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Contrary to the finite dimensional case, Weyl and Wick quantizations are no more asymptotically equivalent in the infinite dimensional bosonic second quantization. Moreover neither the Weyl calculus defined for cylindrical symbols nor the Wick calculus defined for polynomials are preserved by the action of a nonlinear flow. Nevertheless taking advantage carefully of the information brought by these two calculuses in the mean field asymptotics, the propagation of Wigner measures for general states can be proved, extending to the infinite dimensional case a standard result of semiclassical analysis.

Introduction

Our main result is briefly presented in this introduction. Accurate definitions will be found in Section 2. Let H = Γ s (Z ) be the bosonic Fock space constructed over the complex separable Hilbert-space Z , Γ s (Z ) = ⊕ ∞ n=0 n Z where n Z is the symmetric n-th hilbertian tensor power of Z . Consider the Hamiltonian 

H ε = dΓ(A) + ( r ∑ j=2 z ⊗ j , Q j z ⊗ j ) Wick
h(z, z) = z , Az + r ∑ j=2 z ⊗ j , Q j z ⊗ j , z ∈ D(A) ⊂ Z .
When Z = L 2 (R d ) , the operator H ε is formally written

H ε = R 2d
A(x, y)a * (x)a(y) dxdy + r ∑ j=2 R 2d j Q j (x 1 , . . . , x j , y 1 , . . . , y j )a * (x 1 ) . . . a * (x j )a(y 1 ) . . . a(y j ) dxdy , with the ε-dependent canonical commutation relations [a(x) , a * (y)] = εδ (xy) . Here A(., .) and Q j (., .) denote the kernels of the operators A and Q j . The mean field asymptotics is concerned with the limit as ε → 0, where 1 ε = N ε represents a large number of particles and where ε enters in the CCR-relations by ∀ f , g ∈ Z , [a( f ) , a * (g)] = ε f , g I . * zied.ammari@univ-rennes1.fr † francis.nier@univ-rennes1.fr [START_REF] Adami | Towards a rigorous derivation of the cubic NLSE in dimension one[END_REF] The number operator is N = dΓ(I Z ), with Nz ⊗n = εnz ⊗n . For a normal state ρ ε ∈ L 1 ( N ε Z ) ⊂ L 1 (H ) with Z = L 2 (R d ), a standard tool considered in the mean field limit is the BBGKY hierarchy of reduced density matrices:

γ (p) ε (x, y) = R 2d(Nε -p)
ρ ε (x, X, y, X) dX , p ∈ N , and such a definition will be extended to general Z and normal states ρ ε ∈ L 1 (H ) fulfilling the condition Tr ρ ε N k < +∞ for all k ∈ N . For a cylindrical function, b(z) = b(℘z) for some finite rank projection ℘ and b belonging to the Schwartz class S (℘Z ), the Weyl quantization can be given by

b Weyl = ℘Z F [b](z) W ( √ 2πz) L p (dz) ,
where W ( √ 2πz) = e iπ(a(z)+a * (z)) and where L p and F are respectively the Lebesgue measure on ℘Z and the (ε-independent) Fourier-transform on S (℘Z ). Associated with a family (ρ ε ) ε∈(0,ε) , Wigner measures can be defined by

lim k→∞ Tr ρ ε k b Weyl = Z b(z) dµ(z)
after extracting subsequences under the sole uniform estimate Tr ρ ε N δ ≤ C δ for some δ > 0 .

The problem of the mean field dynamics questions whether the asymptotic quantities as ε → 0 associated with ρ ε (t) = e -i t ε H ε ρ ε e -i t ε H ε , t ∈ R are transported by the flow F t generated by the classical Hamiltonian h(z, z) and given, after writing z t = F t-s (z s ), by

i∂ t z t = (∂ zh)(z t , zt ) = Az t + r ∑ j=2 j z ⊗ j-1 t , Q j z ⊗ j t . (1) 
The finite dimensional case enters in the standard framework of semiclassical analysis and has been studied extensively in the 80's and 90's by various authors and with various methods ( [START_REF] Robert | Autour de l'approximation semi-classique[END_REF][35] [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF][42] [START_REF] Combescure | A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition[END_REF][43] [START_REF] Folland | Harmonic analysis in phase space[END_REF] and references therein). It was first considered by Hepp in [START_REF] Hepp | The classical limit for quantum mechanical correlation functions[END_REF] and extended by Ginibre and Velo in [START_REF] Ginibre | The classical field limit of scattering theory for nonrelativistic many-boson systems[END_REF][31] by the squeezed coherent states method well-known as the Hepp method (see also [49][6]). More recently the question of the mean field dynamics has been tackled with the so-called BBGKY-hierarchy approach inspired by the BBGKY-method of classical kinetic theory (see [START_REF] Spohn | Kinetic equations from Hamiltonian dynamics[END_REF][13] [START_REF] Erdös | Derivation of the nonlinear Schrödinger equation from a many body coulomb system[END_REF][14] [START_REF] Graffi | Mean-field approximation of quantum systems and classical limit[END_REF][1] [3] [START_REF] Erdös | Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems[END_REF] and also the related works [37][17]). In [START_REF] Fröhlich | Mean-field-and classical limit of many-body Schrödinger dynamics for bosons[END_REF][26] [START_REF] Fröhlich | On the Mean-field limit of bosons with Coulomb two-body interaction[END_REF] a specific use of the structure of the Wick calculus in the bosonic Fock space was used to make work truncated Dyson expansions for the mean field dynamics of specific states. The aim of our work started in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] was to restore the phase-space geometric nature of the problem in the spirit of [START_REF] Berezin | The method of second quantization[END_REF][33] [START_REF] Krée | Kernels and symbols of operators in quantum field theory[END_REF][39] and to extend as much as possible to the infinite dimensional case, the methods well understood for the semiclassical finite dimensional problem. In this first article, we explained the construction of Wigner measures, analyzed accurately the gap of information carried by Weyl observables and Wick observables and use these Wigner (or semiclassical) measures to reformulate known propagation results. In [START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF], we reconsidered the truncated Dyson expansion method of [START_REF] Fröhlich | Mean-field-and classical limit of many-body Schrödinger dynamics for bosons[END_REF][26] [START_REF] Fröhlich | On the Mean-field limit of bosons with Coulomb two-body interaction[END_REF] in order to prove the propagation of Wigner measures for some specific families of states. We are now able to state the following general result (still with a regular interaction term contrary to many other works cited above).

Theorem 1.1 Let (ρ ε ) ε∈(0,ε) be a family of normal states on H with a single Wigner measure µ 0 and such that ∀α ∈ N, lim ε→0

Tr[ρ ε N α ] = Z |z| 2α dµ 0 (z) < +∞ . ( 2 
)
Then for all t ∈ R, the family (ρ ε (t) = e -i t ε H ε ρ ε e i t ε H ε ) ε∈(0,ε) has a unique Wigner measure µ t = (F t ) * µ 0 , which is the initial measure µ 0 pushed forward by the flow associated with (1). Comments: The existence of Wigner measures as Borel probability measures requires a uniform estimate Tr ρ ε N δ ≤ C δ for some δ > 0, but such an assumption would be redundant with the existence of bounded limits stated in [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF]. The uniqueness of the Wigner measure µ 0 is not really a strong assumption since it suffices to replace the whole family (ρ ε ) ε∈(0,ε) by a suitable extracted sequence (ρ ε k ) k∈N , lim k→∞ ε k = 0, in order to fulfill this requirement. Such a reduction argument after extraction will often be used.

Moreover the convergence

The fact that the quantities Tr [ρ ε N α ] are uniformly bounded w.r.t ε ∈ (0, ε) is also very natural within the mean field framework and satisfied by all known physical examples. Actually the strong assumption which is not satisfied in all cases is that the limit in (2) equals Z |z| 2α dµ 0 . This condition prevents from the phenomenon of "infinite dimensional defect of compactness" identified in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] and which was shown to appear in the physical example of the Bose-Einstein free gas (the non condensated phase is responsible for a discrepancy between the left-and right-hand sides of ( 2)). The analysis of this phenomenon is improved in Section 2.

Finally our proof no more uses truncated Dyson expansions of the quantum flow and relies only on the good properties of the classical flow, after exploiting all the a priori information given by the Weyl and Wick calculus.

Outline:

The Section 2 introduces the various objects used for our analysis, Wick and Weyl calculuses, Wigner measures, reduced density matrices. The conditions presented in [START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF] are reduced to the simple equivalent form (2) in Subsection 2.7. After this the Subsection 2.8 is devoted to the notion of states localized in a ball. The dynamics is studied in Section 3. First a simple condition is proved to ensure, via some equicontinuity argument, the possibility of a common extraction process (ε k ) k∈N for all times t ∈ R . Then the propagation of Wigner measures is proved for states localized in a ball. Then the truncation is removed and all the arguments are gathered for the proof of Theorem 1.1 in Subsection 3.4. Finally, additional simple consequences are listed in Subsection 3.5.

Examples are presented in Section 4. It is recalled that the regular interactions are physically relevant within the modelling of the rapidly rotating Bose condensates in the Lowest Landau Level approximation. Details are given about the propagation of non trivial Wigner measures supported on a torus, which shows the advantage of this formulation compared to the BBGKY hierarchy method. Finally, the propagation of Wigner measures provides a nice formulation of the Hartree-von Neumann limit.

Information carried by Wigner measures

After introducing the symmetric Fock space with ε-dependent CCR's and recalling some properties of the Wick quantization, the connection between infinite dimensional Wigner measures and the BBGKY presentation of the many body problem is explicitly specified. This section ends with the notion of states localized in a ball, which will be usefull in the proof of Theorem 1.1.

Fock space

Consider a separable Hilbert space Z endowed with a scalar product ., . which is anti-linear in the left argument and linear in the right one and with the associated norm |z| = z, z . Let σ = Im ., . and S = Re ., . respectively denote the canonical symplectic form and the real scalar product over Z . The symmetric Fock space on Z is the Hilbert space

H = ∞ n=0 n Z = Γ s (Z ) ,
where n Z is the n-fold symmetric tensor product. Almost all the direct sums and tensor products are completed within the Hilbert framework. This is omitted in the notation. On the contrary, a specific alg superscript will be used for the algebraic direct sums or tensor products.

For any n ∈ N, the orthogonal projection of n Z onto the closed subspace n Z will be denoted by S n . For any (ξ 1 , ξ 2 , . . . , ξ n ) ∈ Z n , the vector

ξ 1 ∨ ξ 2 ∨ • • • ∨ ξ n ∈ n Z will be ξ 1 ∨ ξ 2 ∨ • • • ∨ ξ n = S n (ξ 1 ⊗ ξ 2 • • • ⊗ ξ n ) = 1 n! ∑ π∈S n ξ π(1) ⊗ ξ π(2) • • • ⊗ ξ π(n) , (3) 
where S n is the symmetric group of degree n. The family of vectors

(ξ 1 ∨ • • • ∨ ξ n ) ξ i ∈Z
is a total family of n Z and thanks to the polarization identity

ξ 1 ∨ ξ 2 ∨ • • • ∨ ξ n = 1 2 n n! ∑ ε i =±1 ε 1 • • • ε n n ∑ j=1 ε j ξ j ) ⊗n , (4) 
the same property holds for (ξ ⊗n ) n∈N,ξ ∈Z . For two operators

A k : i k Z → j k Z , k = 1, 2, the notation A 1 A 2 stands for A 1 A 2 = S j 1 + j 2 • (A 1 ⊗ A 2 ) • S i 1 +i 2 ∈ L ( i 1 +i 2 Z , j 1 + j 2 Z ) .
Any z ∈ Z is identified with the operator |z

: 0 Z = C ∋ λ → λ z ∈ Z = 1 Z while z| denotes the linear form Z ∋ ξ → z , ξ ∈ C.
The creation and annihilation operators a * (ξ ) and a(ξ ), parametrized by ε > 0, are then defined by:

a(ξ ) | n Z = √ εn ξ | ⊗ I n-1 Z a * (ξ ) | n Z = ε(n + 1) S n+1 • ( |ξ ⊗ I n Z ) = ε(n + 1) ξ I n Z
and satisfy the canonical commutation relations (CCR):

[a(ξ 1 ), a(ξ 2 )] = [a * (ξ 1 ), a * (ξ 2 )] = 0, [a(ξ 1 ), a * (ξ 2 )] = ε ξ 1 , ξ 2 I. ( 5 
)
We also consider the canonical quantization of the real variables

Φ(ξ ) = 1 √ 2 (a * (ξ ) + a(ξ )) and Π(ξ ) = Φ(iξ ) = 1 i √ 2 (a(ξ ) -a * (ξ )).
They are self-adjoint operators on H and satisfy the identities:

[Φ(ξ 1 ), Φ(ξ 2 )] = iεσ (ξ 1 , ξ 2 )I, [Φ(ξ 1 ), Π(ξ 2 )] = iεS(ξ 1 , ξ 2 )I.
The representation of the Weyl commutation relations in the Fock space

W (ξ 1 )W (ξ 2 ) = e -iε 2 σ (ξ 1 ,ξ 2 ) W (ξ 1 + ξ 2 ) (6) 
= e -iεσ (ξ 1 ,ξ 2 ) W (ξ 2 )W (ξ 1 ), is obtained by setting W (ξ ) = e iΦ(ξ ) . The number operator is also parametrized by ε > 0,

N | n Z = εnI | n Z .
It is convenient to introduce the subspace

H f in = alg n∈N n Z
of H , which is a set of analytic vectors for N.

For any contraction S ∈ L (Z ), |S| L (H ) ≤ 1, Γ(S) is the contraction in H defined by Γ(S) | n Z = S ⊗ S • • • ⊗ S .
More generally Γ(B) can be defined by the same formula as an operator on H f in for any B ∈ L (Z ).

Meanwhile, for any self-adjoint operator A : Z ⊃ D(A) → Z , the operator dΓ(A) is the self-adjoint operator given by

e it ε dΓ(A) = Γ(e itA ) dΓ(A) | n,alg D (A) = ε   n ∑ k=1 I ⊗ • • • ⊗ A k ⊗ • • • ⊗ I   .
For example N = dΓ(I) .

Wick operators

The Wick symbolic calculus on (homogenous) polynomials as introduced in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] is recalled with its basic properties.

Definition 2.1 For p, q ∈ N, P p,q (Z ) denotes the set of (p, q)-homogeneous polynomial functions on Z which fulfill : b(z) = z ⊗q , bz ⊗p with b ∈ L ( p Z , q Z ) .

The subspace of

P p,q (Z ) made of polynomials b such that b is a compact operator b ∈ L ∞ ( p Z , q Z ) (resp. b ∈ L r ( p Z , q Z )
) is denoted by P ∞ p,q (Z ) (resp. P r p,q (Z )). On those spaces, the natural norms are

|b| P p,q = | b| L ( p Z , q Z ) and |b| P r p,q = | b| L r ( p Z , q Z ) , 1 ≤ r .
The set of non homogeneous polynomials, the algebraic direct sum ⊕ alg p,q∈N P p,q (Z ) (resp. ⊕ alg p,q∈N P r p,q (Z ) with 1 ≤ r ≤ ∞), will be denoted by P alg (Z ) (resp. P r alg (Z )) .

Owing to the condition b ∈ L ( p Z , q Z ) for b ∈ P p,q (Z ), this definition implies that any Gâteaux differential

∂ j z ∂ k z b(z) at the point z ∈ Z belongs to L ( k Z , j Z ) with ϕ, ∂ j z ∂ k z b(z)ψ = p! (p -k)! q! (q -j)! z ⊗q-j ∨ ϕ, b z ⊗p-k ∨ ψ .
In particular, we recover the operator b from b(z) via the relation b

= 1 p! 1 q! ∂ p z ∂ q z b(z) ∈ L ( p Z , q Z ) .
With any "symbol" b ∈ P p,q (Z ), a linear operator b Wick called Wick monomial can be associated according to:

b Wick : H f in → H f in , b Wick | n Z = 1 [p,+∞) (n) n!(n + q -p)! (n -p)! ε p+q 2 b I n-p Z ∈ L ( n Z , n+q-p Z ) , (7) 
with b = (p!) -1 (q!) -1 ∂ p z ∂ q z b(z) . The basic symbol-operator correspondence:

z, ξ ←→ a * (ξ ) ξ , z ←→ a(ξ ) √ 2S(ξ , z) ←→ Φ(ξ ) √ 2σ (ξ , z) ←→ Π(ξ ) z, Az ←→ dΓ(A) |z| 2 ←→ N ,
and more generally

p ∏ i=1 z, η i × q ∏ j=1 ξ j , z Wick = a * (η 1 ) • • • a * (η p )a(ξ 1 ) • • • a(ξ q ).
We have the following properties.

Proposition 2.2

The following identities hold true on H f in for every b ∈ P p,q (Z ):

(i) b Wick * = bWick . (ii) C(z)b(z)A(z) Wick = C Wick b Wick A Wick , if A ∈ P α,0 (Z ), C ∈ P 0,β (Z ). (iii) e i t ε dΓ(A) b Wick e -i t ε dΓ(A) = b(e -itA z) Wick , if A is a self-adjoint operator on Z .
A consequence of i) says that b Wick is symmetric when q = p and b * = b. Moreover the definition [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] gives

q = p and b ≥ 0 ⇒ b Wick ≥ 0 on H f in , (8) 
which is false for general non negative polynomial symbols 1 . For an increasing net of non negative operators ( bα

) α , bα ∈ L ( p Z ) (again q = p), it also gives b = sup α bα in L ( p Z ) ⇒ ∀ϕ ∈ H f in , ϕ , b Wick ϕ = sup α ϕ , b Wick α ϕ . (9) 
When Z = L 2 (R d , dx), the general formula for b Wick with b ∈ P p,q (Z ) is simply

b Wick = R d(p,q)
b(y 1 , . . . , y q , x 1 , . . . , x p ) a * (y 1 ) . . . a * (y q ) a(x 1 ) . . . a(x p )

dx 1 • • • dx p dy 1 • • • dy q ,
where b(y, x) is the Schwartz kernel of b and where a(x k ) = a(δ x k ) according to the usual convention.

Proposition 2.3 For b ∈ P p,q (Z ), the following number estimate holds

N -q 2 b Wick N -p 2 L (H ) ≤ |b| P p,q . (10) 
The relations ( 8) and ( 9) now become for b ∈ P p,p (Z ) or b α ∈ P p,p (Z )

q = p and b ≥ 0 ⇒ N -p/2 b Wick N -p/2 ≥ 0 in L (H ) , (11) 
b = sup α bα in L ( p Z ) ⇒ N -p/2 b Wick N -p/2 = sup α N -p/2 b Wick α N -p/2 in L (H ) .(12)
An important property of our class of Wick polynomials is that a composition of b Wick

1 • b Wick 2 with b 1 , b 2 ∈ P alg (Z ) is a Wick polynomial with symbol in P alg (Z ). For b 1 ∈ P p 1 ,q 1 (Z ), b 2 ∈ P p 2 ,q 2 (Z ), k ∈ N and any fixed z ∈ Z , ∂ k z b 1 (z) ∈ L ( k Z ; C) while ∂ k z b 2 (z) ∈ k Z . The C-bilinear duality product ∂ k z b 1 (z).∂ k z b 2 (z) defines a function of z ∈ Z simply denoted by ∂ k z b 1 .∂ k z b 2 .
We also use the following notation for multiple Poisson brackets:

{b 1 , b 2 } (k) = ∂ k z b 1 .∂ k z b 2 -∂ k z b 2 .∂ k z b 1 , k ∈ N , {b 1 , b 2 } = {b 1 , b 2 } (1) . Proposition 2.4 Let b 1 ∈ P p 1 ,q 1 (Z ) and b 2 ∈ P p 2 ,q 2 (Z ) . For any k ∈ {0, . . . , min {p 1 , q 2 }}, ∂ k z b 1 .∂ k z b 2 belongs to P p 2 -k,q 1 -k (Z ) with the estimate |∂ k z b 1 .∂ k z b 2 | P p 2 ,q 1 ≤ p 1 ! (p 1 -k)! q 2 ! (q 2 -k)! |b 1 | P p 1 ,q 1 |b 2 | P p 2 ,q 2 .
The formulas

(i) b Wick 1 • b Wick 2 = min{p 1 ,q 2 } ∑ k=0 ε k k! ∂ k z b 1 .∂ k z b 2 Wick = e ε ∂ z ,∂ ω b 1 (z)b 2 (ω) | z=ω Wick , (ii) [b Wick 1 , b Wick 2 ] = max{min{p 1 ,q 2 } , min{p 2 ,q 1 }} ∑ k=1 ε k k! {b 1 , b 2 } (k)

Wick

, hold as identities on H f in .

Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections on Z and for a given p ∈ P let L p (dz) denote the Lebesgue measure on the finite dimensional subspace pZ . A function f : Z → C is said cylindrical if there exists p ∈ P and a function g on pZ such that f (z) = g(pz), for all z ∈ Z . In this case we say that f is based on the subspace pZ . We set S cyl (Z ) to be the cylindrical Schwartz space:

( f ∈ S cyl (Z )) ⇔ (∃p ∈ P, ∃g ∈ S (pZ ), f (z) = g(pz)) .
The Fourier transform of a function f ∈ S cyl (Z ) based on the subspace pZ is defined as

F [ f ](z) = pZ f (ξ ) e -2πi S(z,ξ ) L p (dξ )
and its inverse Fourier transform is

f (z) = pZ F [ f ](z) e 2πi S(z,ξ ) L p (dz) .
With any symbol b ∈ S cyl (Z ) based on pZ , a Weyl observable can be associated according to

b Weyl = pZ F [b](z) W ( √ 2πz) L p (dz) . (13) 
After the tensor decompositions

H = Γ s (Z ) = Γ s (pZ ) ⊗ Γ s ((1 -p)Z ) due to Z = pZ ⊥ ⊕(1 -p)Z ∀z ∈ pZ , W ( √ 2πz) = W pZ ( √ 2πz) ⊗ I Γ s (1-p)Z
where W pZ denotes the reduced representation in Γ s (pZ ), one sees that the Weyl quantization of cylindrical observables based on pZ amounts to the usual finite-dimensional Weyl quantization. Hence more general classes of symbols can be considered. For p ∈ P, the symbol classes defined for 0 ≤ ν ≤ 1 on the finite dimensional phase space pZ ,

S ν pZ = ⊕ alg n∈Z S( z n pZ , dz 2 z 2ν pZ ) , (14) 
where 

z 2 p = 1 + |z| 2 pZ ,
b Wick = b Weyl + O b (ε) in OpS ν pZ . (15) 
Such polynomials have finite rank kernels and make a dense set in P ∞ alg (Z ) but not in P alg (Z ).

Wick observables and BBGKY hierarchy

When Z = L 2 (R d ), mean field results are often presented or even analyzed in terms of reduced density matrices or more precisely in terms of a sequence (γ

(p) ε ) p∈N with γ (p) ε ∈ L 1 ( p Z
) . This follows the general BBGKY approach of the kinetic theory and the γ p ε correspond in the classical case to the empirical distributions. The basic example is when

ρ ε ∈ L 1 ( n Z ), n = 1 ε : For any p ∈ N, p ≤ n, γ (p) 
ε ∈ L 1 ( p Z ) is defined as the partially traced operator with the kernel

γ (p) ε (x 1 , . . . , x p ; y 1 . . . y p ) := R d(n-p) ρ ε (x 1 , . . . , x p , X, y 1 , . . . y p , X) L R d(n-p) (dX) .
With the polarization identity (4), the family (|ψ ⊗n ψ ⊗n |) ψ∈Z forms a total set of L 1 ( n Z ). Hence the formal identity 

ε p n! (n -p)! |ψ| 2(n-p) ψ(
ε b = 1 [p,+∞) (n) ε p n(n -1) . . .(n -p + 1)
Tr ρ ε b Wick , ∀b ∈ P p,p (Z ) .

Moreover after noticing that the factor ε p n(n -1) . . .

(n -p + 1) is nothing but Tr ρ ε (|z| 2p ) Wick when Tr [ρ ε ] = 1 and ρ ε ∈ L 1 ( n Z ), it becomes Tr γ (p) ε b = Tr [ρ ε ] Tr [ρ ε (|z| 2p ) Wick ] Tr ρ ε b Wick , ∀b ∈ P p,p (Z ) , (16) 
with the convention that the right-hand side is 0 when Tr ρ ε (|z| 2p ) Wick = 0 . The extension to general ρ ε ∈ L 1 (H ) requires an assumption. Moreover it works for a general separable Hilbert space Z .

Proposition 2.5 Assume that ρ ε ∈ L 1 (H ) satisfies ρ ε ≥ 0 and N k/2 ρ ε N k/2 ∈ L 1 (H ) for all k ∈ N . Then for any p ∈ N, the relation [START_REF] Carlen | Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform[END_REF] defines a unique element γ

(p) ε ≥ 0 of L 1 ( p Z ) . Proof. Suppose Tr ρ ε (|z| 2p ) Wick > 0 . Writing Tr ρ ε b Wick = Tr (1 + N) p/2 ρ ε (1 + N) p/2 (1 + N) -p/2 b Wick (1 + N) -p/2
with our assumptions and the estimates [START_REF] Belavkin | The uniformization method in the theory of nonlinear Hamiltonian systems of Vlasov and Hartree type[END_REF] ensures that b → Tr ρ ε b Wick defines a continuous linear form on L ( p Z ) . The positivity comes from [START_REF] Berezin | The method of second quantization[END_REF] and the normality of the associated state after normalization, which says γ

(p) ε ∈ L 1 ( p Z )
, is a consequence of [START_REF] Baez | Introduction to algebraic and constructive quantum field theory[END_REF] .

We end with this discussion with a natural definition.

Definition 2.6 When ρ ε ∈ L 1 (Z ) satisfies ρ ε ≥ 0 and N k/2 ρ ε N k/2 ∈ L 1 (H ) for all k ∈ N, the reduced density matrix γ (p) ε , p ∈ N, associated with ρ ε is the element of L 1 ( p Z ) defined by Tr γ (p) ε b = Tr [ρ ε ] Tr [ρ ε (|z| 2p ) Wick ] Tr ρ ε b Wick , ∀b ∈ P p,p (Z ) , (17) with γ 
(p) ε = 0 in the case when Tr ρ ε (|z| 2p ) Wick = 0 .

Wigner measures

The Wigner measures are defined after the next result proved in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Theorem 6.2].

Theorem 2.7 Let (ρ ε ) ε∈(0,ε) be a family of normal states on H parametrized by ε. Assume Tr[ρ ε N δ ] ≤ C δ uniformly w.r.t. ε ∈ (0, ε) for some fixed δ > 0 and C δ ∈ (0, +∞). Then for every sequence (ε n ) n∈N with lim n→∞ ε n = 0 there exists a subsequence (ε n k ) k∈N and a Borel probability measure µ on Z such that

lim k→∞ Tr[ρ ε n k b Weyl ] = Z b(z) dµ(z) , for all b ∈ ∪ p∈P F -1 (M b (pZ )).
Moreover this probability measure µ satisfies

Z |z| 2δ dµ(z) < ∞.

Definition 2.8

The set of Wigner measures associated with a family (ρ ε ) ε∈(0,ε) (resp. a sequence (ρ ε n ) n∈N ) which satisfies the assumptions of Theorem 2.7 is denoted by

M (ρ ε , ε ∈ (0, ε)) , (resp. M (ρ ε n , n ∈ N)) .
Wigner measures are in practice identified via their characteristic functions according to the relation

M (ρ ε , ε ∈ (0, ε)) = {µ} ⇔ lim ε→0 Tr[ρ ε W ( √ 2πξ )] = F (µ)(ξ ) .
The expression M (ρ ε , ε ∈ (0, ε)) = {µ} simply means that the family (ρ ε ) ε∈(0,ε) is "pure" in the sense

lim ε→0 Tr ρ ε b Weyl = Z b(z) dµ ,
for all cylindrical symbol b without extracting a subsequence. Actually the general case can be reduced to this after reducing the range of parameter to ε ∈ ε n k , k ∈ N . A simple a priori estimate argument allows to extend the convergence to symbols which have a polynomial growth and to test to Wick quantized symbols with compact kernels belonging to P ∞ alg (Z ) (see [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Corollary 6.14]). Proposition 2.9 Let (ρ ε ) ε∈(0,ε) be a family of normal states on L (H ) parametrized by ε such that

Tr[ρ ε N α ] ≤ C α holds uniformly with respect to ε ∈ (0, ε) for all α ∈ N and such that M (ρ ε , ε ∈ (0, ε)) = {µ}. Then the convergence lim ε→0 Tr[ρ ε b quantized ] = Z b(z) dµ(z) , (18) 
holds for the Weyl quantization of any b ∈ S ν pZ with p ∈ P and ν ∈ [0, 1], and for the Wick quantization of any b ∈ P ∞ alg (Z ). Wigner measures are completely identified by testing with Weyl-quantized observable and possibly by restricting to some countable subset ∪ n∈N D n,p n where D n,p n is a countable dense subset of F -1 (M b (p n Z )), and (p n ) n∈N is a sequence of P such that sup n∈N p n = I Z (see [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]). One may question whether testing on all the b Wick with b ∈ P ∞ alg (Z ) also identifies the Wigner measures. When Z is finite dimensional, this amounts to the well-known Hambürger moment problem of identifying a probability measure ν on R from its moments a n = R x n dν(x), n ∈ N, for which uniqueness fails without growth conditions on the sequence (a n ) n∈N ([47] [5]), which can be translated in our case to growth conditions of (sup ε∈(0,ε) Tr [ρ ε N α ]) α∈N . We shall circumvent this difficulty, by identifying the Wigner measures in two steps by approximating the states (ρ ε ) ε∈(0,ε) by states (ρ app ε ) ε∈(0,ε) for which the growth condition is satisfied. We shall reconsider the moment problem later, but the comparison argument is given below.

Proposition 2.10 Let (ρ j ε ) ε∈(0,ε) , j = 1, 2,

be two families (or sequences) of normal states on H such that

Tr ρ j ε N δ ≤ C δ uniformly w.r.t. ε ∈ (0, ε) for some δ > 0 and C δ ∈ (0, +∞). Assume further M (ρ j ε , ε ∈ (0, ε)) = µ j for j = 1, 2. Then |µ 1 -µ 2 | ≤ lim inf ε→0 |ρ 1 ε -ρ 2 ε | L 1 (H ) .
Proof. For a symbol b ∈ S cyl (Z ), the finite dimensional Weyl semiclassical calculus says

|b Weyl | L (H ) ≤ b ∞ + O b (ε) with b ∞ = b L ∞ (pZ ) . This implies for a given b ∈ S cyl (Z ), | Z b(z)d(µ 1 -µ 2 )(z)| = lim ε→0 Tr[(ρ 1 ε -ρ 2 ε )b Weyl ] ≤ b ∞ lim inf ε→0 |ρ 1 ε -ρ 2 ε | L 1 (H ) .
The measure µ 1 -µ 2 is absolutely continuous with respect to the Borel probability measure µ 1 +µ 2 2 . Hence there exists a Borel function

λ on Z such that µ 1 -µ 2 = λ (z) µ 1 +µ 2 2 with the additional property |λ (z)| ≤ 2 µ 1 +µ 2
2 -almost everywhere. But for any Borel probability measure ν on Z , it was checked in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] that

S cyl (Z ) is dense in L p (Z , ν) for p ∈ [1, ∞)
on the basis of a general measurable version of Stone-Weierstrass theorem (see for instance [START_REF] Coudène | Une version mesurable du théorème de Stone-Weierstrass[END_REF]). Hence there exists a sequence

(β n ) n∈N in S cyl (Z ) such that lim n→∞ β n - |λ | λ 1 {λ =0} L 1 (Z , µ 1 +µ 2 2 ) = 0 and after extraction lim k→∞ β n k (z) = |λ | λ (z)1 {λ =0} (z), µ 1 +µ 2 2 -almost everywhere. By setting b k = 2 β n k 1+|β n k | 2 , we get a sequence (b k ) k∈N such that ∀k ∈ N, b k ∈ S cyl and b k ∞ ≤ 1 , lim k→∞ b k (z) = |λ |(z) λ (z) 1 {λ =0} (z) µ 1 + µ 2 2 a.e.
We conclude with

|µ 1 -µ 2 | = Z |λ (z)| d µ 1 + µ 2 2 (z) = lim k→∞ Z b k (z) d(µ 1 -µ 2 )(z) ≤ 1 × lim inf ε→0 |ρ 1 ε -ρ 2 ε | L 1 (H ) .
When the two sets M (ρ j ε , ε ∈ (0, ε)) have more than one element, the extraction of subsequences, (ε n ) n∈N , can be made simultaneously and the result has to be modified into:

inf (µ 1 ,µ 2 )∈M (ρ 1 ε ,ε∈(0,ε))×M (ρ 2 ε ,ε∈(0,ε)) |µ 1 -µ 2 | ≤ lim sup ε→0 |ρ 1 ε -ρ 2 ε | L 1 (H ) . (19) 

Wigner measures and the BBGKY hierarchy

The compactness condition b ∈ P ∞ alg (Z ) for the Wick quantization in Proposition 2.9 is not a technical restriction and the convergence is no more true for a general b ∈ P alg (Z ). It was identified in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] as a "dimensional defect of compactness" and illustrated with examples, one of them being related with the Bose-Einstein condensation of the free Bose gas. This terminology comes from the idea that this defect of compactness does not come from the infinity in the phase space like in the finite dimensional case (see [START_REF] Tartar | Oscillations and Concentration Effects in Partial Differential Equations[END_REF] [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Séminaire sur les Équations aux Dérivées Partielles[END_REF]) but from the non compactness in the norm topology of balls in infinite dimension. Actually this was made more accurate in [START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF]: under the assumptions

M (ρ ε , ε ∈ (0, ε)) = {µ} and Tr ρ ε N k ≤ λ k , we proved (T ) ⇒ (P) with (P) ∀b ∈ P alg (Z ), lim ε→0 Tr ρ ε b Wick = Z b(z) dµ(z) ; (T ) ∀η > 0, ∃P η ∈ P, Tr [(1 -Γ(P η ))ρ ε ] < η ,
where (T ) appears as a quantum Prokhorov condition (or tightness condition in the strong topology). The condition (P) which will be simplified in the next subsection, actually contains, for all α ∈ N, the uniform bound w.r.t.

ε of Tr [ρ ε N α ] since N α = [(|z| 2 ) Wick ] α .
It implies actually a strong relationship between the Wigner measure formulation and the convergence of reduced density matrices.

Proposition 2.11 Assume that (ρ ε ) ε∈(0,ε) is a family of L 1 (H ) with ρ ε ≥ 0, Tr[ρ ε ] = 1, M (ρ ε , ε ∈ (0, ε))
= {µ} with the condition (P) and assume µ = δ 0 . Define for p ∈ N γ (p)

0 := 1 Z |z| 2p dµ(z) Z |z ⊗p z ⊗p | dµ(z) ( 20 
)
Then for all p ∈ N, the reduced density matrix γ (p)

ε converges to γ (p) 0 in the L 1 -norm. Proof. For p = 0, the result is nothing but 1 = µ = lim ε→0 Tr[ρ ε ] = 1. For p ∈ N * , the condition (P) with µ = δ 0 says first lim ε→0 Tr ρ ε (|z| 2p ) Wick = Z |z| 2p dµ(z) > 0 .
Hence, the reduced density matrix γ (p) ε is well defined according to Definition 2.6 for ε < εp small enough (with Tr[ρ ε ] = 1). The condition (P) gives the general convergence:

lim ε→0 Tr γ (p) ε b = lim ε→0 Tr ρ ε b Wick Tr [ρ ε (|z| 2p ) Wick ] = Z b(z) dµ(z) Z |z| 2p dµ(z) = Tr γ (p) 0 b ,
for all b ∈ P p,p (Z ), where the last equality is a µ-integration of the equality of continuous functions

b(z) = z ⊗p , bz ⊗p = Tr |z ⊗p z ⊗p | b .
This proves the weak convergence of γ (p)

ε to γ (p) 0 in L 1 ( p Z ). But since γ (p) ε and γ (p) 0 are non negative with Tr[γ (p) ε ] = 1 = Tr γ (p) 0
, this implies the norm convergence according to [50][4][20]).2 

A simple criterion for the reliability of Wick observables

The proof of Proposition 2.11 can be adapted in order to make an equivalent condition to (P) with a weaker and easier to handle formulation:

(PI) ∀α ∈ N, lim ε→0 Tr [ρ ε N α ] = Z |z| 2α dµ(z) < +∞. Proposition 2.12 For a family (ρ ε ) ε∈(0,ε) in L 1 (H ) such that ρ ε ≥ 0, Tr[ρ ε ] = 1, M (ρ ε , ε ∈ (0, ε)) = {µ}, the condition (P) and (PI) are equivalent: ∀α ∈ N, lim ε→0 Tr [ρ ε N α ] = Z |z| 2α dµ(z) ⇔ ∀b ∈ P alg (Z ), lim ε→0 Tr ρ ε b Wick = Z b dµ
Proof. The condition (PI) is a particular case of (P). Let us prove (PI) ⇒ (P) . We start with two remarks:

• For k ∈ N * , (|z| 2k ) Wick = N(N -ε) . . . (N -(k -1)ε). Hence the condition (PI) is equivalent to ∀α ∈ N, lim ε→0 Tr ρ ε (|z| 2α ) Wick = Z |z| 2α dµ(z) .
• For p = 0 (resp q = 0) the operators in L (C, q Z ) (resp. in L ( p Z , C)) are compact and P 0,q (Z ) = P ∞ 0,q (Z ) (resp. P p,0 (Z ) = P ∞ p,0 (Z )). Hence the convergence lim ε→0 Tr[ρ ε b Wick ] = b dµ, is consequence of Proposition 2.9 when p = 0 or q = 0.

According to Proposition 2.11, there are two cases. If µ = δ 0 : Then for b ∈ P p,p (Z ), p ∈ N * , such that b ≥ 0, the inequality 0 ≤ b ≤ |b| P p,p I p Z and the positivity [START_REF] Berezin | The method of second quantization[END_REF] For p = q, p, q ∈ N * , write

says 0 ≤ lim ε→0 Tr ρ ε b Wick ≤ lim ε→0 |b| p,p Tr ρ ε (|z| 2p ) Wick = Z |z| 2p δ 0 (z) = 0 .
Tr ρ ε b Wick = Tr ρ 1/2 ε (ρ 1/2 ε b Wick ) ≤ Tr[ρ ε ] 1/2 Tr ρ ε b Wick b Wick, * 1/2 . Proposition 2.4 says that b Wick b Wick, * = ∑ p ℓ=0 ε ℓ ℓ! ∂ ℓ z b.∂ ℓ z b belongs to ⊕ p+q k=0 P k,k (Z ) with an O(ε) term in P 0,0 (Z ). We have proved ∀p, q ∈ N * , ∀b ∈ P p,q (Z ), lim ε→0 Tr ρ ε b Wick = 0 = Z b(z)δ 0 (z) ,
while the cases (0, q) and (p, 0) are already known.

If µ = δ 0 : Then we know by Proposition 2.11 that lim ε→0 γ

(p) ε -γ (p) 0 L 1 = 0, which implies ∀b ∈ P p,p (Z ) , lim ε→0 Tr ρ ε b Wick = lim ε→0 Tr γ (p) ε b = Tr γ (p) 0 b = Z b(z) dµ(z) .
Let us consider the general case b ∈ P p,q (Z ). The above convergence is still true when the kernel b is compact by Proposition 2.9. Consider now a general b ∈ P p,q (Z ). Since Z |z ⊗p z ⊗q | dµ(z) is nuclear (or trace-class in q Z ⊕ p Z ), for any n ∈ N there exists a compact operator bn

∈ L ∞ ( p Z , q Z ) such that |b n | P p,q = | bn | L ( p Z , q Z ) = | b| L ( p Z , q Z ) = |b| P p,q and Z (b(z) -b n (z)) dµ(z) = Tr Z |z ⊗p z ⊗q | dµ(z)[ b -bn ] ≤ 1 n + 1 .
The Lebesgue convergence theorem with (z) and use again the Cauchy-Schwarz inequality

∀n ∈ N, |b(z) -b n (z)| r ≤ (2|b| P p,q ) r |z| r(p+q) , Z |z| r(p+q) dµ(z) < ∞ , ∀z ∈ Z , lim n→∞ b n (z) = lim n→∞ z ⊗q , bn z ⊗p = b(z) , yields lim n→∞ Z |b(z) -b n (z)| r dµ(z) = 0 . Set η r (n) = Z |b(z) -b n (z)| r dµ
Tr ρ ε (b Wick -b Wick n ) ≤ Tr ρ ε (b Wick -b Wick n )(b Wick, * -b Wick, * n ) 1/2 .
Owing to the result valid when p = q we deduce lim sup

ε→0 Tr ρ ε (b Wick -b Wick n ) ≤ Z |b(z) -b n (z)| 2 dµ(z) 1/2 = η 2 (n) 1/2 . Since for n ∈ N fixed, lim ε→0 Tr ρ ε b Wick n = Z b n (z) dµ(z), we deduce ∀n ∈ N, lim sup ε→0 Tr ρ ε b Wick - Z b(z) dµ(z) ≤ 1 n + 1 + η 2 (n) 1/2 ,
while the right-hand side goes to 0 as n → ∞ .

States localized in a ball

The condition, Tr [ρ ε N α ] ≤ λ α for all α ∈ N, used in [START_REF] Ammari | Mean field limit for bosons and propagation of Wigner measures[END_REF] is actually equivalent to

ρ ε = 1 [0,λ ] (N)ρ ε 1 [0,λ ] (N)
(locate the spectral measure of ρ ε for the self-adjoint operator N). Such an assumption remains an important step in the present analysis, and N = (|z| 2 ) Wick suggests that such a state is localized in ball of the phasespace.

Definition 2. [START_REF] Bardos | Weak coupling limit of the n-particle Schrödinger equation[END_REF] A family (ρ ε ) ε∈(0,ε) (or a sequence (ρ ε n ) n∈N ) of normal states on H , is said to be localized in the ball of radius R > 0,

if ρ ε = 1 [0,R 2 ] (N)ρ ε 1 [0,R 2 ] (N) for all ε ∈ (0, ε) .
The meaning of the geometric intuition contained in the terminology "localized in a ball of radius R", can be made more accurate.

Lemma 2.14 For a family(ρ ε ) ε∈(0,ε) (or a sequence (ρ ε n ) n∈N ) of normal states on H localized in a ball of radius R > 0, all its Wigner measures are supported in the ball {|z| ≤ R} .

Proof. A family (ρ ε ) ε∈(0,ε) localized in a ball of radius R satisfies Tr ρ ε N δ ≤ R 2δ for all δ > 0. Therefore the set of Wigner measures M (ρ ε , ε ∈ (0, ε)) is well defined and the convergence after extraction can be tested with Weyl-quantized cylindrical functions in the symbol class S ν p introduced in (14) for any p ∈ P. Let µ ∈ M (ρ ε , ε ∈ (0, ε)) be associated with the sequence (ε n ) n∈N . For any finite rank projection p ∈ P, the Wick quantized operator

(|pz| 2 ) Wick is N p ⊗ I Γ s ((1-p)Z )
where N p is the number operator on Γ s (pZ ) and equals (|z|

2 pZ -C p ε) Weyl in the finite dimensional framework of pZ . For any cut-off function χ ∈ C ∞ 0 (R) such that χ ≡ 1 on 0, R 2 , the finite dimensional Weyl semiclassical calculus tells us (1 -χ)(N p ) = (1 - χ)(|z| 2 pZ ) Weyl + O p (ε) in L (Γ s (pZ )). Further the commutative decomposition N = N p ⊗ I Γ s ((1-p)Z ) + I Γ s (pZ ) ⊗ N (1-p) ≥ N p ⊗ I Γ s ((1-p)Z ) and choosing χ decreasing on [0, +∞) implies (1 -χ)(|pz| 2 ) Weyl + O p (ε) ≤ (1 -χ)(N p ⊗ I Γ((1-p)Z ) ) ≤ (1 -χ)(N) . We deduce 0 ≤ Z (1 -χ(|pz)| 2 ) dµ(z) = lim n→∞ Tr ρ ε (1 -χ(|pz| 2 )) Weyl ≤ lim n→∞ Tr ρ ε n 1 [0,R 2 ] (N)(1 -χ(N)) = 0 .
Hence the measure µ vanishes outside a cylinder {|pz| ≥ R}. This yields the result.

With such localized states we can solve the moment problem.

Proposition 2.15 Let (ρ ε ) ε∈(0,ε) be a family (or a sequence (ρ ε n ) n∈N ) of normal states on H , localized in the ball of radius R > 0 . If there exists a Borel measure µ on Z such that

∀b ∈ P ∞ alg (Z ) , lim ε→0 Tr ρ ε b Wick = Z b(z) dµ(z) , then M (ρ ε , ε ∈ (0, ε)) = {µ} .
Proof. Although this is shown in [7, Proposition 6.15], we provide here a different proof. Let p ∈ P and consider the direct image by p of the measure µ:

∀E ∈ B(pZ ) , µ p (E) = Z 1 p -1 (E) (z) dµ(z) ,
where B(pZ This holds in particular when b(z

)
) = |pz| 2k with b Wick = N k p + O(ε) ≤ N k + O(ε) with pZ |z| 2k dµ p (z) ≤ lim ε→0 Tr ρ ε N k p ≤ lim ε→0 Tr ρ ε N k ≤ R 2k .
Hence all the moments pZ |z| 2k dµ p (z) are bounded by R 2k and the finite dimensional moment problem applies (see [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF][5]): µ p is completely determined by the set of values pZ b dµ p , b polynomial . Let µ ′ be a Wigner measure of the family (ρ ε ) ε∈(0,ε) . It is supported in the ball {z ∈ Z , |z| ≤ R} so that its direct image by p, µ ′ p is supported in the ball {z ∈ pZ , |z| ≤ R}. Moreover there exists a sequence

(ε n ) n∈N , such that ∀b ∈ S ν pZ , lim n→∞ Tr ρ ε n b Weyl = pZ b(z) dµ ′ p (z) ,
where the b Weyl can be replaced by b Wick for any polynomial b such that b(z) = b(pz) according to the finite dimensional comparison of the Weyl and Wick calculus in [START_REF] Brattelli | Operator Algebras and Quantum Statistical Mechanics[END_REF]. We deduce µ p = µ ′ p . Since this holds for all the p ∈ P, this ends the proof.

Let χ be a continuous cut-off function supported in [0, 1], with 0 ≤ χ ≤ 1 and such that χ ≡ 1 in [0, 1 2 ]. Within the assumptions of Theorem 2.7 and especially Tr[ρ ε N δ ] ≤ C δ , the difference between the state ρ ε and the localized state ρ χ,R ε

= 1 Tr ρ ε χ 2 ( N R 2 ) χ( N R 2 )ρ ε χ( N R 2
) can be made arbitrarily small according to

∀ε ∈ (0, ε) , |ρ ε -ρ χ,R ε | L 1 (H ) ≤ C δ (R/2) 2δ -C δ , (21) 
where the right-hand side vanishes as R → ∞. Then the comparison result in Proposition 2.10 or its variant [START_REF] Coudène | Une version mesurable du théorème de Stone-Weierstrass[END_REF] says that the Wigner measures (ρ ε ) ε∈(0,ε) can be identified by its approximation by states localized in balls: inf

(µ,µ ′ )∈M (ρ ε ,ε∈(0,ε))×M (ρ χ,R ε ,ε∈(0,ε)) |µ -µ ′ | ≤ C δ (R/2) 2δ -C δ . ( 22 
)
Then the question arises whether the family (ρ χ,R ε ) ε∈(0,ε) , or an extracted subsequence, satisfies the condition (PI) (or equivalently (P)) if the family (ρ ε ) ε∈(0,ε) does. Proposition 2. [START_REF] Carlen | Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform[END_REF] Assume that the family (ρ ε ) ε∈(0,ε) of normal states on H satisfies M (ρ ε , ε ∈ (0, ε)) = {µ} and the condition (PI) . Let the function f ∈ C 0 ([0, +∞), R) be polynomially bounded such that the quantity Tr[ρ ε f 2 (N)] is uniformly bounded from below for ε ∈ (0, ε) . Then the family (ρ f ε ) ε∈(0,ε) given by

ρ f ε = 1 Tr[ρ ε f 2 (N)] f (N)ρ ε f (N) has a unique Wigner measure M (ρ f ε , ε ∈ (0, ε)) = f 2 (|z| 2 )µ f 2 (|z| 2
)dµ and satisfies the condition (PI) .

We will need the next lemma Lemma 2.17 Let the family (ρ ε ) ε∈(0,ε) (or a sequence (ρ ε n ) n∈N ) of normal states be localized in the ball of radius R and assume the condition (PI) with M (ρ ε , ε ∈ (0, ε)) = {µ}. Then the equality

lim ε→0 Tr e α 1 N ρ ε e α 2 N b Wick = Z e (α 1 +α 2 )|z| 2 b(z) dµ(z) ( 23 
)
holds for all α 1 , α 2 ∈ C and all b ∈ P alg (Z ) .

Proof. The right-hand side of ( 23) is the sum of the double series

∑ k 1 ,k 2 ∈N (α 1 ) k 1 (α 2 ) k 2 k 1 !k 2 ! Z |z| 2k 1 +2k 2 b(z) dµ(z) ,
for µ is a Borel probability measure supported in {|z| ≤ R} and b is a polynomial function.

Due to ρ ε = ρ ε 1 [0,R 2 ] (N), the sum

S K 2 ,k = K 2 ∑ k 2 =0 ρ ε (α 2 N) k 2 k 2 ! (1 + N) k , K 2 , k ∈ N
and the remainder term

R K 2 ,k = ρ ε e α 2 N (1 + N) k -S K 2 ,k = 1 0 (1 -t) K 2 K 2 ! ρ ε (α 2 N) K 2 +1 e α 2 tN (1 + N) k dt satisfy 1 [0,R 2 ] (N)S K 2 ,k = S K 2 ,k with |S K 2,k | L 1 (H ) ≤ e |α 2 |R 2 (1 + R 2 ) k , and 1 [0,R 2 ] (N)R K 2 ,k = R K 2 ,k with |R K 2 ,k | L 1 (H ) ≤ e |α 2 |R 2 (1 + R 2 ) k (|α 2 |R 2 ) K 2 +1 (K 2 + 1)! .
Repeating the same estimate on the left hand side with S K 2 ,k and R K 2 ,k instead of ρ ε implies that the L 1 (H ) norm of

(1 + N) k e α 1 N ρ ε e α 2 N - K 1 ∑ k 1 =0 K 2 ∑ k 2 =0 (α 1 N) k 1 k 1 ! ρ ε (α 2 N) k 2 k 2 ! (1 + N) k
is bounded by

e |α 2 |R 2 +|α 1 |R 2 (1 + R 2 ) 2k (|α 1 |R 2 ) K 1 +1 (K 1 + 1)! + (|α 2 |R 2 ) K 2 +1 (K 2 + 1)! + (|α 1 |R 2 ) K 1 +1 (|α 2 |R 2 ) K 2 +1 (K 1 + 1)!(K 2 + 1)! ,
which vanishes as min(K 1 , K 2 ) → ∞ . We conclude with a δ /3-argument after noticing that (1 + N) -k b Wick (1 + N) -k is bounded for k ≥ k b and that the convergence as ε → 0 holds for b ∈ P alg (Z ) fixed and for the finite sums

∑ K 1 k 1 =0 ∑ K 2 k 2 =0
owing to the condition (PI).

Proof of Proposition 2.16:

Let C f > 1 be a constant such that Tr ρ ε f 2 (N) ≥ 1 C f and sup s∈[0,+∞) f (s)(1 + s) -ν ≤ C f . The inequalities Tr[ρ f ε N α ] ≤ C 2 f Tr ρ ε N α (1 + N) 2ν
, α ∈ N, ensure that the family (ρ f ε ) ε∈(0,ε) admits Wigner measures without any way to identify them for the moment. So take a sequence (ε n ) n∈N , such that lim n→∞ ε n = 0 and M (ρ f ε n , n ∈ N) = µ f . We first prove that the sequence

(ρ f ε n ) n∈N satisfies the condition (PI), then check that µ f = f 2 (|z| 2 )µ f 2 (|z| 2
)dµ in the cases when (ρ ε ) ε∈(0,ε) is localized in a ball and then when f is compactly supported, and finally conclude with approximation arguments. 

lim n→∞ Tr ρ f ε n (|pz| 2 ) Wick k = lim n→∞ Tr ρ f ε n (|pz| 2k ) Wick = Z |pz| 2k dµ f (z) , (24) 
while we assumed ∀b ∈ P alg (Z ) , lim

n→∞ Tr ρ ε n b Wick = Z b(z) dµ(z) . (25) 
Fix α ∈ N * and take δ > 0. By Lebesgue's convergence, there exists p ∈ P such that

Z |z| 2α -|pz| 2α dµ f (z) ≤ δ and Z |z| 2α -|pz| 2α (1 + |z| 2 ) 2ν dµ(z) ≤ δ . Remember that (|pz| 2 ) Wick = N p ⊗ I Γ s ((1-p)Z ) = N p with N α p ≤ N α
where both sides commute with f (N) and we get:

0 ≤ Tr ρ f ε n (N α -N α p ) ≤ C f Tr f (N)(N α -N α p ) 1/2 ρ ε n (N α -N α p ) 1/2 f (N) ≤ C f | f (N)(1 + N) -ν | 2 L (H ) × Tr (1 + N) ν (N α -N α p ) 1/2 ρ ε n (N α -N α p ) 1/2 (1 + N) ν ≤ C 3 f Tr ρ ε n (N α -N α p )(1 + N) 2ν .
But we know by ( 25) that the right-hand side converges as n → ∞ to

C 3 f Z (|z| 2α -|pz| 2α )(1 + |z| 2 ) 2ν dµ(z) ≤ C 3 f δ , while (24) with (|pz| 2 ) Wick = N p gives lim n→∞ Tr ρ f ε n N α p = Z |pz| 2α dµ f (z) .
Hence there exist n δ ∈ N such that

∀n ≥ n δ , Tr ρ f ε n N α - Z |pz| 2α dµ f (z) ≤ (C 3 f + 1)δ . From Z ||z| 2α -|pz| 2α | dµ f (z) ≤ δ , we deduce lim sup n→∞ |Tr ρ f ε n N α - Z |z| 2α dµ(z)| ≤ (C 3 f + 2)δ .
Letting δ → 0 ends the proof of this part.

2) Identification of µ f when (ρ ε ) ε∈(0,ε) is localized in a ball: Assume that (ρ ε ) ε∈(0,ε) is localized in a ball of radius R > 0. The Lemma 2.17 tells us

∀t 1 ,t 2 ∈ R, ∀b ∈ P alg (Z ) , lim n→∞ Tr e it 2 N ρ ε n e it 1 N b Wick = Z e i(t 1 +t 2 )|z| 2 b(z) µ(z) , while the uniform boundedness of (1 + N) -k b b Wick (1 + N) -k b entail Tr e it 2 N ρ ε n e it 1 N b Wick ≤ C b Tr ρ ε n (1 + N) 2k b ≤ C b (1 + R 2 ) 2k b . Hence for f ∈ F -1 (L 1 (R)), we get lim n→∞ Tr f (N)ρ ε n f (N)b Wick Tr [ f (N)ρ ε n f (N)] = Z f (|z| 2 ) 2 b(z) dµ(z) Z f (|z| 2 ) 2 dµ(z)
.

We have proved:

∀b ∈ P alg (Z ) , lim n→∞ Tr ρ f ε n b Wick = Z f (|z| 2 ) 2 b(z) dµ(z) Z f (|z| 2 ) 2 dµ(z)
.

The part 1) and 

1 [0,R 2 ] (N)ρ f ε n 1 [0,R 2 ] (N) = ρ f ε n ensure that (ρ f ε n ) n∈N satisfies
f = f (|z| 2 ) 2 µ Z f (|z| 2 ) 2 dµ in this case. 3) Identification of µ f when f is compactly supported: Assume that f ∈ C 0 c ([0, +∞)) is supported in [0, R 0 ]. Consider for χ ∈ C 0 c ([0, +∞)), 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1/2] and for R > 0, the truncated states ρ R ε n = 1 Tr ρ ε n χ 2 ( N R 2 ) χ( N R 2 )ρ ε n χ( N R 2 ) , n ∈ N .
For R ≥ 2R 0 , we have

∀n ∈ N * , ρ f ε n = 1 Tr ρ R ε n f 2 (N) f (N)ρ R ε n f (N) .
By extracting a subsequence we can assume M ρ R

ε n k , k ∈ N = µ R , and Part 1) applied to (ρ R ε n k ) k∈N
ensures that the pair (ρ

f ε n k , ρ R ε n k ) fulfills all the assumptions of Part 2) if f ∈ C 0 c ([0, +∞)) ∩ F -1 L 1 (R). Thus the measure µ f equals | f (|z| 2 )| 2 µ R Z | f (|z| 2 )| 2 dµ R . From the comparison (22) we know |µ R -µ| = O(R -1
) and since f is a bounded function

µ f - | f (|z| 2 ) 2 µ | f (|z| 2 )| 2 dµ ≤ C R .
Taking the limit as R → 0 gives the result when

f ∈ C 0 c ([0, +∞)) ∩ F -1 L 1 (R) . Removing the condition f ∈ F -1 L 1 (R) is obtained by a comparison argument between ρ f ε n and ρ f ℓ ε n with f ℓ ∈ C 0 c ∩ F -1 L 1 (R) and sup s∈[0,+∞] | f (s) -f ℓ (s)| ≤ 1
ℓ+1 , for ℓ ∈ N . 4) Final approximation argument and uniqueness of µ f : Consider now the complete problem with the extracted sequence

(ρ f ε n ) n∈N . We again use the cut-off χ( N R 2 ) but now to compare ρ f ε n with ρ f χ(R -2 .) ε n
. After extracting a subsequence, we can assume M ρ

f χ(R -2 .) ε n k , k ∈ N = µ f χ(R -2 .
) . The pair (ρ

f χ(R -2 .) ε n
, ρ ε n ) fulfills the assumptions of Part 3) and

µ f χ(R -2 .) = f 2 (|z| 2 )χ 2 (R -2 |z| 2 )µ f 2 (|z| 2 )χ 2 (R -2 |z| 2 ) dµ .
But from the inequalities f (s)(1 -χ(R -2 s))(1 + s) -ν-1 ≤ CR -2 and Tr ρ ε (1 + N) 2ν+2 ≤ Cν we deduce the uniform estimate:

∀k ∈ N , ρ f ε n k -ρ f χ(R -2 .) ε n k L 1 (H ) ≤ C ′ f R 2 . Again the comparison argument (22) gives µ f - f 2 (|z| 2 )χ 2 (R -2 |z| 2 )µ f 2 (|z| 2 )χ 2 (R -2 |z| 2 ) dµ ≤ C ′ f R 2 ,
and we take the limit as R → ∞. We have proved

µ f = f 2 (|z| 2 )µ f 2 (|z| 2
) dµ for any sequence extracted from (ρ f ε ) ε∈(0,ε) with a single Wigner measure. This proves

M (ρ ε , ε ∈ (0, ε)) = f 2 (|z| 2 )µ f 2 (|z| 2
) dµ while the condition (PI) was checked in Part 1).

Dynamical mean field limit

Let Q be a real-valued polynomial in P alg (Z ) given by

Q = r ∑ j=2 Q j , with Q j ∈ P j, j (Z ) .
We consider the many-body quantum Hamiltonian for a system of bosons

H ε = dΓ(A) + Q Wick , (26) 
with A a given self-adjoint operator on Z . Here Q Wick is the operator ∑ r j=2 Q Wick j with Q Wick j given by [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]. Clearly, H ε acts as a self-adjoint operator on the symmetric Fock space H . When Z = L 2 (R d ), the Schrödinger Hamiltonian A = -∆ + V (x) and the semi-relativistic Hamiltonian A = √ -∆ + m 2 + V (x) are among the typical examples (e.g. [START_REF] Elgart | Mean field dynamics of boson stars Comm[END_REF]).

Existence of Wigner measure for all times.

The first step to prove Theorem 1.1 is to show the existence of Wigner measures for all times. This is accomplished in the Proposition 3.3 by following the same lines as in the proof of Theorem 2.7. For this task two useful lemmas are stated below with the first one being proved in [7, Proposition 2.10].

Lemma 3.1 For any b ∈ P alg (Z ) we have: (i) b Wick is a closable operator with the domain of its closure containing

H 0 = vect{W (ϕ)ψ, ψ ∈ H f in , ϕ ∈ Z } . (ii) For any ϕ ∈ Z the identity W (ξ ) * b Wick W (ξ ) = (b(z + iε √ 2 ξ )) Wick holds on H 0 with b(• + iε √ 2 ξ ) ∈ P alg (Z ) . Lemma 3.2 For any k ∈ N there exists a ε-independent constant C k > 0 such that W (ξ ) * N k W (ξ ) ≤ C k ε k ξ k N k , (27) 
for any ξ ∈ Z and uniformly in ε ∈ (0, ε).

Proof. Since N is a self-adjoint operator, the functional calculus provides the inequality

N k ≤ (1 + N) k .
Therefore, it is enough to prove [START_REF] Fröhlich | On the Mean-field limit of bosons with Coulomb two-body interaction[END_REF] with N in the l.h.s replaced by (1 + N). The Wick calculus in Proposition 2.4 tell us that (1 + N) k is a Wick operator with symbol b k (z) in ⊕ k j=0 P j, j (Z ), i.e.:

b k (z) = k ∑ j=0 z ⊗ j , b( j) k z ⊗ j with b ( j) k ∈ P j, j (Z ).
Now, applying Lemma 3.1 yields

W (ξ ) * (1 + N) k W (ξ ) = W (ξ ) * b Wick k W (ξ ) = (b k (z + iε √ 2 ξ )) Wick .
A Taylor expansion of the symbol gives us

b k (z + iε √ 2 ξ ) = k ∑ j=0 (iε) j j! √ 2 j D ( j) b k (z)[ξ ] ,
with D ( j) is the jth derivatives and D ( j) b k (z)[ξ ] ∈ ⊕ k-j m,n=0 P m,n (Z ). So, by the number estimate (2.3) we can derive the following bound

N -k/2 D ( j) b k (z)[ξ ] Wick N -k/2 ≤ Ck ξ j
with Ck only depending on k ∈ N. Hence, we obtain

N -k/2 k ∑ j=0 (iε) j j! √ 2 j D ( j) b k (z)[ξ ] Wick N -k/2 ≤ C k ε k ξ k ,
with C k only depending on k ∈ N. Thus, we conclude that W (ξ ) * (1 + N) k W (ξ ) as a positive quadratic form is bounded by Proof. We set

C k ε k ξ k N k . Proposition 3.3 Let (ρ ε ) ε∈(0,
ρ ε (t) = e -i t ε H ε ρ ε e i t ε H ε and ρε (t) = e i t ε dΓ(A) e -i t ε H ε ρ ε e i t ε H ε e -i t ε dΓ(A) .
(i) Consider for ε > 0 the function

G ε (t, ξ ) = Tr ρε (t)W ( √ 2πξ ) . Write for any (s, ξ ), (t, η) ∈ R × Z |G ε (t, η) -G ε (s, ξ )| ≤ Tr ( ρε (t) -ρε (s))W ( √ 2πη) + Tr ρε (s) W ( √ 2πη) -W( √ 2πξ 
) .

By differentiation, we get

Tr [ ρε (t) -ρε (s)]W ( √ 2πη) ≤ 1 ε t s Tr ρε (t ′ )[Q Wick t ′ ,W ( √ 2πη)] dt ′ (28) 
with Q t ′ (z) = Q(e -it ′ A z), while the second term is estimated by

Tr ρε (s) W ( √ 2πη) -W ( √ 2πξ ) ≤ (1 + C r ) [W ( √ 2πη) -W( √ 2πξ )](N + 1) -1 L (H ) . (29) 
Now, we claim that there exists a constant c > 0 such that the r.h.s of ( 28) is bounded by

c|t -s| ( r ∑ j=2 || Q j ||) 2r ∑ i=1 ε i-1 |η| i . ( 30 
)
This can be proved by first writing

Tr ρε (t ′ )[Q Wick t ′ ,W ( √ 2πη)] = (31) 
Tr N r ρε (t ′ ) N r N -r W ( √ 2πη) N r N -r [W ( √ 2πη) * Q Wick t ′ W ( √ 2πη) -Q Wick t ′ ] N -r
and second estimating the r.h.s of (31) using Lemma 3.2 and Lemma 3.1 (ii) so that

t s Tr ρε (t ′ )[Q Wick t ′ ,W ( √ 2πη)] dt ′ ≤ c|t -s| sup t ′ ∈[s,t] N -r [Q t ′ (. + iε √ 2 η) Wick -Q Wick t ′ ] N -r L (H )
.

Thus, the bound [START_REF] Ginibre | The classical field limit of scattering theory for nonrelativistic many-boson systems[END_REF] follows from the number estimate in Proposition 2.3. We recall the inequality proved in [7, Lemma 3.1],

[W ( √ 2πη) -W ( √ 2πξ )](N + 1) -1/2 ≤ C |η -ξ | [min(ε|η|, ε|ξ |) + max(1, ε)] .
This leads to the following bound on the r.h.s of ( 29)

C ε |η -ξ | 1 + |η| 2 + |ξ | 2 .
Thus, we conclude that ∀(s, ξ ), (t, η) ∈ R × Z ,

|G ε (t, η) -G ε (s, ξ )| ≤ c |t -s|(|η| + 1) 2r + |η -ξ | |η| 2 + |ξ | 2 , (32) 
uniformly w.r.t. ε ∈ (0, ε). Recall also that we have the uniform estimate |G ε (s, ξ )| ≤ 1. Now, we apply an Ascoli type argument:

• Since R × Z is separable, it admits a countable dense set N = {(t ℓ , ξ ℓ ), ℓ ∈ N}. For any ℓ ∈ N the set {G ε (t ℓ , ξ ℓ )} ε∈(0,ε) remains in {σ ∈ C, |σ | ≤ 1}. Hence for any sequence (ε n ) n∈N such that ε n → 0 there exists by a diagonal extraction process a subsequence, still denoted by

(ε n ) n∈N , such that for all ℓ ∈ N, G ε n (t ℓ , ξ ℓ ) converges in {σ ∈ C, |σ | ≤ 1} as n → ∞. Set G(t ℓ , ξ ℓ ) := lim n→∞ G ε n (t ℓ , ξ ℓ )
for all ℓ ∈ N.

• The uniform estimate (32) implies that the limit G is uniformly continuous on any set

N ∩ {(t, z) ∈ R × Z : |t| + |z| ≤ R} .
Hence it admits a continuous extension still denoted G in (R× Z , | | R×Z ). An "epsilon/3"-argument shows that for any (t, ξ ) ∈ R × Z , lim n→∞ G ε n (t, ξ ) exists and equals G(t, ξ ).

Finally for any t ∈ R, G(t, .) is a norm continuous normalized function of positive type since

G(t, 0) = lim n→∞ Tr [ ρε (t)] = 1 N ∑ i, j=1 λ i λ j G(t, ξ i -ξ j ) = lim n→∞ N ∑ i, j=1
λ i λ j Tr ρε n (t)W ( √ 2π(ξ i -ξ j )) e iε n π 2 σ (ξ i ,ξ j ) ≥ 0 .

The positivity in the last statement follows by Weyl commutation relations [START_REF] Ammari | Propagation of chaos for many-boson systems in one dimension with a point pair-interaction[END_REF]. Therefore, according to the Bochner theorem (e.g. [12, Corollary 1.4.2]) for any t ∈ R, G(t, .) is a characteristic function of a weak distribution or equivalently a cylindrical measure μt on Z (see [START_REF] Skorohod | Integration in Hilbert space[END_REF] and also [7, Section 6] for specific information).

(ii) The fact that μt are Borel probability measures satisfying 

μt (|z| 2r ) ≤ C r < ∞ , (33) 
G ε n (t, ξ ) F [b](ξ ) L p (dξ ) = pZ G(t, ξ ) F [b](ξ ) L p (dξ ) = Z b(z) d μt (z) .
Therefore, according to Definition 2.8 of Wigner measures we conclude that

∀t ∈ R, M ( ρε n (t), n ∈ N) = { μt } .
(iv) Finally the family of measures µ t which satisfy the claimed statement in the proposition are the push- forward measures µ t = (e -itA ) * μt .

Furthermore, an analogue of (33) can be easily checked for the measures µ t .

Polynomial approximations of the classical flow.

With the classical hamiltonian

h(z) = z , Az + Q(z) = z , Az + r ∑ j=2 z ⊗ j , Q j z ⊗ j , z ∈ D(A) ,
the related nonlinear field equation is

i∂ t z t = Az t + ∂ z Q(z t ) z t=0 = z 0 .
Actually this Cauchy problem is better studied when reformulated as an integral equation Therefore for any b ∈ P p,q (Z ), the following identity holds

z t = e -itA z -i t 0 e -i(t-s)A ∂ zQ(z s ) ds, for z ∈ Z , (34) 
d dt b(w t ) = ∂ zb(w t )[-i∂ zQ t (w t )] + ∂ z b(w t )[-i∂ zQ t (w t )] = i{Q t , b}(w t ).
Hence, we obtain the Duhamel formula

b(z t ) = b t (z) + i t 0 {Q t 1 , b t } (e it 1 A z t 1 ) dt 1 . (35) 
A simple iteration in [START_REF] Helffer | Ergodicité et limite semi-classique[END_REF], using

{Q t 1 , b t }(w t 1 ) = {Q t 1 , b t }(w 0 ) + i t 1 0 {Q t 2 , {Q t 1 , b t }}(w t 2 )dt 2 , yields b(z t ) = b t (z) + i t 0 {Q t 1 , b t }(z) dt 1 + i 2 t 0 dt 1 t 1 0 dt 2 {Q t 2 , {Q t 1 , b t }}(e it 2 A z t 2 ) .
Therefore, by induction and after setting F t (z) = z t , we obtain for any K > 1:

b • F t (z) = b t (z) + K-1 ∑ k=1 i k t 0 dt 1 • • • t k-1 0 dt k {Q t k , {. . . , {Q t 1 , b t } . . .}}(z) + i K t 0 dt 1 • • • t K-1 0 dt K {Q t K , {. . . , {Q t 1 , b t } . . .}}(e it K A z t K ) .
With the polynomial Q we associate the norm

Q = max j∈{2,...,r} |Q j | P j, j = max j∈{2,...,r} | Q j | L ( j Z , j Z ) ( 36 
)
and we note that Q t = Q for all t ∈ R . Notice that the flow F t preserves the norm

∀z ∈ Z , |F t (z)| = |z| ,
and is gauge invariant

∀z ∈ Z , ∀θ ∈ R, F t (e iθ z) = e iθ F t (z) .
But for a given polynomial b(z), the map z → b(z t ) does not remain a polynomial. Starting from a polynomial b(z) ∈ P p,q (Z ), we study polynomial approximations of b(z t ).

Consider the expression

b K (t, z) = b t (z) + K-1 ∑ k=1 i k t 0 dt 1 • • • t k-1 0 dt k {Q t k , {. . . , {Q t 1 , b t } . . .}}(z) = K-1 ∑ k=0 b k (t, z) (37) R K (t, z) = i K t 0 dt 1 • • • t K-1 0 dt K {Q t K , {. . . , {Q t 1 , b t } . . .}}(e it K A z t K ) . ( 38 
)
The two approximation results that we will use are given in the two next propositions.

Proposition 3.4 For b ∈ P p,q (Z ), the polynomial b K (t, z) = ∑ K-1 k=0 b k (t, z) defined in [START_REF] Klainerman | On the uniqueness of solutions to the Gross-Pitaevskii hierarchy[END_REF] belongs to ⊕ K(r-1) j=1 P j+p, j+q (Z ) with the estimates

|b k (t, z)| ≤ 2 p+q 2(r-1) (p + q) (4r 3 ) k Q k |b| P p,q |t| k z 2k(r-1)+p+q . ( 39 
)
Moreover, we have for R K (t, z) the estimates

|R K (t, z)| ≤ 2 p+q 2(r-1) (p + q) (4r 3 ) K Q K |b| P p,q |t| K z 2K(r-1)+p+q . ( 40 
)
Proof. With b ∈ P p,q (Z ) and

Q t = ∑ r j=2 Q j,t , the polynomial b k (t) = (i) k t 0 dt 1 • • • t k-1 0 dt k {Q t k , {. . . , {Q t 1 , b t } . . .}}(z) is the sum of (r -1) k ≤ r k monomials b k (t) = ∑ α∈{2,...,r} k b k,α (t) with b k,α (t) = (i) k t 0 dt 1 • • • t k-1 0 dt k {Q α k ,t k , {. . . , {Q α 1 ,t 1 , b t } . . .}} ∈ P |α|-k+p,|α|-k+q (Z ) .
A consequence of Proposition 2.4 says for c ∈ P p ′ ,q ′ (Z ) , 1) .

| {Q α 1 ,t 1 , c} (z)| ≤ r(p ′ + q ′ ) |Q α 1 | P α 1 ,α 1 |c| P p ′ ,q ′ z p ′ +q ′ +2(α 1 -
We deduce

|b k,α (t, z)| ≤ t 0 dt 1 • • • t k-1 0 dt k r k (p + q) • • •(p + q + 2k(r -1)) Q k |b| P p,q z p+q+2|α|-2k ≤ (p + q)r k (2(r -1)) k-1 |t| k Γ(a + k + 2) Γ(k + 1)Γ(a + 1) 1 a + k + 1 Q k |b| P p,q z p+q+2k(r-1)
with a = p+q 2(r-1) and Γ denotes the Gamma function. Now, we notice the relation with the Beta function

B(k + 1, a + 1) = Γ(k + 1)Γ(a + 1) Γ(a + k + 2) = 1 0 t k (1 -t) a dt ≥ 1 2 a+k+1 (a + k + 1)
, which yields [START_REF] Lascar | Une condition nécessaire et suffisante d'éllipticité pour une classe d'opérateurs différentiels en dimension infinie[END_REF]. The remainder

R K (t, z) = i Q t , b K = i K t 0 dt 1 • • • t K-1 0 dt K {Q t K , {. . . , {Q t 1 , b t } . . .}}(e it K A z t K )
is analyzed like the term b k (t) .

Proposition 3.5 Let µ be a positive Borel measure on Z supported in the ball {|z| ≤ R}, R > 0, then for any polynomial b ∈ P p,q (Z ),

Z |R K (t, z)| dµ(z) ≤ R p+q 2 p+q 2(r-1) (p + q)|b| P p,q 4r 3 Q R 2(r-1) |t| K .
Proof. It easily follows from [START_REF] Lennard | C 1 is uniformly Kadec-Klee[END_REF].

Transport for a state localized in a ball

The previous approximation result allows to prove partly Theorem 1. 

Tr[ρ ε n (t) b Wick ] = Tr[ρ ε n (0) b Wick t ] + i t 0 Tr ρε n (s) {Q s , b t } Wick ds (42) +i r ∑ j=2 ε j-1 n j! t 0
Tr ρε n (s) {Q s , b t } ( j) Wick ds .

Consider now the case when b ∈ P ∞ p,q (Z ) with a compact kernel, b ∈ L ∞ ( p Z ; q Z ) . Then we know that the left-hand side converges to Z b(z) dµ t (z). The number estimate of Proposition 2.3 with Tr [N α ρ ε n ] ≤ R 2α implies that the last term of the right-hand side converges to 0 as n → ∞. Finally the first term of the right-hand side converges to Z b(z) dµ 0 (z), even when b is not compact. We conclude that the limit of the second term of the r.h.s exists with

Z b(z) dµ t (z) = Z b t (z) dµ 0 (z) + lim n→∞ i t 0 Tr ρε n (s) {Q s , b t } Wick ds ,
and this initiates our induction process.

Given K > 1, take the approximation b K (t) = ∑ K-1 k=0 b k (t) to b(F t (z))
given in [START_REF] Klainerman | On the uniqueness of solutions to the Gross-Pitaevskii hierarchy[END_REF], and assume

Z b(z) dµ t (z) = Z b K (t, z) dµ 0 (z) (43) 
+ lim n→∞ i K t 0 dt 1 • • • t K-1 0 dt K Tr ρε n (t K ) ({Q t K , • • • {Q t 1 , b t } • • • }) Wick . ( 44 
)
A simple differentiation with respect to t K gives for Θ ∈ P alg (Z ),

Tr ρε n (t K )Θ Wick = Tr ρε n (0)Θ Wick + i t K 0 dt K+1 Tr ρε n (t K+1 ) {Q t K+1 , Θ} Wick +i r ∑ j=2 ε j-1 n j! t K 0 Tr ρε n (t K+1 ) {Q t K+1 , Θ} ( j) Wick dt K+1 . Hence, choosing Θ = {Q t K , • • • {Q t 1 , b t } • • • } yields Z b(z) dµ t (z) = Z b K (t, z) dµ 0 (z) + lim n→∞ i K t 0 dt 1 • • • t K-1 0 dt K Tr ρε n (0) ({Q t K , • • • {Q t 1 , b t } • • • }) Wick + i K+1 r ∑ j=2 ε j-1 n j! t 0 dt 1 • • • t K 0 dt K+1 Tr ρε n (t K+1 ) {Q t K+1 , • • • {Q t 1 , b t } • • • } Wick + i K+1 t 0 dt 1 • • • t K 0 dt K+1 Tr ρε n (t K+1 ) {Q t K+1 , • • • {Q t 1 , b t } • • • } Wick =: I + lim n→∞ (II + III + IV).
For any K, when n → ∞, the second term (II) converges to Z Θ(z) dµ 0 (z) because the initial states ρε n (0) = ρ ε n satisfies lim ε→0 Tr ρ ε n c Wick = Z c(z) dµ 0 (z) according to Proposition 2.12. Moreover, the third term (III) vanishes, when n → ∞, thanks to the number estimate in Proposition 2.3 and the fact that Tr [ρ

ε n N α ] ≤ R 2α . Therefore, we have Z b(z) dµ t (z) = Z b K+1 (t, z) dµ 0 (z) + lim n→∞ i K+1 t 0 dt 1 • • • t K 0 dt K+1 Tr ρε n (t K+1 ) {Q t K+1 , • • • {Q t 1 , b t } • • • } Wick .
By Proposition 3.5 and the fact that µ 0 is supported in {|z| ≤ R}, we deduce

Z b(z) dµ t (z) - Z b(F t (z)) dµ 0 ≤ R p+q 2 p+q 2(r-1) (p + q)|b| P p,q 4r 3 Q R 2(r-1) |t| K (45) + lim n→∞ t 0 dt 1 • • • t K-1 0 dt K Tr ρε n (t K ) ({Q t K , • • • {Q t 1 , b t } • • • }) Wick .
The number estimate of Proposition 2.3 with the inequality (39) of Proposition 3.4 implies

N -q+K(r-1) 2 ({Q t K , • • • {Q t 1 , b t } • • • }) Wick N -p+K(r-1) 2 L (H ) ≤ 2 p+q 2(r-1) (p + q) (4r 3 ) K Q K |b| P p,q .
This provides for the last term in the r.h.s of (45) the upper bound

R p+q 2 +K(r-1) 2 p+q 2(r-1) (p + q) (4r 3 ) K Q K |b| P p,q |t| K .
For small times, |t| ≤ T δ = δ (4r 3 ) Q R r-1 with δ < 1, taking the limit as K → ∞ now gives

∀b ∈ P ∞ p,q (Z ) , Z b(z) dµ t (z) = Z b(F t (z)) dµ 0 (z) .
But according to Proposition 3.6, the measure µ t is a Borel probability measure supported in the ball {|z| ≤ R} which is weakly compact. Meanwhile cylindrical polynomials which are contained in P ∞ alg (Z ), because they are associated with finite rank kernels, make a dense set in the C 0 (B(0, R) weak , C) and therefore in L 1 (Z , dµ) . Thus, we have proved

∀t ∈ [-T δ , T δ ] , µ t = (F t ) * µ 0 .
Finally, since |F t (z)| = |z| and [H ε , N] = 0, the pair ((ρ ε n (t)) n∈N , µ t ) satisfies the same assumptions as ((ρ ε n ) n∈N , µ 0 ). Since the time T δ depends only on Q and R the result extends to all t ∈ R .

Proof of the main result

Gathering all the information of Section 2 and 3, we are now in position to prove Theorem 1.1.

Proof of Theorem 1.1:

Let (ρ ε ) ε∈(0,ε) be a family of normal states satisfying hypothesis of Theorem 1.1 and let χ

∈ C 0 ([0, ∞), R) be a continuous cutoff function such that 0 ≤ χ ≤ 1, χ(x) = 1 if x ≤ 1/2 and χ(x) = 0 if x ≥ 1. For R > 0, consider the family of normal states ρ R ε = χ(N/R 2 )ρ ε χ(N/R 2 ) Tr[χ(N/R 2 )ρ ε χ(N/R 2 )] ,
localized in the ball of radius R. By Proposition 2.16, we know that

(i) M (ρ R ε , ε ∈ (0, ε)) = χ 2 (|z| 2 /R 2 ) Z χ 2 (|z| 2 /R 2 )dµ 0 µ 0 =: {µ R 0 } (ii) ∀α ∈ N, lim ε→0 Tr[ρ R ε N α ] = Z |z| 2α dµ R 0 (z) .
Next, we use the notations

ρ ε (t) = e -i t ε H ε ρ ε e i t ε H ε and ρ R ε (t) = e -i t ε H ε ρ R ε e i t ε H ε .
For any sequence (ε n ) n∈N there exists by Proposition 3.3 a subsequence (ε n k ) k∈N and a family of Borel probability measures

(µ R t ) t∈R such that (i) ′ M (ρ R ε n k (t), k ∈ N) = {µ R t } (ii) ′ ∀α ∈ N, lim k→∞ Tr[ρ R ε n k N α ] = Z |z| 2α dµ R 0 (z) .
Applying now Proposition 3.6 with (i) ′ -(ii) ′ , we obtain that

M (ρ R ε n k (t), k ∈ N) = {(F t ) * µ R 0 } , (46) 
for any time t ∈ R. Since for any sequence (ε n ) n∈N we can extract a subsequence (ε n k ) k∈N such that (46) holds we conclude that

M (ρ R ε (t), ε ∈ (0, ε)) = {(F t ) * µ R 0 } , (47) 
for any R > 0 and t ∈ R. Again applying Proposition 3.3 for (ρ ε ) ε∈(0,ε) , there exists for any sequence (ε n ) n∈N a subsequence (ε n k ) k∈N and a family of Borel probability measures (µ t ) t∈R such that

M (ρ ε n k (t), k ∈ N) = {µ t } .
The identification of the measures (µ t ) t∈R follows by a δ /3 argument. For any b ∈ S cyl (Z ) based in pZ , p ∈ P, we write

Tr[ρ ε n k (t)b Weyl ] - Z b(z)d(F t ) * µ 0 ≤ Tr[ρ ε n k (t)b Weyl ] -Tr[ρ R ε n k (t)b Weyl ] (48) 
+ Tr[ρ R ε n k (t)b Weyl ] - Z b(z)dµ R t (49) + Z b(F t (z))dµ R 0 - Z b(F t (z))dµ 0 . (50) 
Each term ( 48)-( 50) can be made arbitrarily small by choosing R and k large enough and respectively using the bound ( 21), the relation ( 47) and the dominated convergence theorem. So, we conclude that µ t = (F t ) * µ 0 and hence we have proved

M (ρ ε , ε ∈ (0, ε)) = {(F t ) * µ 0 } .
Finally, the use of Proposition 2.12 with ρ ε (t) yields

lim ε→0 Tr ρ ε (t)b Wick = Z b • F t (z) dµ 0 (z) , since lim ε→ 0 Tr[ρ ε (t)N α ] = lim ε→ 0 Tr[ρ ε N α ] = Z |z| 2α dµ 0 = Z |z| 2α dµ t , for all α ∈ N.
The reformulation of this result in terms of BBGKY hierarchy of reduced matrices is a consequence of Proposition 2.11.

Additional results

Although it was not written in Theorem 1.1, remember that the existence of Wigner measures contains a result for Weyl observables.

Corollary 3.7 Let (ρ ε ) ε∈(0,ε) be a family of normal states on H satisfying the hypothesis of Theorem 1.1. The limit

lim ε→0 Tr[e -i t ε H ε ρ ε e i t ε H ε b Weyl ] = Z b • F t (z) dµ 0
holds for any b in the cylindrical Schwartz space S cyl (Z ) , any t ∈ R and any b ∈ S ν pZ , ν ∈ [0, 1], p ∈ P . The next result, shows that the class of observables can be extended to functions of Wick-quantized symbols.

Corollary 3.8 Let (ρ ε ) ε∈(0,ε) be a family of normal states on H satisfying the hypothesis of Theorem 1.1. Then i) The limit

lim ε→0 Tr[e -i t ε H ε ρ ε e i t ε H ε f (b Wick )] = Z f (b • F t (z)) dµ 0 ( 51 
)
holds for any f ∈ F -1 (M b (R)) and any b ∈ P p,p (Z ) such that b * = b.
ii) If additionally (ρ ε ) ε∈(0,ε) is a family of localized states on a ball of radius R > 0, then the limit (51) holds for any entire function f (x) = ∑ ∞ k=0 a k x k over C and any b ∈ P p,p (Z ) such that b * = b.

Proof. i) Let χ ∈ C 0 ([0, ∞), R) be a continuous cutoff function such that 0 ≤ χ ≤ 1, χ(x) = 1 if x ≤ 1/2 and χ(x) = 0 if x ≥ 1. Consider the family (ρ ε (t) = e -i t ε H ε ρ ε e i t ε H ε ) ε∈(0,ε) with ρ R ε = χ(N/R 2 )ρ ε χ(N/R 2 ) Tr[χ(N/R 2 )ρ ε χ(N/R 2 )] , R > 0. Let b ∈ P p,p (Z ) such that b * = b, then b Wick extends to a self-adjoint operator on H satisfying [N, b Wick ] = 0. We claim that ∀θ ∈ R, Tr[ρ R ε (t)e iθ b Wick ] = ∞ ∑ k=0 i k k! θ k Tr[ρ R ε (t)(b Wick ) k ] . (52) 
Thanks to the estimate

Tr[ρ R ε (t)(b Wick ) k ] = Tr[ N pk/2 ρ R ε (t) N pk/2 ( N -p/2 b Wick N -p/2 ) k ] ≤ R pk |b| k P p,p , (53) 
the l.h.s of ( 52) is an absolutely convergent series uniformly in ε ∈ (0, ε). Moreover, on can easily show the strong limit

s -lim N→∞ N ∑ k=0 i k k! θ k (b Wick ) k 1 [0,R 2 ] (N) = e iθ b Wick 1 [0,R 2 ] (N) .
Therefore, we see that

∞ ∑ k=0 i k k! θ k Tr[ρ R ε (t)(b Wick ) k ] = ∞ ∑ k=0 i k k! θ k Tr[ρ R ε (t)(b Wick ) k 1 [0,R 2 ] (N)] = Tr[ρ R ε (t)e iθ b Wick ] .
This proves [START_REF] Spohn | Kinetic equations from Hamiltonian dynamics[END_REF] and again by the uniform estimate [START_REF] Tartar | Oscillations and Concentration Effects in Partial Differential Equations[END_REF] with respect to ε ∈ (0, ε), we obtain

lim ε→0 Tr[ρ R ε (t)e iθ b Wick ] = ∞ ∑ k=0 i k k! θ k Z b(F t (z)) k dµ 0 = Z e -iθ b(F t (z)) dµ 0 .
Now, a similar δ /3 argument as in the proof of Theorem 1.1

Tr[ρ ε n k (t)e iθ b Wick ] - Z e iθ b(F t (z)) dµ 0 ≤ ρ ε n k -ρ R ε n k L 1 (H ) + Tr[ρ R ε n k (t)e iθ b Wick ] - Z e iθ b(F t (z)) dµ R 0 + Z e iθ b(F t (z)) dµ R 0 - Z e iθ b(F t (z)) dµ 0 ,
using the bound [START_REF] Elgart | Mean field dynamics of boson stars Comm[END_REF], the relation [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF] and the dominated convergence theorem, yields the limit

lim ε→0 Tr[ρ ε n k (t)e iθ b Wick ] = Z e iθ b(F t (z)) dµ 0 .
By integrating with respect to F ( f ) ∈ M b (R), we end the proof.

ii) The proof is similar to (i). Indeed, one shows

Tr[ρ ε (t) f (b Wick )] = ∞ ∑ k=0 a k Tr[ρ ε (t)(b Wick ) k ] , (54) 
with a l.h.s absolutely convergent series uniformly in ε ∈ (0, ε). Letting ε → 0 in (54) yields the result.

Examples

We review a series of examples. Firstly, the propagation of coherent states and Hermite states is recalled. Secondly, bounded interactions occur naturally within the modelling of rapidly rotating Bose-Einstein condensates, owing to some hypercontractivity property. Thirdly, the tensor decomposition of the Fock space allows to specify some Wigner measures for which the propagation cannot be translated in terms of the reduced density matrices without writing all the BBGKY hierarchy. Finally, the result of Theorem 1.1 provides a new way to consider the Hartree-von Neumann limit in the mean field regime.

Coherent and Hermite states

The coherent states on the Fock space, Γ s (Z ) are given by E(ξ ) = W ( 

ρ ε (ξ ) := W ( √ 2 iε ξ )Ω W ( √ 2 iε ξ )Ω .
We proved in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] that M (ρ ε (ξ ), ε ∈ (0, ε)) = {δ ξ } and a simple computation shows that the property (PI) is satisfied:

lim ε→0 Tr[ρ ε N k ] = |ξ | 2k = δ ξ (|z| 2k ) .
A second example is given by Hermite states, also well studied within the propagation of chaos technique or other works (e.g., [START_REF] Maslov | The chaos conservation problem in quantum physics[END_REF][13] [START_REF] Erdös | Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems[END_REF]). They are given by

ρ N (ϕ) := |ϕ ⊗N ϕ ⊗N | , (55) 
with ϕ ∈ Z , |ϕ| Z = 1 and discrete values for ε = 1 N . We know from [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] that M (ρ N (ϕ), N ∈ N) = { 1 2π 2π 0 δ e iθ ϕ dθ } where the rotation invariance is the phase-space translation of the gauge invariance of the Hermite states ϕ → e iθ ϕ . One easily checks the property (PI):

lim N→∞ Tr[ρ N (ϕ) N k ] = 1 = 1 2π 2π 0 |z| 2k δ e iθ ϕ (z) dθ .
It is convenient to introduce a notation for this Wigner measure. 

(e -i t ε H ε ρ ε (ξ )e i t ε H ε ) ε∈(0,ε) and (e -i t ε H ε ρ N (ϕ)e i t ε H ε ) ε=1/N, N∈N *
are respectively δ ξ t and δ S 1 ϕ t , where ξ t or ϕ t evolves according to the classical flow. For example when

H ε = dΓ(-∆) + 1 2 R 2d V (x -y)a * (x)a * (y)a(x)a(y) dxdy with Z = L 2 (R d
) the classical flow is the Hartree equation

i∂ t ψ = -∆ψ + (V * |ψ| 2 )ψ .
We conclude by noticing that for such states (ρ N (ϕ) and ρ ε (ξ )) the asymptotic one particle reduced density matrix γ

(1)

0 (t) solves the equation      i∂ t γ (1) 
0 = -∆ + (V * n γ (1) 0 ) , γ (1) 0 γ 
(1)

0 (t = 0) = |ξ ξ | for ρ ε (ξ ) , resp. γ (1) 
0 (t = 0) = |ϕ ϕ| for ρ N (ϕ) , (56) 
with n γ (1)

0 (x) = γ (1) 
0 (x, x) .

LLL-mean field dynamics for rapidly rotating Bose-Einstein condensates

The case of bounded interaction terms occurs exactly in the modelling of rapidly rotating Bose-Einstein condensates in the Lowest-Landau-Level (LLL) regime. The (LLL) one particle states can be described (see [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF]) within the Bargmann space

Z = f ∈ L 2 (C ζ 1 , e -|ζ 1 | 2 h L(dζ 1 )) , ∂ ζ1 f = 0
where L(dζ 1 ) is the Lebesgue measure on C, h > 0 is a parameter which is small in the rapid rotation regime and where the norm on Z is given by

| f | 2 Z = C | f (ζ 1 )| 2 e -|ζ 1 | 2 h L(dζ 1 ) (πh) = 1 πh |u| 2 L 2 , u(ζ 1 ) = f (ζ 1 )e -|ζ 1 | 2 2h .
The multiparticle bosonic problem has been considered in [START_REF] Lewin | Strongly correlated phases in rapidly rotating Bose gases[END_REF] and the (LLL)-model has been justified for the stationary states of such a system not only in the mean field asymptotics. The k-particle states are elements of

k Z = F ∈ L 2 (C k ζ , e -|ζ | 2 h L(dζ ))) , ∂ ζ F = 0 , F(ζ σ (1) . . . , ζ σ (k) ) = F , ∀σ ∈ S k , with the norm |F| 2 k Z = C k |F(ζ )| 2 L(dζ ) (πh) k .
With or without the symmetry condition, k Z and k Z are closed subspaces of L 2 (C k ζ , e -|ζ | 2 h L(dζ )) and they are the image of the orthogonal projection (add the symmetry for k Z )

(Π k h G)(ζ ) = C k e ζ .τ-|τ| 2 h G(τ) L(dτ) (πh) k .
Within the modelling of rapidly rotating Bose-Einstein condensates, the one particle kinetic energy term is

A = hζ 1 ∂ ζ 1 and it is associated with 0 ≤ E kin ( f ) = f , hζ 1 ∂ ζ 1 f Z .
The standard one particle nonlinear energy is given by

α C |u| 4 L(dζ 1 ) , u(ζ 1 ) = f (ζ 1 )e -|ζ 1 | 2 2h .
where α > 0 is another parameter provided by the physics (see [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF]), but more general energies can be considered

E NL ( f ) = r ∑ p=2 α p C |u| 2p L(dζ 1 ) , u(ζ 1 ) = f (ζ 1 )e -|ζ 1 | 2 2h , α p > 0 . (57) 
The mean field Hamiltonian is thus given by

h( f ) = E kin ( f ) + E NL ( f ) = f , hζ 1 ∂ ζ 1 f + r ∑ p=2 α p C | f (ζ 1 )| 2p e -p|ζ 1 | 2 h L(dζ 1
) .

An important property of these nonlinear energies comes from the hypercontractivity of the semigroup (e -thξ ∂ ξ ) t≥0 proved in [START_REF] Carlen | Some Integral Identities and Inequalities for Entire Functions and Their Application to the Coherent State Transform[END_REF] which can be written as

|U| L 2p ≤ C p,h,d |U| L 2 if U(ζ ) = F(ζ )e -|ζ | 2 2h , F ∈ k ⊗ Z , p ∈ [2, +∞] . (58) 
This implies that the nonlinear energy is a norm continuous polynomial with respect to f ∈ Z and therefore the nonlinear mean field equation

i∂ t f = hζ 1 ∂ ζ 1 f + r ∑ p=2 pα p Π 1 h (|u| 2(p-1) u)Π 1 h f (59)
defines a nonlinear flow on the phase-space Z according to Subection 3.2 (we refer the reader to [START_REF] Nier | Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics[END_REF] for a more detailed analysis of the nonlinear dynamics of the LLL-model) .

Let us consider the second quantized version H ε of the energy h in Γ s (Z ). The kinetic energy is nothing but dΓ(A):

dΓ(A) k Z = ε k ∑ j=1 hζ j ∂ ζ j = εhζ .∂ ζ .
and the quantum Hamiltonian H ε is then

H ε = dΓ(A) + r ∑ p=2 α p Q Wick p (60) with Q p ( f ) = C |u(ζ 1 )| 2p L(dζ 1 ) = C | f (z)| 2p e -p|ζ 1 | 2 h L(dζ 1 ) = f ⊗p , Qp f ⊗p . (61) 
The operator Qp is easily identified after removing the center of mass in multiple integrals (see [START_REF] Lewin | Strongly correlated phases in rapidly rotating Bose gases[END_REF] for details) as

Qp F(ζ ) = Π h p p-1 ∏ j=1 δ (ζ ′ j ) F (ζ ) = 1 (πh) p F ζ 1 + • • • + ζ p p , . . . , ζ 1 + • • • + ζ p p with ζ ′ j = ζ j - ζ 1 +•••+ζ p p
. One easily checks as well, by using additionally the hypercontractivity estimate (58) with p = +∞, that Qp ∈ L ( p Z ).

The propagation result of Theorem 1.1 applies for such a model for all initial states which fulfill its assumptions (boundedness of all moments and condition (PI)).

Fock tensorization

We have already used, and it is the basis of the introduction of cylindrical observables, the fact that

Γ s (Z ) ∼ Γ s (Z 1 ) ⊗ Γ s (Z 2 ) when Z = Z 1 ⊥ ⊕ Z 2 .
The definition of Wigner measures introduced via cylindrical observables, yields the next result. ε ) ε∈(0,ε) , (ρ 2 ε ) ε∈(0,ε) be two families of normal states on Γ s (Z 1 ) and Γ s (Z 2 ) such that Tr ρ ℓ ε N δ ℓ ≤ C δ holds uniformly for some δ > 0 and M (ρ ℓ ε , ε ∈ (0, ε)) = µ ℓ for ℓ = 1, 2 . Let ρ ε be the state on Γ s (Z ) identified with ρ 1 ε ⊗ ρ 2 ε in the decomposition Γ s (Z ) ∼ Γ s (Z 1 ) ⊗ Γ s (Z 2 ). Then the family (ρ ε ) ε∈(0,ε) admits the unique Wigner measure µ = µ 1 × µ 2 on the phase space Z = Z 1 × Z 2 .

Before giving applications and variations on this result it is worth to notice that the identification of the "tensor" state ρ ε requires some care. It is not equal in general to ρ 1 ε ⊗ ρ 2 ε since such a states does not preserve the symmetric Fock space Γ s (Z ) . Here is a simple example, take ϕ 1 ∈ Z 1 and

ϕ 2 ∈ Z 2 with |ϕ ℓ | Z ℓ = 1, N 1 , N 2 ∈ N, and set ρ ℓ = |ϕ ⊗N ℓ ℓ ϕ ⊗N ℓ ℓ | for ℓ = 1, 2 . The tensor states ρ 1 ⊗ ρ 2 is the pure state |ϕ ⊗N 1 1 ⊗ ϕ ⊗N 2 2 ϕ ⊗N 1 1 ⊗ ϕ ⊗N 2 2 | in Γ s (Z 1 ) ⊗ Γ s (Z 2 ) . It suffices to identify the vector ϕ ∨(N 1 ,N 2 ) ∈ Γ s (Z ) associated with ϕ ⊗N 1 1 ⊗ ϕ ⊗N 2 2
. It is the symmetric vector in N 1 +N 2 Z made with N 1 -times ϕ 1 and N 2 -times ϕ 2 and we can summarize the situation with

ϕ ⊗N ℓ ℓ = 1 ε N ℓ N ℓ ! N ℓ times a * (ϕ ℓ ) . . . a * (ϕ ℓ ) |Ω ℓ in Γ s (Z ℓ ) , ℓ = 1, 2, ϕ ∨(N 1 ,N 2 ) = (N 1 + N 2 )! ε (N 1 +N 2 ) N 1 !N 2 ! S N 1 +N 2 (ϕ ⊗N 1 1 ⊗ ϕ ⊗N 2 2 ) = 1 ε N 1 +N 2 N 1 !N 2 ! N 1 times a * (ϕ 1 ) . . . a * (ϕ 1 ) N 2 times a * (ϕ 2 ) . . . a * (ϕ 2 ) |Ω in Γ s (Z ) .
The tensor decomposition is especially useful when Z is endowed with a Hilbert basis (e j ) j∈N * . An Hilbert basis of Γ s (Z ) is (e ∨α ) α∈∪ ∞ j=0 (N * ) j given by:

e ∨α = |α|! α! S |α| e ⊗α = 1 ε |α| |α|! [a * (e)] α |Ω with a natural multi-index notation α = (α 1 , . . . , α k ), |α| = α 1 + • • • + α k , e ⊗α = e ⊗α 1 1 ⊗ • • • ⊗ e α k k and [a * (e)] α = a * (e 1 ) α 1 . . . a * (e k ) α k .
For example, the identification between Γ s (Ce 1 ) ⊗ Γ s ((Ce 1 ) ⊥ ) and Γ s (Z ) is done via the mapping defined by e α 1 1 ⊗ e α ′ → e (α 1 ,α ′ ) , for all α 1 ∈ N and all α ′ ∈ ∪ ∞ k=0 (N \ {0, 1}) k . This can be iterated but remember that the definition of infinite tensor products requires the additional specification of one vector per component which is hopefully rather canonical for Fock spaces endowed with a vacuum vector (see [START_REF] Guichardet | Symmetric Hilbert spaces and related topics[END_REF]) . Below is a notation convenient to the definition of tensor states and which allows some extensions. Consider the linear isometry C j on H = Γ s (Z ) defined by its action on the Hilbert basis

(e ∨α ) α∈∪ ∞ k=0 (N * ) k C j e ∨α = 1 |a * (e j )e ∨α | a * (e j )e ∨α = 1 ε(α j + 1)
a * (e j )e ∨α = e ∨(α+1 j ) ,

with |1 j | = 1 and (1 j ) j = 1 . In the tensor decomposition Γ s (Z ) ∼ Γ s (Ce j ) ⊗ Γ s ((Ce j ) ⊥ ), this isometry C j is nothing but the tensor product 1 √ N j a * (e j ) ⊗ I .

Definition 4.3

Let Z be endowed with a Hilbert basis (e j ) j∈N * , for j ∈ N * , and take the isometries (C j ) j∈N * defined in H by (62). For j ∈ N * , the operator E j is defined on L 1 (H ) by

E j ρ = C j ρC * j , ∀ρ ∈ L 1 (H ) . 29 
For λ = (λ j ) j∈N * ∈ ℓ 1 ([0, +∞)) such that ∑ ∞ j=1 λ j = 1, the notation λ .E means λ .E = ∞ ∑ j=1 λ j E j .
The operators E j and λ .E transform normal states on k-1 Z into normal states on k Z and they all commute. After taking ϕ 1 = e 1 and ϕ 2 = e 2 the tensor state on Γ s (Z ) identified with ρ 1 ⊗ ρ 2 and studied above with Z 1 = Ce 1 and Z 2 = (Ce 1 ) ⊥ is nothing but

E (N 1 ,N 2 ) |Ω Ω| = E N 1 1 E N 2 2 |Ω Ω| = E N 2 2 E N 1 1 |Ω Ω| .
Moreover the multinomial formula holds

(λ .E) N = ∑ |α|=N N! α! λ α E α . (63) 
We use these notion to formulate the propagation of nontrivial Wigner measures. The Hamiltonian is

H ε = dΓ(A) + r ∑ j=2 z ⊗ j , Q j z ⊗ j Wick , ε = 1 N with (A, D(A)) self-adjoint and Q j = Q * j ∈ L ( j Z ) . It is associated with the mean field Hamiltonian h(z, z) = z , Az + r ∑ j=2 Q j (z)
and the flow (F t ) t∈R in the phase space Z .

Proposition 4.4 Let Z be endowed with an orthonormal basis (e j ) j∈N * and let the family

(E j ) j∈N * be as in Definition 4.3. Once ρ ε (0) is fixed ρ ε (t) is defined by ρ ε (t) = e -i t ε H ε ρ ε (0)e i t ε H ε . 1) For k ∈ N * and (ν 1 , . . . , ν k ) ∈ [0, 1] k fixed such that ∑ k ℓ=1 ν ℓ = 1
, assume that N ℓ equals the integer part [ν ℓ N] for ℓ ∈ {1, . . . , k}. Then the family of states (ρ ε (t)) ε=1/N given by ρ ε (0) = E (N 1 ,...,N k ) |Ω Ω| admits a unique Wigner measure

µ t = (F t ) * µ 0 = (F t ) * (δ S 1 √ ν 1 e 1 × • • • × δ S 1 √ ν k e k ) .
The reduced density matrices γ (p)

ε (t) converge in L 1 ( p Z ) to γ (p) 0 (t) = Z |z ⊗p t z ⊗p t | dµ 0 (z) (64) 
by setting z t = F t z .

2) Let λ = (λ j ) j∈N * ∈ ℓ 1 ([0, +∞)) be such that ∑ ∞ j=1 λ j = 1. Then the family of states (ρ ε (t)) ε=1/N given by ρ ε = (λ .E) N |Ω Ω| satisfies the same properties as above with

µ 0 = ∞ × j=1 δ S 1 √ λ j e j .
Proof. Actually it suffices to identify the measure µ 0 and to check the assumptions of Theorem 1.1 at time t = 0 .

1) It is a simple application of Lemma 4.2 with the decomposition

Γ s (Z ) ∼ Γ s (Ce 1 ) ⊗ • • • ⊗ Γ s ((Ce k-1 )) ⊗ Γ s ((Ce 1 ⊕ • • • ⊕ Ce k-1 ) ⊥ ) .
In this decomposition E (N 1 ,...,N k ) |Ω Ω| is nothing but a tensor product of Hermite states. 

ρ ε (0)(b -b ′ ) Wick = Tr ρ ε (0)χ(N)(b -b ′ ) Wick χ(N) ≤ C p,q |b -b ′ | P p,q , and 
Z (b(z) -b ′ (z)) dµ 0 (z) = Z (b(z) -b ′ (z))χ 2 (|z| 2 ) dµ 0 (z) = C p,q |b -b ′ | P p,q ,
with the first one deduced from the number estimate (10) in Proposition 2.3, hold for all b, b ′ ∈ P ∞ p,q (Z ), p, q ∈ N as soon as χ ∈ C ∞ 0 ([0, +∞)) is chosen such that χ ≡ 1 on [0, 1] . Hence it suffices to prove lim ε→0 Tr ρ ε (0)b Wick = Z b(z) dµ 0 (z) for a total set of P ∞ alg (Z ) . With the compact kernel condition, any b ∈ L ∞ ( p Z , q Z ) can be approximated by a linear combination of rank one operators of the form Actually

a(e) β e ∨α = ε p α! α ′ ! e ∨α ′ if α = α ′ + β , 0 else , with a similar identity for γ yields Tr ρ ε (0)( z ⊗q , e ⊗γ e ⊗β , z ⊗p ) Wick = δ β ,γ ε p N! (N -p)! ∑ |α ′ |=N-p (N -p)! α ′ ! λ α ′ λ β = δ β ,γ ε p N(N -1) . . .(N -p + 1)λ β .
With ε = 1/N and (p, q) fixed, we obtain Tr ρ ε (0)( z ⊗q , e ⊗γ e ⊗β , z ⊗p ) Wick = δ β ,γ λ β = Z z ⊗q , e ⊗γ e ⊗β , z ⊗p dµ 0 (z) .

We conclude with two remarks:

• The tensorized Hermite state E (N 1 ,...N ℓ ...) |Ω Ω| with N ℓ = [λ ℓ N] and ∑ ∞ j=1 λ j = 1 can be studied and behaves asymptotically like (λ .E) N |Ω Ω| .

• When those tensor states are not Hermite states, the reduced density matrices satisfy no closed equation and all the hierarchy has to be considered. In the example leading to (56) for Hermite states the general equation for γ

(1)

0 (t) writes i∂ t γ (1) 0 (x, y) = [-∆, γ (1) 
0 ](x, y) + R d V (x -x ′ )γ (2) 0 (x ′ , x, x ′ , y) -γ (2) 0 (x ′ , x, x ′ , y)V (y -x ′ ) dx ′ ,
and the equation for γ

(2)

0 involves γ (3) 
0 and so on. . . The propagation of Wigner measures gathers all the asymptotic information in this case. Geometrically it is interesting to notice that if the initial Wigner measure is δ

S 1 √ λ 1 e 1 × δ S 1 √ λ 2 e 1
, with λ 1 + λ 2 = 1, it is supported by a 2-dimensional torus. After the action of the continuous flow, the support of µ t remains topologically a 2-dimensional torus but in general deformed in the infinite dimensional phase space with no exact finite dimensional reduction.

A Gibbs state is a quasi-free state with σ (ε) = e -εL(ε) where L(ε) is a strictly positive operator assumed here with a discrete spectrum:

L(ε) = ∞ ∑ i=1 ℓ i (ε)|e i e i | , ℓ i (ε) ≤ ℓ i+1 (ε) , (65) 
where the basis (e j ) j∈N * is assumed independent of ε ∈ (0, ε) for the sake of simplicity . There is a simple traduction of the assumptions of Theorem 1.1, the non obvious one being the condition (PI) hidden in the assumption [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF]. • For all i ∈ N * the limit lim ε→0 ℓ i (ε) = ℓ i (0) exists in (0, +∞] .

• If J ∈ N * ∪ {∞} denotes the largest element in N * ∪ {∞} such that ℓ i (0) < +∞ for all i ≤ J, the two conditions are verified

J ∑ i=1 1 ℓ i (0) < +∞ , ( 66 
)
and lim ε→0 ∑ i>J εe -εℓ i (ε)

(1e -εℓ i (ε) ) = 0 .

(67)

Proof. First of all, writing σ (ε) = e -εL(ε) allows to apply Lemma 4.5 with ν i (ε) = εe -εℓ i (ε) 1-e -εℓ i (ε) . From e -εℓ i (ε) ≥ 1 -εℓ i (ε) we deduce ν i (ε) ≥ e -εℓ i (ε) ℓ i (ε) .

Hence the uniform boundedness of Tr ρ ε N k for k ∈ N, which is equivalent to ∑ ∞ i=1 ν i (ε) ≤ C implies inf j∈N * ,ε∈(0,ε)

ℓ j (ε) = κ > 0 . (68) 
We now use the assumption that the family (ρ ε ) ε∈(0,ε) admits a unique Wigner measure µ 0 . As a quasi-free state, ρ ε is given by its characteristic function (see for example [START_REF] Brattelli | Operator Algebras and Quantum Statistical Mechanics[END_REF] and [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] for the ε-dependent version)

Tr [ρ ε W ( f )] = e -ε 4 f , 1+e -εL(ε)
1-e -εL(ε) f .

But the Wigner measure is characterized by its characteristic function The measure µ 0 has to be the gaussian measure

G(ξ ) =
µ 0 = J × i=1 ℓ i (0) π e -ℓ i (0)|z i | 2 L(dz i ) , z = ∞ ∑ i=1 z i e i .
Our assumptions imply that the integral Z |z| 2 dµ 0 (z) equals 1e -εℓ i (ε)

α = k! ∑ |α|=k , α i =0 for i>J ℓ(0) -α ,
which is easily checked to be equal to Z |z| 2k dµ 0 (z) .

In the Bose-Einstein condensation of the free Bose gas in dimension 3, considered in [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF], the first eigenvalue is tuned so that ℓ 1 (0) ∈ (0, +∞) and all the other eigenvalues are such that ℓ i (0) = +∞ . The condition which fails and gives rise to a physical example of dimensional defect of compactness is (67) .

The Hartree-von Neumann limit

Let ρ 0 be a non-negative trace class operator on L 2 (R d ) satisfying Tr[ρ 0 ] = 1 and let 

ρ ⊗N = ρ ⊗ • • • ⊗ ρ.
with ρ N (t) is a trace class operator on L 2 (R d ) ⊗N ∼ L 2 (R dN ). Here H N is the Hamiltonian of the N particles system

H N = N ∑ i=1 1 ⊗ • • • ⊗ A ⊗ • • • ⊗ 1 + 1 N ∑ i< j V (x i -x j ) ,
with A is a self-adjoint operator and V ∈ L ∞ (R d ) real-valued satisfying V (x) = V (-x). As will appear in the proof, more general interactions could be considered in the spirit of Theorem 1.1, but we prefer to stick to the usual presentation for an example. The next result concerns the limit of the von Neumann dynamics (69) in the mean field regime N → ∞ already studied in [10][9]. We shall see that although the particles are not assumed to be bosons, our bosonic mean field result apply to this case due to the symmetry of the tensorized initial state ρ ⊗N 0 .

Proposition 4.7 Let (ρ N (t)) denote the solution to (69), and consider the trace class operator σ 

with n ρ (x,t) := ρ(x; x,t) .

Proof. The proof will be done in three steps: Bosonisation, Liouvillian and mean field limit.

Bosonization:

The phase space that we will consider is not the one particle space L 2 (R d ) but

Z = L 2 (L 2 (R d )) ,
the space of Hilbert-Schmidt operators on L 2 (R d ) . It is endowed with the inner product

ω 1 , ω 2 Z = Tr L 2 [ω * 1 ω 2 ]
where Tr Liouvillian: Let us now determine the appropriate Hamiltonian H ε of this problem which is actually a Liouvillian. The map R ∋ t → e -itA ωe itA

• We recall that a tensorization based on the tensor decomposition of Fock spaces in Subsection 4.3 led to the evolution of Wigner measures which cannot be translated in terms of Hartree-von Neumann equations.

  defined for the self-adjoint operator (A, D(A)) on Z and Q j = Q j * ∈ L ( j Z ). It is the Wick quantized version of the classical Hamiltonian

ε→0 1 Z

 1 Tr ρ ε (t)b Wick = Z b • F t (z) dµ 0 (z)2 holds for any b ∈ P alg (Z ) = ⊕ alg p,q∈N P p,q (Z ) . Finally, the convergence of the reduced density matrices lim |z| 2p dµ t (z) Z |z ⊗p z ⊗p | dµ t (z) =: γ (p) 0 (t) , holds in the L 1 ( p Z )-norm for all p ∈ N .

2 ε.

 2 are natural Weyl-Hörmander algebras associated with the finite dimensional harmonic oscillator Hamiltonian, N p = (|z| 2 pZ ) Wick = (|z| 2 pZ ) Weyldim pZ They contains the polynomial functions on pZ . The associated class of Weyl quantized operators after tensorization with I Γ s ((1-p))Z is denoted by OpS ν pZ . For a cylindrical polynomial b ∈ P alg (Z ) based on pZ , b(z) = b(pz), the asymptotic equivalence of the Weyl and Wick quantization in finite dimension says for any ν ∈ [0, 1]

For a general

  b ∈ P p,p (Z ), p ∈ N * , the decomposition b = bR,+ -bR,-+ i bI,+i bI,with all the b• ≥ 0 now gives ∀p ∈ N * , ∀b ∈ P p,p (Z ), lim ε→0 Tr ρ ε b Wick = 0 .

  denotes the Borel σ -set on pZ . For any b ∈ P ∞ alg (Z ), such that b(pz) = b(z) we have lim ε→0 Tr ρ ε b Wick = pZ b(z) dµ p (z) .

1 )

 1 The condition (PI) for the sequence: The uniform control of Tr ρ fε n N α ≤ C α , α ∈ N, implies Z |z| 2α dµ f (z) < +∞and the Proposition 2.9 says that the convergence lim n→∞ Tr ρ f ε n b Wick = Z b(z) dµ f (z) holds for any b ∈ P ∞ alg (Z ) with a compact kernel. In particular for b(z) = |pz| 2k with p ∈ P and k ∈ N,

√ 2 iε

 2 ξ )Ω = e a * (ξ )-a(ξ ) ε Ω, where Ω is the vacuum vector of Γ s (Z ), ξ ∈ Z and [a( f ), a * (g)] = ε f , g I . The Hepp method ([36][30][31]) consists in studying the propagation of squeezed coherent states a slightly larger class which includes covariance deformations. The normal state made with E(ξ ) is

Definition 4 . 1

 41 For ϕ ∈ Z , the symbol δ S 1 ϕ denotes the Borel probability measure ϕ dθ . Theorem 1.1 applies and the Wigner measures associated with

Lemma 4 . 2 1 ⊥⊕ Z 2

 4212 Assume Z = Z and let (ρ 1

. 2 )

 2 |e ⊗N ℓ ℓ e ⊗N ℓ ℓ | and the result is a simple tensorization of the result for Hermite states with ε = ν ℓ N ℓ The state ρ ε (0) = (λ .E) N |Ω Ω| belongs to L 1 ( N Z ) . It is therefore localized in the ball with radius 1 . According to Proposition 2.15, its Wigner measures are completely determined if we know the limits of Tr ρ ε (0)b Wick for all the b ∈ P ∞ alg (Z ) . Due to Pythagorean summation, the measure µ 0 = × ∞ j=1 δ S 1 √ λ j e j is supported in the ball of radius 1. The estimates Tr

  |e ∨γ e ∨β | = β !γ! |β |!|γ|! S |γ| |e ⊗γ e ⊗β |S |β | , |β | = p, |γ| = q . With ( z ⊗q , e ⊗γ e ⊗β , z ⊗p ) Wick = [a * (e)] γ [a(e)] β and ρ ε (0) = ∑ |α|=N λ α N! α! |e ∨α e ∨α | , we can compute directly Tr ρ ε (0)( z ⊗q , e ⊗γ e ⊗β , z ⊗p ) Wick = ∑ |α|=N N! α! λ α a(e) γ e ∨α , a(e) β e ∨α .

Proposition 4 . 6

 46 The Gibbs state ρ ε = 1 Tr[Γ(e -εL(ε) )] Γ(e -εL(ε) ) with L(ε) given in (65) satisfies the assumptions of Theorem 1.1 if and only if

Zee -επ 2 2 2 ℓ-π 2 ∑ J i=1 |ξ | 2 ℓ

 222 -2iπS(z,ξ ) dµ 0 (z) = lim ε→0 Tr ρ ε W ( √ 2πξ ) .By taking ξ = e i , i ∈ N * , this implies that the limit limε→0 1+e -εℓ i (ε) 1-e -εℓ i (ε)exists in R . With the constraint (68) there are two possibilities: either limε→0 ℓ i (ε) = ℓ i (0) ∈ [κ, +∞) andG(e i ) = e -π i (0) or lim ε→0 ℓ i (ε) = +∞ and G(e i ) = 1 . After recalling that the ℓ i (ε) are ordered and by introducing the index J like in our statement, we get for ξ = ∑ ∞ i=1 ξ i e i ∈ Z G(ξ ) = e i (0) .

1 -i=J+1( 1 -

 11 εℓ i (ε) , which enforces the two conditions (66) and (67) . Conversely assume that all the conditions are satisfied. Reconsidering the final argument in the proof of Lemma 4.5 says that the function∞ ∏ ν i (ε)x) -1 converges to 1 in a given neighborhood of x = 0 . Hence lim ε→0 Tr ρ ε N k = lim ε→0 k! ∑ |α|=k , α i =0 for i>J εe -εℓ i (ε)

  Consider the time-dependent von Neumann equation for a system of N particles

  i∂ t ρ N (t) = [H N , ρ N (t)] ρ N (0) = ρ ⊗N 0 ,

N

  (t) ∈ L 1 (L 2 (R kd )) defined by relation ∀B ∈ L (L 2 (R kd )) , Tr σ

N

  (t)B = Tr ρ N (t)(B ⊗ I L 2 (R d(N-k) ) ) .Then the convergence limN→∞ σ (k) N = ρ(t) ⊗k (70) holds in L 1 (L 2 (R dk)) for all t ∈ R and when ρ(t) solves the Hartree-von Neumann equationi∂ t ρ(t) = [A + (V * n ρ(t)), ρ(t)] ρ(0) = ρ 0 ,

  L 2[.] here denotes the trace on L 2 (R d ) and ω * 1 is the adjoint of ω 1 . The cyclicity of the trace leads toTr (L 2 ) ⊗N ρ N (t)(B ⊗ I L 2 (R d(N-k) ) ) = Ψ N (t) , (B ⊗ I L 2 (R d(N-k) ) )Ψ N (t) Z ⊗N (72) with Ψ N (t) = e -itH N √ ρ 0 ⊗N e itH N .The important point is that at time t = 0, Ψ N (0) = √ ρ 0 ⊗N , is a Hermite state in N Z and that the evolution preserves this symmetry so that∀t ∈ R , Ψ N (t) ∈ N Z , Ψ N (0) = √ ρ 0 ⊗N .With any bounded operator B : L 2 (R dk ) → L 2 (R dk ), the action by left (resp. right) multiplication is defined byL B (resp. R B ) : k Z → k Z ω ⊗k → S k (Bω ⊗k ) , (resp. S k (ω ⊗k B)) ,where S k is the orthogonal projection from ⊗ k Z onto k Z . Since (ω ⊗k ) ω∈Z is a total family in k Z this defines a bounded operatorL B ∈ L ( k Z ) (resp. R B ∈ L ( k Z )) such that L * B = L B * (resp. R * B = R B * ) . When B(x 1 , . . . , x k , y 1 , . . . , y k ) is the Schwartz kernel of B ∈ L (L 2 (R dk )) , L B (resp. R B )is the left (resp. right) multiplication by the operator with kernel1 k! ∑ σ ∈S k B(x σ (1) , . . . , x σ (k) , y σ (1) , . . . , y σ (k) ) .Hence the trace (72) equalsTr (L 2 ) ⊗N ρ N (t)(B ⊗ I L 2 (R d(N-k) ) ) = Ψ N (t) , L [B⊗I ⊗(N-k) ] Ψ N (t) N Z . With an operator B ∈ L (L 2 (R dk )), we can now associate a symbol b B (ω) = ω ⊗k , L B ω ⊗k k Z = Tr (L 2 ) ⊗k (ω * ) ⊗k Bω ⊗k ∈ P k,k (Z ). Since L [B⊗I ⊗(N-k) ] is nothing but L B I N-k Z we get Tr (L 2 ) ⊗N ρ N (t)(B ⊗ I L 2 (R d(N-k) ) ) = (Nk)! N!ε k Ψ N (t) , b Wick B Ψ N (t) N Z , ε = 1 N .

  the sufficient conditions for solving the moment problem (Proposition 2.15) and µ

  ε) be a family of normal states on H satisfying the uniform estimate Tr[ρ ε N r ] ≤ C r for some r > 0 . Then for any sequence (ε n ) n∈N in (0, ε) such that lim n→∞ ε n = 0 there exists a subsequence (ε n k ) k∈N and a family of Borel probability measures (µ t ) t∈R satisfying M (e -i t εn H εn ρ ε n e i t

εn H εn , n ∈ N) = {µ t } , for any t ∈ R. Moreover, we have Z |z| 2r dµ t (z) ≤ C r .

  which admits a classical C 0 -flow F t : R × Z → Z : 1) since the Q j are bounded a fixed point argument gives the local in time existence and uniqueness; 2) then the conservation|z t | = |z 0 | ensures the global in time result. As a classical C 0 -flow, F is a C 0 -map satisfying F t+s (z) = F t • F s (z) and F t (z) solves[START_REF] Guichardet | Symmetric Hilbert spaces and related topics[END_REF] for any z ∈ Z . Moreover, if z t solves[START_REF] Guichardet | Symmetric Hilbert spaces and related topics[END_REF], and Q t (z) = Q(e -itA z), then w t = e itA z t solves the differential equation

	d dt	w

t = -i∂ zQ t (w t ) .

  1 for states localized in a ball, introduced according to Definition 2.13 and studied in Subsection 2.8. Let (ρ ε n ) n∈N be a sequence of normal states on H localized in a ball with radius R > 0 and such that ∀t ∈ [-T, T ] , M (e -i t εn H εn ρ ε n e i t εn H εn , n ∈ N) = {µ t } , Then for all t ∈ [-T, T ], the probability measure µ t is the push-forward by the flow F t of the measure µ 0 , i.e., µ t = (F t ) * µ 0 . Moreover the identity holds for Weyl quantized cylindrical functions b ∈ p∈P F -1 (M b (pZ )) and general Wick quantized polynomials b ∈ P alg (Z ).

	Proposition 3.6 and	∀α ∈ N , lim			
	lim n→∞	Tr e -i t εn H εn ρ ε n e i t εn H εn b quantized =	Z	b(z) dµ t (z) =	Z	b(F t (z)) dµ 0 (z) ,
	Proof. We set					
			ρε			

k→∞

Tr[ρ ε n k N α ] = Z |z| 2α dµ 0 (z) . n (t) := e i t εn dΓ(A) e -i t

εn H εn ρ ε e i t εn H εn e -i t εn dΓ(A) .

It is worth noticing that for all t ∈ R, the sequence ( ρε n (t)) n∈N is localized in the ball with radius R. For a fixed b ∈ P p,q (Z ), differentiating with respect to t the quantity Tr[ ρε (t) b Wick ], we obtain

Tr[ ρε n (t) b Wick ] = Tr[ ρε n (0) b Wick ] + i ε n t 0 Tr ρε n (s) [Q Wick s , b Wick ] ds (

41

)

and replacing b by b t we end up with

This property should not be confused with the positivity of the finite dimensional Anti-Wick quantization which associates a non negative operator to any non negative symbol.

In a more general framework, it is said that L 1 ( p Z ) has a uniform Kadec-Klee property (see[START_REF] Lennard | C 1 is uniformly Kadec-Klee[END_REF] and references therein).
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Condition (PI) for Gibbs states

For σ (ε) ∈ L 1 (Z ), which is a non negative strict contraction:

where (e i (ε)) i∈N * is a Hilbert basis of Z , the operator Γ(σ (ε)) belongs to L 1 (H ) . It equals Γ(σ (ε)) = ∑ ∞ n=0 S n (σ (ε)) ⊗n S n and the tensor decomposition gives

Hence we can consider the quasi-free state

It is more convenient to write

and the condition

But the first derivative is nothing but

which yields the result.

defines a continuous unitary group on Z with a self-adjoint generator

The interaction is a bounded self-adjoint operator Q :

) and we associate the symbol Q(ω) = ω ⊗2 , Qω ⊗2 . For any ω ∈ Z the kernel of Qω ⊗2 ∈ 2 Z is given by

After introducing the Hamiltonian

acting as a self-adjoint operator on Γ s (Z ), we get for

This implies

Mean field limit:

The initial data ρ ε (0 

The classical energy associated with the Hamiltonian H ε is

Z and the mean field flow F t is nothing but the one given by

where V * n i ω are multiplication operators and

Thus previous equation becomes equivalent to the Hartree-von Neumann equation (71) with ρ(t) = ω(t) 2 when ω(0) = √ ρ 0 . The Theorem 1.1 says

In particular when B ∈ L (L 2 (R dk )), this implies

This proves the weak convergence in (70), but since it is concerned with non negative trace class operator and Tr σ (k) N (t) = 1 = Tr ρ(t) ⊗k the convergence holds in the L 1 -norm. We end with three remarks:

• When ρ is a pure state, the result of Proposition 4.7 is the same as (56).

• When ρ is not a pure state the Subsection 4.3 has already shown that one has to be very careful with tensor products. Actually ρ ⊗N ∈ L 1 (⊗ N Z ) commutes with the symmetrization projection S N (or the antisymmetrization A N for fermions) but the corresponding states in L 1 ( N Z ) (resp. L 1 ( N Z )) are S N ρ ⊗N S N (resp. A N ρ ⊗N A N ) .

But as shows the formula Tr [Γ s (ρ)] = ∏ λ ∈σ (ρ) ), the trace of S N ρ ⊗N S N (resp. A N ρ ⊗N A N ) converges to 0 as N → ∞ . We leave for subsequent works, the question whether normalizing these states would lead to the same asymptotics as in Proposition 4.7.