈ R, G(t, .) is a characteristic function of a weak
distribution or equivalently a cylindrical measureµ̃t on Z (see [51] and also [7, Section 6] for specific
information).
(ii) The fact thatµ̃t are Borel probability measures satisfying

µ̃t(|z|2r)≤Cr < ∞ , (33)

follows directly by [46, Theorem 2.5 Chap.VI] or by part(iv) in the proof of [7, Theorem 6.2].
(iii) Using (13) we see that for anyb∈Scyl(Z ) based on a finite dimensional subspacepZ with p∈ P

lim
n→∞

Tr
[

ρ̃εn(t)bWeyl
]

= lim
n→∞

∫

pZ

Gεn(t,ξ ) F [b](ξ )Lp(dξ )

=

∫

pZ

G(t,ξ ) F [b](ξ )Lp(dξ ) =

∫

Z

b(z)dµ̃t(z) .

Therefore, according to Definition 2.8 of Wigner measures weconclude that

∀t ∈ R, M (ρ̃εn(t),n∈ N) = {µ̃t} .
(iv) Finally the family of measuresµt which satisfy the claimed statement in the proposition are the push-
forward measures

µt = (e−itA)∗µ̃t .

Furthermore, an analogue of (33) can be easily checked for the measuresµt . �
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3.2 Polynomial approximations of the classical flow.

With the classical hamiltonian

h(z) = 〈z, Az〉+Q(z) = 〈z, Az〉+
r

∑
j=2

〈z⊗ j , Q̃ jz
⊗ j〉, z∈D(A) ,

the related nonlinear field equation is
{

i∂tzt = Azt + ∂zQ(zt )
zt=0 = z0 .

Actually this Cauchy problem is better studied when reformulated as an integral equation

zt = e−itAz− i
∫ t

0
e−i(t−s)A ∂z̄Q(zs)ds, for z∈Z , (34)

which admits a classicalC 0-flow Ft : R×Z → Z : 1) since theQ̃ j are bounded a fixed point argument
gives the local in time existence and uniqueness; 2) then theconservation|zt | = |z0| ensures the global in
time result. As a classicalC 0-flow, F is aC 0-map satisfyingFt+s(z) = Ft ◦Fs(z) andFt(z) solves (34) for
anyz∈Z .
Moreover, ifzt solves(34), andQt(z) = Q(e−itAz), thenwt = eitAzt solves the differential equation

d
dt

wt =−i∂z̄Qt(wt ) .

Therefore for anyb∈Pp,q(Z ), the following identity holds

d
dt

b(wt) = ∂z̄b(wt)[−i∂z̄Qt(wt )]+ ∂zb(wt)[−i∂z̄Qt(wt )]

= i{Qt ,b}(wt).

Hence, we obtain the Duhamel formula

b(zt) = bt(z)+ i
∫ t

0
{Qt1,bt}(eit1Azt1) dt1 . (35)

A simple iteration in (35), using

{Qt1,bt}(wt1) = {Qt1,bt}(w0)+ i
∫ t1

0
{Qt2,{Qt1,bt}}(wt2)dt2 ,

yields

b(zt) = bt(z)+ i
∫ t

0
{Qt1,bt}(z) dt1 + i2

∫ t

0
dt1

∫ t1

0
dt2 {Qt2,{Qt1,bt}}(eit2Azt2) .

Therefore, by induction and after settingFt(z) = zt , we obtain for anyK > 1:

b◦Ft(z) = bt(z)+
K−1

∑
k=1

ik
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk {Qtk,{. . . ,{Qt1,bt} . . .}}(z)

+ iK
∫ t

0
dt1 · · ·

∫ tK−1

0
dtK {QtK ,{. . . ,{Qt1,bt} . . .}}(eitKAztK ) .

With the polynomialQ we associate the norm

‖Q‖= max
j∈{2,...,r}

|Q j |P j, j = max
j∈{2,...,r}

|Q̃ j |L (
∨ j

Z ,
∨ j

Z ) (36)

and we note that‖Qt‖= ‖Q‖ for all t ∈R . Notice that the flowFt preserves the norm

∀z∈Z , |Ft(z)|= |z| ,
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and is gauge invariant
∀z∈Z , ∀θ ∈ R, Ft(e

iθ z) = eiθ Ft(z) .

But for a given polynomialb(z), the mapz 7→ b(zt) does not remain a polynomial. Starting from a polyno-
mial b(z) ∈Pp,q(Z ), we study polynomial approximations ofb(zt).
Consider the expression

bK(t,z) = bt(z)+
K−1

∑
k=1

ik
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk {Qtk,{. . . ,{Qt1,bt} . . .}}(z) =

K−1

∑
k=0

bk(t,z) (37)

RK(t,z) = iK
∫ t

0
dt1 · · ·

∫ tK−1

0
dtK {QtK ,{. . . ,{Qt1,bt} . . .}}(eitKAztK ) . (38)

The two approximation results that we will use are given in the two next propositions.

Proposition 3.4 For b∈Pp,q(Z ), the polynomial bK(t,z) = ∑K−1
k=0 bk(t,z) defined in(37)belongs to

⊕K(r−1)
j=1 P j+p, j+q(Z ) with the estimates

|bk(t,z)| ≤ 2
p+q

2(r−1) (p+q)(4r3)k ‖Q‖k |b|Pp,q|t|k〈z〉2k(r−1)+p+q . (39)

Moreover, we have for RK(t,z) the estimates

|RK(t,z)| ≤ 2
p+q

2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q|t|K〈z〉2K(r−1)+p+q . (40)

Proof. With b∈Pp,q(Z ) andQt = ∑r
j=2Q j ,t , the polynomial

bk(t) = (i)k
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk {Qtk,{. . . ,{Qt1,bt} . . .}}(z)

is the sum of(r−1)k ≤ rk monomials

bk(t) = ∑
α∈{2,...,r}k

bk,α(t)

with bk,α(t) = (i)k
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk{Qαk,tk ,{. . . ,{Qα1,t1,bt} . . .}} ∈P|α |−k+p,|α |−k+q(Z ) .

A consequence of Proposition 2.4 says forc∈Pp′,q′(Z ) ,

|{Qα1,t1,c}(z)| ≤ r(p′+q′) |Qα1|Pα1,α1
|c|Pp′,q′ 〈z〉

p′+q′+2(α1−1).

We deduce

|bk,α(t,z)| ≤
∫ t

0
dt1 · · ·

∫ tk−1

0
dtk rk(p+q) · · ·(p+q+2k(r−1)) ‖Q‖k |b|Pp,q 〈z〉p+q+2|α |−2k

≤ (p+q)rk(2(r−1))k−1|t|k Γ(a+k+2)

Γ(k+1)Γ(a+1)

1
a+k+1

‖Q‖k |b|Pp,q 〈z〉p+q+2k(r−1)

with a = p+q
2(r−1) andΓ denotes the Gamma function. Now, we notice the relation withthe Beta function

B(k+1,a+1)=
Γ(k+1)Γ(a+1)

Γ(a+k+2)
=

∫ 1

0
tk(1− t)adt≥ 1

2a+k+1(a+k+1)
,

which yields (39).
The remainder

RK(t,z) = i
{

Qt ,b
K}= iK

∫ t

0
dt1 · · ·

∫ tK−1

0
dtK {QtK ,{. . . ,{Qt1,bt} . . .}}(eitKAztK )

is analyzed like the termbk(t) . �

Proposition 3.5 Let µ be a positive Borel measure onZ supported in the ball{|z| ≤ R}, R> 0, then for
any polynomial b∈Pp,q(Z ),

∫

Z

|RK(t,z)| dµ(z)≤ 〈R〉p+q 2
p+q

2(r−1) (p+q)|b|Pp,q

[

4r3‖Q‖〈R〉2(r−1)|t|
]K

.

Proof. It easily follows from (40). �
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3.3 Transport for a state localized in a ball

The previous approximation result allows to prove partly Theorem 1.1 for states localized in a ball, intro-
duced according to Definition 2.13 and studied in Subsection2.8.

Proposition 3.6 Let (ρεn)n∈N be a sequence of normal states onH localized in a ball with radius R> 0
and such that

∀t ∈ [−T,T] , M (e−i t
εn

Hεn ρεnei t
εn

Hεn , n∈ N) = {µt} ,

and ∀α ∈N , lim
k→∞

Tr[ρεnk
Nα ] =

∫

Z

|z|2α dµ0(z) .

Then for all t∈ [−T,T], the probability measureµt is the push-forward by the flowFt of the measureµ0,
i.e.,µt = (Ft)∗µ0 . Moreover the identity

lim
n→∞

Tr
[

e−i t
εn

Hεn ρεnei t
εn

Hεn bquantized
]

=
∫

Z

b(z) dµt(z) =
∫

Z

b(Ft(z)) dµ0(z) ,

holds for Weyl quantized cylindrical functions b∈⋃p∈P F−1(Mb(pZ )) and general Wick quantized poly-
nomials b∈Palg(Z ).

Proof. We set
ρ̃εn(t) := ei t

εn
dΓ(A)e−i t

εn
Hεn ρεei t

εn
Hεn e−i t

εn
dΓ(A) .

It is worth noticing that for allt ∈ R, the sequence(ρ̃εn(t))n∈N is localized in the ball with radiusR.
For a fixedb∈Pp,q(Z ), differentiating with respect tot the quantity Tr[ρ̃ε(t)bWick], we obtain

Tr[ρ̃εn(t)bWick] = Tr[ρ̃εn(0)bWick]+
i

εn

∫ t

0
Tr
[

ρ̃εn(s) [Q
Wick
s ,bWick]

]

ds (41)

and replacingb by bt we end up with

Tr[ρεn(t)bWick] = Tr[ρεn(0)bWick
t ]+ i

∫ t

0
Tr
[

ρ̃εn(s){Qs,bt}Wick
]

ds (42)

+i
r

∑
j=2

ε j−1
n

j!

∫ t

0
Tr

[

ρ̃εn(s)
(

{Qs,bt}( j)
)Wick

]

ds.

Consider now the case whenb ∈ P∞
p,q(Z ) with a compact kernel,̃b ∈ L ∞(

∨p
Z ;

∨q
Z ) . Then we

know that the left-hand side converges to
∫

Z
b(z) dµt(z). The number estimate of Proposition 2.3 with

Tr [Nα ρεn]≤ R2α implies that the last term of the right-hand side converges to 0 asn→ ∞. Finally the first
term of the right-hand side converges to

∫

Z
b(z) dµ0(z), even wheñb is not compact.

We conclude that the limit of the second term of the r.h.s exists with
∫

Z

b(z) dµt(z) =

∫

Z

bt(z) dµ0(z)+ lim
n→∞

i
∫ t

0
Tr
[

ρ̃εn(s){Qs,bt}Wick
]

ds,

and this initiates our induction process.
GivenK > 1, take the approximationbK(t) = ∑K−1

k=0 bk(t) to b(Ft(z)) given in (37), and assume
∫

Z

b(z) dµt(z) =

∫

Z

bK(t,z) dµ0(z) (43)

+ lim
n→∞

iK
∫ t

0
dt1 · · ·

∫ tK−1

0
dtK Tr

[

ρ̃εn(tK)({QtK , · · · {Qt1,bt}· · ·})Wick
]

. (44)

A simple differentiation with respect totK gives forΘ ∈Palg(Z ),

Tr
[

ρ̃εn(tK)ΘWick
]

= Tr
[

ρ̃εn(0)ΘWick
]

+ i
∫ tK

0
dtK+1Tr

[

ρ̃εn(tK+1)
(
{QtK+1,Θ}

)Wick
]

+i
r

∑
j=2

ε j−1
n

j!

∫ tK

0
Tr

[

ρ̃εn(tK+1)
(

{QtK+1,Θ}( j)
)Wick

]

dtK+1 .
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Hence, choosingΘ = {QtK , · · · {Qt1,bt}· · ·} yields
∫

Z

b(z) dµt(z) =
∫

Z

bK(t,z) dµ0(z)

+ lim
n→∞

{

iK
∫ t

0
dt1 · · ·

∫ tK−1

0
dtK Tr

[

ρ̃εn(0)({QtK , · · · {Qt1,bt}· · ·})Wick
]

+ iK+1
r

∑
j=2

ε j−1
n

j!

∫ t

0
dt1 · · ·

∫ tK

0
dtK+1Tr

[

ρ̃εn(tK+1)
(
{QtK+1, · · · {Qt1,bt}· · ·}

)Wick
]

+ iK+1
∫ t

0
dt1 · · ·

∫ tK

0
dtK+1 Tr

[

ρ̃εn(tK+1)
(
{QtK+1, · · ·{Qt1,bt}· · ·}

)Wick
]}

=: I + lim
n→∞

(II + III + IV).

For anyK, whenn→∞, the second term (II) converges to
∫

Z
Θ(z) dµ0(z) because the initial statesρ̃εn(0)=

ρεn satisfies limε→0 Tr
[
ρεncWick

]
=
∫

Z
c(z) dµ0(z) according to Proposition 2.12. Moreover, the third term

(III) vanishes, whenn→ ∞, thanks to the number estimate in Proposition 2.3 and the fact that Tr[ρεnNα ]≤
R2α . Therefore, we have
∫

Z

b(z) dµt(z) =

∫

Z

bK+1(t,z) dµ0(z)

+ lim
n→∞

iK+1
∫ t

0
dt1 · · ·

∫ tK

0
dtK+1 Tr

[

ρ̃εn(tK+1)
(
{QtK+1, · · · {Qt1,bt}· · ·}

)Wick
]

.

By Proposition 3.5 and the fact thatµ0 is supported in{|z| ≤ R}, we deduce
∣
∣
∣
∣

∫

Z

b(z) dµt(z)−
∫

Z

b(Ft(z)) dµ0

∣
∣
∣
∣
≤ 〈R〉p+q2

p+q
2(r−1) (p+q)|b|Pp,q

[

4r3‖Q‖〈R〉2(r−1)|t|
]K

(45)

+

∣
∣
∣
∣
lim
n→∞

∫ t

0
dt1 · · ·

∫ tK−1

0
dtK Tr

[

ρ̃εn(tK)({QtK , · · · {Qt1,bt}· · ·})Wick
]
∣
∣
∣
∣
.

The number estimate of Proposition 2.3 with the inequality (39) of Proposition 3.4 implies
∣
∣
∣〈N〉−

q+K(r−1)
2 ({QtK , · · · {Qt1,bt}· · ·})Wick 〈N〉−

p+K(r−1)
2

∣
∣
∣
L (H )

≤ 2
p+q

2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q .

This provides for the last term in the r.h.s of (45) the upper bound

〈R〉
p+q

2 +K(r−1) 2
p+q

2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q |t|K .

For small times,|t| ≤ Tδ = δ
(4r3)‖Q‖〈R〉r−1 with δ < 1, taking the limit asK→ ∞ now gives

∀b∈P
∞
p,q(Z ) ,

∫

Z

b(z) dµt(z) =

∫

Z

b(Ft(z)) dµ0(z) .

But according to Proposition 3.6, the measureµt is a Borel probability measure supported in the ball
{|z| ≤ R} which is weakly compact. Meanwhile cylindrical polynomials which are contained inP∞

alg(Z ),

because they are associated with finite rank kernels, make a dense set in theC 0(B(0,R)weak,C) and there-
fore in L1(Z ,dµ) . Thus, we have proved

∀t ∈ [−Tδ ,Tδ ] , µt = (Ft)∗µ0 .

Finally, since|Ft(z)| = |z| and [Hε ,N] = 0, the pair((ρεn(t))n∈N,µt) satisfies the same assumptions as
((ρεn)n∈N,µ0). Since the timeTδ depends only onQ andR the result extends to allt ∈ R . �

3.4 Proof of the main result

Gathering all the information of Section 2 and 3, we are now inposition to prove Theorem 1.1.
Proof of Theorem 1.1:

23



Let (ρε)ε∈(0,ε̄) be a family of normal states satisfying hypothesis of Theorem 1.1 and letχ ∈ C 0([0,∞),R)
be a continuous cutoff function such that 0≤ χ ≤ 1, χ(x) = 1 if x≤ 1/2 andχ(x) = 0 if x≥ 1. ForR> 0,
consider the family of normal states

ρR
ε =

χ(N/R2)ρε χ(N/R2)

Tr[χ(N/R2)ρε χ(N/R2)]
,

localized in the ball of radiusR. By Proposition 2.16, we know that

(i) M (ρR
ε ,ε ∈ (0, ε̄)) =

{
χ2(|z|2/R2)

∫

Z
χ2(|z|2/R2)dµ0

µ0

}

=: {µR
0 }

(ii) ∀α ∈N, lim
ε→0

Tr[ρR
ε Nα ] =

∫

Z

|z|2α dµR
0 (z) .

Next, we use the notations

ρε(t) = e−i t
ε Hε ρε ei t

ε Hε and ρR
ε (t) = e−i t

ε Hε ρR
ε ei t

ε Hε .

For any sequence(εn)n∈N there exists by Proposition 3.3 a subsequence(εnk)k∈N and a family of Borel
probability measures(µR

t )t∈R such that

(i)′ M (ρR
εnk

(t),k∈ N) = {µR
t }

(ii)′ ∀α ∈N, lim
k→∞

Tr[ρR
εnk

Nα ] =

∫

Z

|z|2α dµR
0 (z) .

Applying now Proposition 3.6 with(i)′− (ii)′, we obtain that

M (ρR
εnk

(t),k∈ N) = {(Ft)∗µR
0 } , (46)

for any timet ∈ R. Since for any sequence(εn)n∈N we can extract a subsequence(εnk)k∈N such that (46)
holds we conclude that

M (ρR
ε (t),ε ∈ (0, ε̄)) = {(Ft)∗µR

0 } , (47)

for any R > 0 andt ∈ R. Again applying Proposition 3.3 for(ρε)ε∈(0,ε̄), there exists for any sequence
(εn)n∈N a subsequence(εnk)k∈N and a family of Borel probability measures(µt)t∈R such that

M (ρεnk
(t),k∈ N) = {µt} .

The identification of the measures(µt)t∈R follows by aδ/3 argument. For anyb∈Scyl(Z ) based inpZ ,
p∈ P, we write

∣
∣
∣
∣
Tr[ρεnk

(t)bWeyl]−
∫

Z

b(z)d(Ft)∗µ0

∣
∣
∣
∣
≤

∣
∣
∣Tr[ρεnk

(t)bWeyl]−Tr[ρR
εnk

(t)bWeyl]
∣
∣
∣ (48)

+

∣
∣
∣
∣
Tr[ρR

εnk
(t)bWeyl]−

∫

Z

b(z)dµR
t

∣
∣
∣
∣

(49)

+

∣
∣
∣
∣

∫

Z

b(Ft(z))dµR
0 −

∫

Z

b(Ft(z))dµ0

∣
∣
∣
∣
. (50)

Each term (48)-(50) can be made arbitrarily small by choosing R and k large enough and respectively
using the bound (21), the relation (47) and the dominated convergence theorem. So, we conclude that
µt = (Ft)∗µ0 and hence we have proved

M (ρε ,ε ∈ (0, ε̄)) = {(Ft)∗µ0} .

Finally, the use of Proposition 2.12 withρε(t) yields

lim
ε→0

Tr
[

ρε(t)b
Wick
]

=

∫

Z

b◦Ft(z) dµ0(z) ,

since limε→ 0Tr[ρε(t)Nα ] = limε→ 0Tr[ρεNα ] =
∫

Z
|z|2αdµ0 =

∫

Z
|z|2αdµt , for all α ∈N. The reformula-

tion of this result in terms of BBGKY hierarchy of reduced matrices is a consequence of Proposition 2.11.
�
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3.5 Additional results

Although it was not written in Theorem 1.1, remember that theexistence of Wigner measures contains a
result for Weyl observables.

Corollary 3.7 Let (ρε)ε∈(0,ε̄) be a family of normal states onH satisfying the hypothesis of Theorem 1.1.
The limit

lim
ε→0

Tr[e−i t
ε Hε ρε ei t

ε Hε bWeyl] =

∫

Z

b◦Ft(z) dµ0

holds for any b in the cylindrical Schwartz spaceScyl(Z ) , any t∈ R and any b∈ Sν
pZ

, ν ∈ [0,1], p∈ P .

The next result, shows that the class of observables can be extended to functions of Wick-quantized sym-
bols.

Corollary 3.8 Let (ρε)ε∈(0,ε̄) be a family of normal states onH satisfying the hypothesis of Theorem 1.1.
Then

i) The limit

lim
ε→0

Tr[e−i t
ε Hε ρε ei t

ε Hε f (bWick)] =

∫

Z

f (b◦Ft(z)) dµ0 (51)

holds for any f∈F−1(Mb(R)) and any b∈Pp,p(Z ) such that̃b∗ = b̃.

ii) If additionally (ρε)ε∈(0,ε̄) is a family of localized states on a ball of radius R> 0, then the limit(51)
holds for any entire function f(x) = ∑∞

k=0akxk overC and any b∈Pp,p(Z ) such that̃b∗ = b̃.

Proof. i) Let χ ∈ C 0([0,∞),R) be a continuous cutoff function such that 0≤ χ ≤ 1, χ(x) = 1 if x≤ 1/2
andχ(x) = 0 if x≥ 1. Consider the family(ρε(t) = e−i t

ε Hε ρεei t
ε Hε

)ε∈(0,ε̄) with

ρR
ε =

χ(N/R2)ρε χ(N/R2)

Tr[χ(N/R2)ρε χ(N/R2)]
, R> 0.

Letb∈Pp,p(Z ) such that̃b∗= b̃, thenbWick extends to a self-adjoint operator onH satisfying[N,bWick] =
0. We claim that

∀θ ∈ R, Tr[ρR
ε (t)eiθbWick

] =
∞

∑
k=0

ik

k!
θ kTr[ρR

ε (t)(bWick)k] . (52)

Thanks to the estimate
∣
∣
∣Tr[ρR

ε (t)(bWick)k]
∣
∣
∣ =

∣
∣
∣Tr[〈N〉pk/2ρR

ε (t)〈N〉pk/2(〈N〉−p/2bWick〈N〉−p/2)k]
∣
∣
∣

≤ 〈R〉pk|b|kPp,p
, (53)

the l.h.s of (52) is an absolutely convergent series uniformly in ε ∈ (0, ε̄). Moreover, on can easily show
the strong limit

s− lim
N→∞

N

∑
k=0

ik

k!
θ k(bWick)k1[0,R2](N) = eiθbWick

1[0,R2](N) .

Therefore, we see that

∞

∑
k=0

ik

k!
θ kTr[ρR

ε (t)(bWick)k] =
∞

∑
k=0

ik

k!
θ kTr[ρR

ε (t)(bWick)k 1[0,R2](N)] = Tr[ρR
ε (t)eiθbWick

] .

This proves (52) and again by the uniform estimate (53) with respect toε ∈ (0, ε̄), we obtain

lim
ε→0

Tr[ρR
ε (t)eiθbWick

] =
∞

∑
k=0

ik

k!
θ k
∫

Z

b(Ft(z))
kdµ0 =

∫

Z

e−iθb(Ft(z))dµ0 .
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Now, a similarδ/3 argument as in the proof of Theorem 1.1
∣
∣
∣
∣
Tr[ρεnk

(t)eiθbWick
]−
∫

Z

eiθb(Ft(z))dµ0

∣
∣
∣
∣
≤

∣
∣
∣ρεnk

−ρR
εnk

∣
∣
∣
L 1(H )

+

∣
∣
∣
∣
Tr[ρR

εnk
(t)eiθbWick

]−
∫

Z

eiθb(Ft(z))dµR
0

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Z

eiθb(Ft(z))dµR
0 −

∫

Z

eiθb(Ft(z))dµ0

∣
∣
∣
∣
,

using the bound (21), the relation (47) and the dominated convergence theorem, yields the limit

lim
ε→0

Tr[ρεnk
(t)eiθbWick

] =

∫

Z

eiθb(Ft(z))dµ0 .

By integrating with respect toF ( f ) ∈Mb(R), we end the proof.
ii) The proof is similar to (i). Indeed, one shows

Tr[ρε(t) f (bWick)] =
∞

∑
k=0

akTr[ρε(t)(b
Wick)k] , (54)

with a l.h.s absolutely convergent series uniformly inε ∈ (0, ε̄). Lettingε → 0 in (54) yields the result.�

4 Examples

We review a series of examples. Firstly, the propagation of coherent states and Hermite states is recalled.
Secondly, bounded interactions occur naturally within themodelling of rapidly rotating Bose-Einstein con-
densates, owing to some hypercontractivity property. Thirdly, the tensor decomposition of the Fock space
allows to specify some Wigner measures for which the propagation cannot be translated in terms of the
reduced density matrices without writing all the BBGKY hierarchy. Finally, the result of Theorem 1.1
provides a new way to consider the Hartree-von Neumann limitin the mean field regime.

4.1 Coherent and Hermite states

The coherent states on the Fock space,Γs(Z ) are given byE(ξ )=W(
√

2
iε ξ )Ω = e

a∗(ξ )−a(ξ )
ε Ω, whereΩ is the

vacuum vector ofΓs(Z ), ξ ∈ Z and[a( f ),a∗(g)] = ε〈 f ,g〉 I . The Hepp method ([36][30][31]) consists
in studying the propagation of squeezed coherent states a slightly larger class which includes covariance
deformations. The normal state made withE(ξ ) is

ρε(ξ ) :=
∣
∣W(

√
2

iε
ξ )Ω

〉〈
W(

√
2

iε
ξ )Ω

∣
∣ .

We proved in [7] thatM (ρε(ξ ),ε ∈ (0, ε̄)) = {δξ} and a simple computation shows that the property(PI)
is satisfied:

lim
ε→0

Tr[ρεNk] = |ξ |2k = δξ (|z|2k) .

A second example is given by Hermite states, also well studied within the propagation of chaos technique
or other works (e.g., [44][13][23]). They are given by

ρN(ϕ) := |ϕ⊗N〉〈ϕ⊗N| , (55)

with ϕ ∈ Z , |ϕ |Z = 1 and discrete values forε = 1
N . We know from [7] thatM (ρN(ϕ),N ∈ N) =

{ 1
2π
∫ 2π

0 δeiθ ϕ dθ} where the rotation invariance is the phase-space translation of the gauge invariance of

the Hermite statesϕ → eiθ ϕ . One easily checks the property(PI):

lim
N→∞

Tr[ρN(ϕ)Nk] = 1 =
1

2π

∫ 2π

0
|z|2kδeiθ ϕ(z)dθ .

It is convenient to introduce a notation for this Wigner measure.
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Definition 4.1 For ϕ ∈Z , the symbolδ S1

ϕ denotes the Borel probability measure

δ S1

ϕ =
1

2π

∫ 2π

0
δeiθ ϕ dθ .

Theorem 1.1 applies and the Wigner measures associated with

(e−i t
ε Hε ρε(ξ )ei t

ε Hε )ε∈(0,ε̄) and (e−i t
ε Hε ρN(ϕ)ei t

ε Hε )ε=1/N,N∈N∗

are respectivelyδξt andδ S1

ϕt
, whereξt or ϕt evolves according to the classical flow.

For example when

Hε = dΓ(−∆)+
1
2

∫

R2d
V(x−y)a∗(x)a∗(y)a(x)a(y) dxdy

with Z = L2(Rd) the classical flow is the Hartree equation

i∂tψ =−∆ψ +(V ∗ |ψ |2)ψ .

We conclude by noticing that for such states (ρN(ϕ) andρε(ξ )) the asymptotic one particle reduced density

matrix γ(1)
0 (t) solves the equation







i∂tγ
(1)
0 =

[

−∆ +(V ∗n
γ(1)
0

) ,γ(1)
0

]

γ(1)
0 (t = 0) = |ξ 〉〈ξ | for ρε(ξ ) ,

(

resp. γ(1)
0 (t = 0) = |ϕ〉〈ϕ | for ρN(ϕ)

)

,
(56)

with n
γ(1)
0

(x) = γ(1)
0 (x,x) .

4.2 LLL-mean field dynamics for rapidly rotating Bose-Einstein condensates

The case of bounded interaction terms occurs exactly in the modelling of rapidly rotating Bose-Einstein
condensates in the Lowest-Landau-Level (LLL) regime. The (LLL) one particle states can be described
(see [2]) within the Bargmann space

Z =

{

f ∈ L2(Cζ1
,e−

|ζ1|2
h L(dζ1)) , ∂ζ̄1

f = 0

}

whereL(dζ1) is the Lebesgue measure onC, h > 0 is a parameter which is small in the rapid rotation
regime and where the norm onZ is given by

| f |2Z =

∫

C

| f (ζ1)|2e−
|ζ1|2

h
L(dζ1)

(πh)
=

1
πh
|u|2L2 , u(ζ1) = f (ζ1)e

− |ζ1|2
2h .

The multiparticle bosonic problem has been considered in [41] and the (LLL)-model has been justified
for the stationary states of such a system not only in the meanfield asymptotics. Thek-particle states are
elements of

k∨
Z =

{

F ∈ L2(Ck
ζ ,e−

|ζ |2
h L(dζ ))) , ∂ζ̄ F = 0, F(ζσ(1) . . . ,ζσ(k)) = F , ∀σ ∈Sk

}

,

with the norm

|F |2∨k
Z

=

∫

Ck
|F(ζ )|2 L(dζ )

(πh)k .

With or without the symmetry condition,
⊗k

Z and
∨k

Z are closed subspaces ofL2(Ck
ζ ,e−

|ζ |2
h L(dζ ))

and they are the image of the orthogonal projection (add the symmetry for
∨k

Z )

(Πk
hG)(ζ ) =

∫

Ck
e

ζ .τ−|τ|2
h G(τ)

L(dτ)

(πh)k .
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Within the modelling of rapidly rotating Bose-Einstein condensates, the one particle kinetic energy term is
A = hζ1∂ζ1

and it is associated with

0≤ Ekin( f ) = 〈 f ,hζ1∂ζ1
f 〉Z .

The standard one particle nonlinear energy is given by

α
∫

C

|u|4 L(dζ1) , u(ζ1) = f (ζ1)e
− |ζ1|2

2h .

whereα > 0 is another parameter provided by the physics (see[2]), butmore general energies can be
considered

ENL( f ) =
r

∑
p=2

αp

∫

C

|u|2p L(dζ1) , u(ζ1) = f (ζ1)e
− |ζ1|2

2h , αp > 0. (57)

The mean field Hamiltonian is thus given by

h( f ) = Ekin( f )+ENL( f ) = 〈 f , hζ1∂ζ1
f 〉+

r

∑
p=2

αp

∫

C

| f (ζ1)|2pe−
p|ζ1|2

h L(dζ1) .

An important property of these nonlinear energies comes from the hypercontractivity of the semigroup
(e−thξ ∂ξ )t≥0 proved in [16] which can be written as

|U |L2p ≤Cp,h,d|U |L2 if U(ζ ) = F(ζ )e−
|ζ |2
2h , F ∈

k
⊗Z , p∈ [2,+∞] . (58)

This implies that the nonlinear energy is a norm continuous polynomial with respect tof ∈Z and therefore
the nonlinear mean field equation

i∂t f = hζ1∂ζ1
f +

r

∑
p=2

pαpΠ1
h(|u|2(p−1)u)Π1

h f (59)

defines a nonlinear flow on the phase-spaceZ according to Subection 3.2 (we refer the reader to [45] for a
more detailed analysis of the nonlinear dynamics of the LLL-model) .
Let us consider the second quantized versionHε of the energyh in Γs(Z ). The kinetic energy is nothing
but dΓ(A):

dΓ(A)
∣
∣∨k

Z
= ε

k

∑
j=1

hζ j∂ζ j
= εhζ .∂ζ .

and the quantum HamiltonianHε is then

Hε = dΓ(A)+
r

∑
p=2

αpQWick
p (60)

with Qp( f ) =

∫

C

|u(ζ1)|2p L(dζ1) =

∫

C

| f (z)|2pe−
p|ζ1|2

h L(dζ1) = 〈 f⊗p ,Q̃p f⊗p〉 . (61)

The operatorQ̃p is easily identified after removing the center of mass in multiple integrals (see [41] for
details) as

Q̃pF(ζ ) = Πh
p

([
p−1

∏
j=1

δ (ζ ′j )

]

F

)

(ζ ) =
1

(πh)pF

(
ζ1 + · · ·+ ζp

p
, . . . ,

ζ1 + · · ·+ ζp

p

)

with ζ ′j = ζ j − ζ1+···+ζp
p . One easily checks as well, by using additionally the hypercontractivity estimate

(58) with p = +∞, thatQ̃p ∈L (
∨p

Z ).
The propagation result of Theorem 1.1 applies for such a model for all initial states which fulfill its

assumptions (boundedness of all moments and condition(PI)).
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4.3 Fock tensorization

We have already used, and it is the basis of the introduction of cylindrical observables, the fact that

Γs(Z )∼ Γs(Z1)⊗Γs(Z2) whenZ = Z1
⊥
⊕Z2 . The definition of Wigner measures introduced via cylin-

drical observables, yields the next result.

Lemma 4.2 AssumeZ = Z1
⊥
⊕Z2 and let (ρ1

ε )ε∈(0,ε̄), (ρ2
ε )ε∈(0,ε̄) be two families of normal states on

Γs(Z1) andΓs(Z2) such thatTr
[
ρℓ

εNδ
ℓ

]
≤Cδ holds uniformly for someδ > 0 andM (ρℓ

ε , ε ∈ (0, ε̄)) =
{

µℓ
}

for ℓ = 1,2 . Let ρε be the state onΓs(Z ) identified withρ1
ε ⊗ ρ2

ε in the decompositionΓs(Z ) ∼
Γs(Z1)⊗Γs(Z2). Then the family(ρε)ε∈(0,ε̄) admits the unique Wigner measureµ = µ1×µ2 on the phase
spaceZ = Z1×Z2 .

Before giving applications and variations on this result itis worth to notice that the identification of
the “tensor” stateρε requires some care. It is not equal in general toρ1

ε ⊗ρ2
ε since such a states does not

preserve the symmetric Fock spaceΓs(Z ) .
Here is a simple example, takeϕ1∈Z1 andϕ2∈Z2 with |ϕℓ|Zℓ

= 1,N1 ,N2∈N, and setρℓ = |ϕ⊗Nℓ
ℓ 〉〈ϕ⊗Nℓ

ℓ |
for ℓ = 1,2 . The tensor statesρ1⊗ρ2 is the pure state|ϕ⊗N1

1 ⊗ϕ⊗N2
2 〉〈ϕ⊗N1

1 ⊗ϕ⊗N2
2 | in Γs(Z1)⊗Γs(Z2) .

It suffices to identify the vectorϕ∨(N1,N2) ∈ Γs(Z ) associated withϕ⊗N1
1 ⊗ϕ⊗N2

2 . It is the symmetric vector
in
∨N1+N2 Z made withN1-timesϕ1 andN2-timesϕ2 and we can summarize the situation with

ϕ⊗Nℓ
ℓ =

1
√

εNℓNℓ!

Nℓ times
a∗(ϕℓ) . . .a

∗(ϕℓ) |Ωℓ〉 in Γs(Zℓ) , ℓ = 1,2,

ϕ∨(N1,N2) =

√

(N1 +N2)!

ε(N1+N2)N1!N2!
SN1+N2(ϕ

⊗N1
1 ⊗ϕ⊗N2

2 )

=
1

√

εN1+N2N1!N2!

N1 times
a∗(ϕ1) . . .a

∗(ϕ1)
N2 times

a∗(ϕ2) . . .a
∗(ϕ2) |Ω〉 in Γs(Z ) .

The tensor decomposition is especially useful whenZ is endowed with a Hilbert basis(ej) j∈N∗ . An Hilbert
basis ofΓs(Z ) is (e∨α)α∈∪∞

j=0(N
∗) j given by:

e∨α =

√

|α|!
α!

S|α |
(
e⊗α)=

1
√

ε |α ||α|!
[a∗(e)]α |Ω〉

with a natural multi-index notationα = (α1, . . . ,αk), |α|= α1 + · · ·+ αk , e⊗α = e⊗α1
1 ⊗·· ·⊗eαk

k and

[a∗(e)]α = a∗(e1)
α1 . . .a∗(ek)

αk .

For example, the identification betweenΓs(Ce1)⊗Γs((Ce1)
⊥) andΓs(Z ) is done via the mapping defined

by e
∨

α1
1 ⊗ e

∨
α ′ → e

∨
(α1,α ′), for all α1 ∈ N and allα ′ ∈ ∪∞

k=0(N \ {0,1})k . This can be iterated but re-
member that the definition of infinite tensor products requires the additional specification of one vector per
component which is hopefully rather canonical for Fock spaces endowed with a vacuum vector (see [34]) .
Below is a notation convenient to the definition of tensor states and which allows some extensions. Consider
the linear isometryCj onH = Γs(Z ) defined by its action on the Hilbert basis(e∨α)α∈∪∞

k=0(N
∗)k

Cje
∨α =

1
|a∗(ej)e∨α |a

∗(ej)e
∨α =

1
√

ε(α j +1)
a∗(ej )e

∨α = e∨(α+1 j ) , (62)

with |1 j |= 1 and(1 j) j = 1 . In the tensor decompositionΓs(Z )∼ Γs(Cej)⊗Γs((Cej)
⊥), this isometryCj

is nothing but the tensor product

[

1√
N j

a∗(ej)

]

⊗ I .

Definition 4.3 Let Z be endowed with a Hilbert basis(ej) j∈N∗ , for j ∈ N∗, and take the isometries
(Cj) j∈N∗ defined inH by (62). For j ∈ N∗, the operator Ej is defined onL 1(H ) by

E jρ = Cj ρC∗j , ∀ρ ∈L
1(H ) .
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For λ = (λ j) j∈N∗ ∈ ℓ1([0,+∞)) such that∑∞
j=1 λ j = 1, the notationλ .E means

λ .E =
∞

∑
j=1

λ jE j .

The operatorsE j andλ .E transform normal states on
∨k−1

Z into normal states on
∨k

Z and they all
commute. After takingϕ1 = e1 andϕ2 = e2 the tensor state onΓs(Z ) identified withρ1⊗ρ2 and studied
above withZ1 = Ce1 andZ2 = (Ce1)

⊥ is nothing but

E(N1,N2)|Ω〉〈Ω|= EN1
1 EN2

2 |Ω〉〈Ω|= EN2
2 EN1

1 |Ω〉〈Ω| .

Moreover the multinomial formula holds

(λ .E)N = ∑
|α |=N

N!
α!

λ αEα . (63)

We use these notion to formulate the propagation of nontrivial Wigner measures. The Hamiltonian is

Hε = dΓ(A)+

(
r

∑
j=2

〈z⊗ j ,Q̃ j z
⊗ j〉
)Wick

, ε =
1
N

with (A,D(A)) self-adjoint andQ̃ j = Q̃∗j ∈L (
∨ j

Z ) . It is associated with the mean field Hamiltonian

h(z, z̄) = 〈z, Az〉+
r

∑
j=2

Q j(z)

and the flow(Ft)t∈R in the phase spaceZ .

Proposition 4.4 Let Z be endowed with an orthonormal basis(ej) j∈N∗ and let the family(E j) j∈N∗ be as

in Definition 4.3. Onceρε(0) is fixedρε(t) is defined byρε(t) = e−i t
ε Hε ρε(0)ei t

ε Hε .
1) For k∈ N∗ and(ν1, . . . ,νk) ∈ [0,1]k fixed such that∑k

ℓ=1νℓ = 1, assume that Nℓ equals the integer part
[νℓN] for ℓ ∈ {1, . . . ,k}. Then the family of states(ρε(t))ε=1/N given byρε(0) = E(N1,...,Nk)|Ω〉〈Ω| admits a
unique Wigner measure

µt = (Ft)∗µ0 = (Ft)∗(δ S1√
ν1e1
×·· ·× δ S1√νkek

) .

The reduced density matricesγ(p)
ε (t) converge inL 1(

∨p
Z ) to

γ(p)
0 (t) =

∫

Z

|z⊗p
t 〉〈z⊗p

t | dµ0(z) (64)

by setting zt = Ftz .
2) Let λ = (λ j) j∈N∗ ∈ ℓ1([0,+∞)) be such that∑∞

j=1λ j = 1. Then the family of states(ρε(t))ε=1/N given
byρε = (λ .E)N|Ω〉〈Ω| satisfies the same properties as above with

µ0 =
∞
×
j=1

δ S1√
λ j ej

.

Proof. Actually it suffices to identify the measureµ0 and to check the assumptions of Theorem 1.1 at time
t = 0 .
1) It is a simple application of Lemma 4.2 with the decomposition

Γs(Z )∼ Γs(Ce1)⊗·· ·⊗Γs((Cek−1))⊗Γs((Ce1⊕·· ·⊕Cek−1)
⊥) .

In this decompositionE(N1,...,Nk)|Ω〉〈Ω| is nothing but a tensor product of Hermite states.|e⊗Nℓ
ℓ 〉〈e⊗Nℓ

ℓ | and
the result is a simple tensorization of the result for Hermite states withε = νℓ

Nℓ
.

2) The stateρε(0) = (λ .E)N|Ω〉〈Ω| belongs toL 1(
∨N

Z ) . It is therefore localized in the ball with radius
1 . According to Proposition 2.15, its Wigner measures are completely determined if we know the limits of

Tr
[

ρε(0)bWick
]
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for all theb∈P∞
alg(Z ) . Due to Pythagorean summation, the measureµ0 = ×∞

j=1 δ S1√
λ j ej

is supported in

the ball of radius 1. The estimates
∣
∣
∣Tr
[

ρε(0)(b−b′)Wick
]∣
∣
∣=
∣
∣
∣Tr
[

ρε(0)χ(N)(b−b′)Wickχ(N)
]∣
∣
∣≤Cp,q|b−b′|Pp,q ,

and

∣
∣
∣
∣

∫

Z

(b(z)−b′(z)) dµ0(z)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Z

(b(z)−b′(z))χ2(|z|2) dµ0(z)

∣
∣
∣
∣
= Cp,q|b−b′|Pp,q ,

with the first one deduced from the number estimate (10) in Proposition 2.3, hold for allb,b′ ∈P∞
p,q(Z ),

p,q ∈ N as soon asχ ∈ C ∞
0 ([0,+∞)) is chosen such thatχ ≡ 1 on [0,1] . Hence it suffices to prove

limε→0Tr
[
ρε(0)bWick

]
=
∫

Z
b(z) dµ0(z) for a total set ofP∞

alg(Z ) . With the compact kernel condition,

anyb̃∈L ∞(
∨p

Z ,
∨q

Z ) can be approximated by a linear combination of rank one operators of the form

|e∨γ〉〈e∨β |=
√

β !γ!
|β |!|γ|! S|γ||e⊗γ〉〈e⊗β |S|β |, |β |= p, |γ|= q . With

(〈z⊗q , e⊗γ 〉〈e⊗β , z⊗p〉)Wick = [a∗(e)]γ [a(e)]β

and ρε(0) = ∑
|α |=N

λ α N!
α!
|e∨α〉〈e∨α | ,

we can compute directly

Tr
[

ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick
]

= ∑
|α |=N

N!
α!

λ α〈a(e)γ e∨α ,a(e)β e∨α〉 .

Actually

a(e)β e∨α =

{ √

ε p α !
α ′! e

∨α ′ if α = α ′+ β ,

0 else,

with a similar identity forγ yields

Tr
[

ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick
]

= δβ ,γε
p N!
(N− p)!

(

∑
|α ′|=N−p

(N− p)!
α ′!

λ α ′
)

λ β

= δβ ,γε pN(N−1) . . .(N− p+1)λ β .

With ε = 1/N and(p,q) fixed, we obtain

Tr
[

ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick
]

= δβ ,γλ β =

∫

Z

〈z⊗q , e⊗γ 〉〈e⊗β , z⊗p〉 dµ0(z) .

�

We conclude with two remarks:

• The tensorized Hermite stateE(N1,...Nℓ ...)|Ω〉〈Ω| with Nℓ = [λℓN] and∑∞
j=1 λ j = 1 can be studied and

behaves asymptotically like(λ .E)N|Ω〉〈Ω| .

• When those tensor states are not Hermite states, the reduceddensity matrices satisfy no closed equa-
tion and all the hierarchy has to be considered. In the example leading to (56) for Hermite states the

general equation forγ(1)
0 (t) writes

i∂tγ
(1)
0 (x,y) = [−∆,γ(1)

0 ](x,y)+

∫

Rd
V(x−x′)γ(2)

0 (x′,x,x′,y)− γ(2)
0 (x′,x,x′,y)V(y−x′) dx′ ,

and the equation forγ(2)
0 involvesγ(3)

0 and so on. . . The propagation of Wigner measures gathers all
the asymptotic information in this case. Geometrically it is interesting to notice that if the initial
Wigner measure isδ S1√

λ1e1
×δ S1√

λ2e1
, with λ1+λ2 = 1, it is supported by a 2-dimensional torus. After

the action of the continuous flow, the support ofµt remains topologically a 2-dimensional torus but in
general deformed in the infinite dimensional phase space with no exact finite dimensional reduction.
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4.4 Condition (PI) for Gibbs states

For σ(ε) ∈L 1(Z ), which is a non negative strict contraction:

σ(ε) =
∞

∑
i=1

σi(ε)|ei(ε)〉〈ei(ε)| , 0≤ σi(ε) < 1,
∞

∑
i=1

σi(ε) < +∞ ,

where(ei(ε))i∈N∗ is a Hilbert basis ofZ , the operatorΓ(σ(ε)) belongs toL 1(H ) . It equalsΓ(σ(ε)) =

∑∞
n=0Sn(σ(ε))⊗nSn and the tensor decomposition gives

Tr [Γ(σ(ε))] =
∞

∏
i=1

1
1−σi(ε)

∈ R+ .

Hence we can consider the quasi-free state

ρε =
1

Tr [Γ(σ(ε))]
Γ(σ(ε)) .

It is more convenient to write

σi(ε) =
νi(ε)

νi(ε)+ ε
with νi(ε) ∈ [0,+∞) ,

and the condition∑∞
i=1 σi(ε) < +∞ is equivalent to∑ j=1 νi(ε) < +∞ .

Lemma 4.5 For σ(ε) = ∑∞
i=1

νi(ε)
νi(ε)+ε |ei(ε)〉〈ei(ε)| ∈L 1(Z ), the quasi-free stateρε = 1

Tr[Γ(σ(ε))]
Γ(σ(ε))

satisfies

∀k∈ N , sup
ε∈(0,ε̄)

Tr
[

ρεNk
]

< +∞

if and only if there exists C> 0 such that∑∞
i=1 νi(ε) ≤C . In such a case, the quantityTr

[
ρεNk

]
, k∈ N, is

equivalent to
k! ∑
|α |=k

ν(ε)α

asε→ 0, with the usual multi-index convention,ν(ε)α = ∏∞
k=1 νk(ε)αk .

Proof. Consider forx∈ [−c,c], c > 0, the quantity

Tr
[

ρε(1+ εx)
N
ε
]

=

∏∞
i=1

1

1− νi (ε)
νi+ε (1+εx)

∏∞
i=1

νi(ε)+ε
ε

=
∞

∏
i=1

1
1−νi(ε)x

When Tr
[
ρεNk

]
is uniformly bounded w.r.tε ∈ (0, ε̄), for all k∈ N it is aC ∞ function aroundx = 0 with

∂ k
x Tr
[

ρε(1+ εx)
N
ε
]∣
∣
x=0 = Tr [ρεN(N− ε) . . .(N− (k−1)ε)]∼ Tr

[

ρεNk
]

asε → 0.

But the first derivative is nothing but

∂xTr
[

ρε(1+ εx)
N
ε
]∣
∣
x=0 =

∞

∑
i=1

νi(ε) ,

which says that the uniform bound∑∞
i=1 νi(ε)≤C is a necessary condition.

Reciprocally when∑∞
i=1 νi(ε) ≤C, then the function∏∞

i=1(1−ν j(ε)x)−1 is analytic with respect tox in a
disc of radiusRC and equals

∞

∏
i=1

(1−ν j(ε)x)−1 =
∞

∏
i=1

(
∞

∑
j=0

νi(ε) j x j) =
∞

∑
k=0

xk

[

∑
|α |=k

ν(ε)α

]

,

which yields the result. �
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A Gibbs state is a quasi-free state withσ(ε) = e−εL(ε) whereL(ε) is a strictly positive operator assumed
here with a discrete spectrum:

L(ε) =
∞

∑
i=1

ℓi(ε)|ei〉〈ei | , ℓi(ε)≤ ℓi+1(ε) , (65)

where the basis(ej) j∈N∗ is assumed independent ofε ∈ (0, ε̄) for the sake of simplicity . There is a simple
traduction of the assumptions of Theorem 1.1, the non obvious one being the condition(PI) hidden in the
assumption (2).

Proposition 4.6 The Gibbs stateρε = 1
Tr[Γ(e−εL(ε))]

Γ(e−εL(ε)) with L(ε) given in(65)satisfies the assump-

tions of Theorem 1.1 if and only if

• For all i ∈ N∗ the limit limε→0 ℓi(ε) = ℓi(0) exists in(0,+∞] .

• If J ∈ N∗∪{∞} denotes the largest element inN∗∪{∞} such thatℓi(0) < +∞ for all i ≤ J, the two
conditions are verified

J

∑
i=1

1
ℓi(0)

< +∞ , (66)

and lim
ε→0

∑
i>J

εe−εℓi(ε)

(1−e−εℓi(ε))
= 0. (67)

Proof. First of all, writing σ(ε) = e−εL(ε) allows to apply Lemma 4.5 withνi(ε) = εe−εℓi (ε)

1−e−εℓi (ε) . From

e−εℓi(ε) ≥ 1− εℓi(ε) we deduce

νi(ε)≥ e−εℓi(ε)

ℓi(ε)
.

Hence the uniform boundedness of Tr
[
ρεNk

]
for k∈ N, which is equivalent to∑∞

i=1 νi(ε)≤C implies

inf
j∈N∗,ε∈(0,ε̄)

ℓ j(ε) = κ > 0. (68)

We now use the assumption that the family(ρε)ε∈(0,ε̄) admits a unique Wigner measureµ0 . As a quasi-free
state,ρε is given by its characteristic function (see for example [15] and [7] for theε-dependent version)

Tr [ρεW( f )] = e
− ε

4 〈 f , 1+e−εL(ε)

1−e−εL(ε)
f 〉

.

But the Wigner measure is characterized by its characteristic function

G(ξ ) =
∫

Z

e−2iπS(z,ξ ) dµ0(z) = lim
ε→0

Tr
[

ρεW(
√

2πξ )
]

.

By takingξ = ei , i ∈ N
∗, this implies that the limit

lim
ε→0

e
− επ2

2
1+e−εℓi (ε)

1−e−εℓi (ε)

exists inR . With the constraint (68) there are two possibilities: either limε→0ℓi(ε) = ℓi(0) ∈ [κ ,+∞) and

G(ei) = e
− π2

ℓi (0) or limε→0 ℓi(ε) = +∞ andG(ei) = 1 . After recalling that theℓi(ε) are ordered and by
introducing the indexJ like in our statement, we get forξ = ∑∞

i=1 ξiei ∈Z

G(ξ ) = e
−π2∑J

i=1
|ξ |2
ℓi (0) .

The measureµ0 has to be the gaussian measure

µ0 =
J
×
i=1

[
ℓi(0)

π
e−ℓi(0)|zi |2 L(dzi)

]

, z=
∞

∑
i=1

ziei .
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Our assumptions imply that the integral
∫

Z
|z|2 dµ0(z) equals

J

∑
i=1

1
ℓi(0)

=
∫

Z

|z|2 dµ0(z) = lim
ε→0

Tr [ρεN] .

After Lemma 4.5 we know that

J

∑
i=1

1
ℓi(0)

= lim
ε→0

∞

∑
i=1

νi(ε) = lim
ε→0

∞

∑
i=1

εe−εℓi(ε)

1− εℓi(ε)
,

which enforces the two conditions (66) and (67) .
Conversely assume that all the conditions are satisfied. Reconsidering the final argument in the proof of
Lemma 4.5 says that the function

∞

∏
i=J+1

(1−νi(ε)x)−1

converges to 1 in a given neighborhood ofx = 0 . Hence

lim
ε→0

Tr
[

ρεNk
]

= lim
ε→0

k! ∑
|α |=k,

αi=0 for i>J

(

εe−εℓi(ε)

1−e−εℓi(ε)

)α

= k! ∑
|α |=k,

αi=0 for i>J

ℓ(0)−α ,

which is easily checked to be equal to
∫

Z |z|2k dµ0(z) . �

In the Bose-Einstein condensation of the free Bose gas in dimension 3, considered in [7], the first
eigenvalue is tuned so thatℓ1(0) ∈ (0,+∞) and all the other eigenvalues are such thatℓi(0) = +∞ . The
condition which fails and gives rise to a physical example ofdimensional defect of compactness is (67) .

4.5 The Hartree-von Neumann limit

Let ρ0 be a non-negative trace class operator onL2(Rd) satisfying Tr[ρ0] = 1 and let

ρ⊗N = ρ⊗·· ·⊗ρ .

Consider the time-dependent von Neumann equation for a system ofN particles
{

i∂tρN(t) = [HN,ρN(t)]

ρN(0) = ρ⊗N
0 ,

(69)

with ρN(t) is a trace class operator onL2(Rd)⊗N ∼ L2(RdN). HereHN is the Hamiltonian of theN particles
system

HN =
N

∑
i=1

1⊗·· ·⊗A⊗·· ·⊗1+
1
N ∑

i< j
V(xi−x j) ,

with A is a self-adjoint operator andV ∈ L∞(Rd) real-valued satisfyingV(x) = V(−x). As will appear in
the proof, more general interactions could be considered inthe spirit of Theorem 1.1, but we prefer to stick
to the usual presentation for an example.
The next result concerns the limit of the von Neumann dynamics (69) in the mean field regimeN→ ∞
already studied in [10][9]. We shall see that although the particles are not assumed to be bosons, our
bosonic mean field result apply to this case due to the symmetry of the tensorized initial stateρ⊗N

0 .

Proposition 4.7 Let (ρN(t)) denote the solution to(69), and consider the trace class operatorσ (k)
N (t) ∈

L 1(L2(Rkd)) defined by relation

∀B∈L (L2(Rkd)) , Tr
[

σ (k)
N (t)B

]

= Tr
[

ρN(t)(B⊗ IL2(Rd(N−k)))
]

.

Then the convergence

lim
N→∞

σ (k)
N = ρ(t)⊗k (70)

34



holds inL 1(L2(Rdk)) for all t ∈R and whenρ(t) solves the Hartree-von Neumann equation

{
i∂tρ(t) = [A+(V ∗nρ(t)),ρ(t)]
ρ(0) = ρ0 ,

(71)

with nρ(x,t) := ρ(x;x, t) .

Proof. The proof will be done in three steps: Bosonisation, Liouvillian and mean field limit.
Bosonization:The phase space that we will consider is not the one particle spaceL2(Rd) but

Z = L
2(L2(Rd)) ,

the space of Hilbert-Schmidt operators onL2(Rd) . It is endowed with the inner product

〈ω1,ω2〉Z = TrL2[ω∗1ω2]

where TrL2[.] here denotes the trace onL2(Rd) andω∗1 is the adjoint ofω1 .
The cyclicity of the trace leads to

Tr(L2)⊗N

[

ρN(t)(B⊗ IL2(Rd(N−k)))
]

= 〈ΨN(t) , (B⊗ IL2(Rd(N−k)))ΨN(t)〉Z ⊗N (72)

with ΨN(t) = e−itHN
√ρ0

⊗NeitHN .
The important point is that at timet = 0,ΨN(0)=

√ρ0
⊗N , is a Hermite state in

∨N
Z and that the evolution

preserves this symmetry so that

∀t ∈ R , ΨN(t) ∈
∨

N
Z , ΨN(0) =

√
ρ0
⊗N .

With any bounded operatorB : L2(Rdk)→ L2(Rdk), the action by left (resp. right) multiplication is defined
by

LB (resp.RB) :
∨

k
Z →

∨
k
Z

ω⊗k 7→ Sk(Bω⊗k) , (resp.Sk(ω⊗kB)) ,

whereSk is the orthogonal projection from⊗kZ onto
∨k

Z . Since(ω⊗k)ω∈Z is a total family in
∨k

Z

this defines a bounded operatorLB∈L (
∨k

Z ) (resp.RB∈L (
∨k

Z )) such thatL∗B = LB∗ (resp.R∗B = RB∗) .
WhenB(x1, . . . ,xk,y1, . . . ,yk) is the Schwartz kernel ofB ∈L (L2(Rdk)) , LB (resp. RB) is the left (resp.
right) multiplication by the operator with kernel

1
k! ∑

σ∈Sk

B(xσ(1), . . . ,xσ(k),yσ(1), . . . ,yσ(k)) .

Hence the trace (72) equals

Tr(L2)⊗N

[

ρN(t)(B⊗ IL2(Rd(N−k)))
]

= 〈ΨN(t) ,L[B⊗I⊗(N−k)]ΨN(t)〉∨N
Z

.

With an operatorB∈L (L2(Rdk)), we can now associate a symbol

bB(ω) = 〈ω⊗k,LBω⊗k〉∨kZ
= Tr(L2)⊗k

[

(ω∗)⊗kBω⊗k
]

∈Pk,k(Z ).

SinceL[B⊗I⊗(N−k)] is nothing butLB
∨

I∨N−k Z
we get

Tr(L2)⊗N

[

ρN(t)(B⊗ IL2(Rd(N−k)))
]

=
(N−k)!

N!εk 〈ΨN(t) ,bWick
B ΨN(t)〉∨N

Z
, ε =

1
N

.

Liouvillian: Let us now determine the appropriate HamiltonianHε of this problem which is actually a
Liouvillian. The map

R ∋ t 7→ e−itAωeitA
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defines a continuous unitary group onZ with a self-adjoint generator

LA : Z → Z

ω 7→ [A,ω ] .

The interaction is a bounded self-adjoint operatorQ̃ :
∨ 2Z →∨ 2Z given byQ̃= 1

2(LV−RV)∈L (
∨2

Z )

and we associate the symbolQ(ω) = 〈ω⊗2 , Q̃ω⊗2〉 . For anyω ∈Z the kernel ofQ̃ω⊗2 ∈∨2
Z is given

by

(Q̃ω⊗2)(x1,y1;x2,y2) =
1
2

V(x1−x2)ω(x1,y1)ω(x2,y2)−
1
2

V(y1−y2)ω(x1,y1)ω(x2,y2) .

After introducing the Hamiltonian
Hε = dΓ(LA)+QWick,

acting as a self-adjoint operator onΓs(Z ), we get forΘ ∈∨ NZ ∩D(dΓ(LA)) ,

ε−1Hε Θ = [HN,Θ] with ε = 1/N.

This implies
ΨN(t) = e−itHN(

√
ρ0)
⊗NeitHN = e−i t

ε Hε (
√

ρ0)
⊗N ∈

∨
N
Z .

Mean field limit: The initial dataρε(0) = |√ρ0
⊗N〉〈√ρ0

⊗N| is a Hermite state which fulfills the assump-
tions of Theorem 1.1 with

µ0 = δ S1√ρ0
.

The classical energy associated with the HamiltonianHε is

h(ω) = 〈ω , LAω〉Z +
1
2
〈ω⊗2 , (LV −RV)ω⊗2〉Z

and the mean field flowFt is nothing but the one given by

i∂tω = ∂ω̄ h(ω) = [A,ω ]+ (V ∗n1
ω) ω−ω (V ∗n2

ω) ,

whereV ∗ ni
ω are multiplication operators andn1

ω(x) =
∫

Rd |ω(x,y)|2dy, n1
ω(y) =

∫

Rd |ω(x,y)|2dx when
ω(x,y) denotes the kernel ofω . Beside the invariance|Ft(ω)|Z = |ω |Z and Ft(e−iθ ω) = e−iθ Ft(ω) ,
the flowFt also satisfies

Ft(ω∗) = Ft(ω)∗ . (73)

Thus previous equation becomes equivalent to the Hartree-von Neumann equation (71) withρ(t) = ω(t)2

whenω(0) =
√ρ0 . The Theorem 1.1 says

∀b∈Pk,k(Z ) , lim
N→∞

Tr∨N
Z

[

|ΨN(t)〉〈ΨN(t)|bWick
]

=
∫

Z

b(ωt) δ S1√ρ0
= b(

√

ρ(t)) .

In particular whenB∈L (L2(Rdk)), this implies

lim
N→∞

Tr
[

ρN(t)(B⊗ IL2(Rd(N−k)))
]

= TrL2(Rdk)

[

ρ(t)⊗kB
]

.

This proves the weak convergence in (70), but since it is concerned with non negative trace class operator

and Tr
[

σ (k)
N (t)

]

= 1 = Tr
[
ρ(t)⊗k

]
the convergence holds in theL 1-norm. �

We end with three remarks:

• Whenρ is a pure state, the result of Proposition 4.7 is the same as (56).

• When ρ is not a pure state the Subsection 4.3 has already shown that one has to be very care-
ful with tensor products. Actuallyρ⊗N ∈ L 1(⊗N Z ) commutes with the symmetrization projec-
tion SN (or the antisymmetrizationAN for fermions) but the corresponding states inL 1(

∨N
Z )

(resp.L 1(
∧N

Z )) are
SNρ⊗N

SN (resp.ANρ⊗N
AN) .

But as shows the formula Tr[Γs(ρ)] = ∏λ∈σ(ρ)
1

1−λ (resp. Tr[Γa(ρ)] = ∏λ∈σ(ρ)
1

1+λ ), the trace
of SNρ⊗NSN (resp. ANρ⊗NAN) converges to 0 asN→ ∞ . We leave for subsequent works, the
question whether normalizing these states would lead to thesame asymptotics as in Proposition 4.7.
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• We recall that a tensorization based on the tensor decomposition of Fock spaces in Subsection 4.3 led
to the evolution of Wigner measures which cannot be translated in terms of Hartree-von Neumann
equations.

Acknowledgements:This work was finished while the second author had a CNRS-sabbatical semester in
Ecole Polytechnique.
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différentiels en dimension infinie. Comm. Partial Differential Equations 2 (1977), no. 1, 31–67.

[40] C. J. Lennard.C1 is uniformly Kadec-Klee. Proc. Amer. Math. Soc. 109 (1990),71–77.

[41] M. Lewin, R. Seiringer. Strongly correlated phases in rapidly rotating Bose gases. [cond-mat.quant-
gas] arXiv:0906.0741v1 (2009).

[42] P.L. Lions, T. Paul. Sur les mesures de Wigner. Rev. Mat.Iberoamericana 9 (1993), no. 3, 553–618.

[43] A. Martinez. An Introduction to Semiclassical Analysis and Microlocal Analysis. Universitext,
Springer-Verlag, (2002).

[44] V.P. Maslov, O.Y. Shvedov. The chaos conservation problem in quantum physics. Russian
J. Math. Phys. 4 (1996), no. 2, 173–216.

[45] F. Nier. Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics. Rev. Math.
Phys. 19 (2007), no. 1, 101–130.

[46] K.R. Parthasarathy. Probability measures on metric spaces. Probability and Mathematical Statistics,
No. 3 Academic Press, Inc., New York-London 1967.

[47] M. Reed, B. Simon. Methods of Modern Mathematical Physics, vol. II Academic Press (1976).

[48] D. Robert. Autour de l’approximation semi-classique.Progress in Mathematics, 68. Birkhäuser
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