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Abstract

Contrary to the finite dimensional case, Weyl and Wick quatitbns are no more asymptotically
equivalent in the infinite dimensional bosonic second gmatibn. Moreover neither the Weyl calculus
defined for cylindrical symbols nor the Wick calculus defifiedpolynomials are preserved by the action
of a nonlinear flow. Nevertheless taking advantage caseffllthe information brought by these two
calculuses in the mean field asymptotics, the propagatidfigher measures for general states can be
proved, extending to the infinite dimensional case a stahdault of semiclassical analysis.

2000 Mathematics subject classificatid®1S30, 81S05, 81T10, 35Q55

1 Introduction

Our main result is briefly presented in this introductionciiate definitions will be found in Section 2.
Let 7 = I'g(Z) be the bosonic Fock space constructed over the complexa®ediilbert-space?’,
Ms(Z) =ap_ V"2 where\/" Z is the symmetrian-th hilbertian tensor power of. Consider the

Hamiltonian .

He = dr (A) + (;(2@" ,QjZ0y)Wick
J:

defined for the self-adjoint operatoh, 7(A)) on 2 andQ; = Q;" € .Z(V! Z). Itis the Wick quantized

version of the classical Hamiltonian

h(z,Z) = (z, A2 + i<z®j Q%y, zeg(A ) CZ.
=

When % = L%(RY), the operatoH is formally written
r
He = [ AR (020) dxayt 3 [ G0k, Yo 3i)a (60) @ (). aly;) el
R2 = R2dj

with the e-dependent canonical commutation relatifa) , a*(y)] = e6(x—y). HereA(.,.) andQ;(.,.)
denote the kernels of the operatdreindQ;. The mean field asymptotics is concerned with the limit as
£—0, where% = Ng represents a large number of particles and wiaegeters in the CCR-relations by

vf,ge Z, [a(f),a"(g)=¢(f,g)l.
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The number operator N = drI (I ), with NZ" = enZ*". For a normal statp; € .Z*(\/"¢ 2) c £(#)
with 2 = L?(RY), a standard tool considered in the mean field limit is the BBGHerarchy of reduced
density matrices:

BP0 = [y, PEXYX)AX, PEN,

and such a definition will be extended to gene#ahnd normal states. € .#*(.#) fulfilling the condition
Tr[peNK] < +oo forallk e N.

For a cylindrical functionb(z) = b(Jz) for some finite rank projectiol andb belonging to the Schwartz
class.” (0 ), the Weyl quantization can be given by

pWeyl /D , 7@ W(V2m) Ly(d),

whereW(v/2mz) = ™a2+a(2) and wherd_, and.# are respectively the Lebesgue measurélahi and
the (e-independent) Fourier-transform ori(0J 2°). Associated with a familype )¢ o z), Wigner measures
can be defined by

; Weyl| __
lim Tr [ Ve = /gb(z) du(2)

after extracting subsequences under the sole uniform mim[pgNﬂ < Cs for somed > 0.

The problem of the mean field dynamics questions whetherahmtotic quantities as — 0 associ-
ated with L L
pe(t) =e 'eHepelete teR

are transported by the flol generated by the classical Hamiltoniafz,z) and given, after writing; =
Ft*S(ZS)i by

iz — (35h) (2, %) — Az + izuz?"‘l,éj ). 1)
2

The finite dimensional case enters in the standard framegf@dmiclassical analysis and has been studied
extensively in the 80’s and 90’s by various authors and wattious methods ([48][35][29][42] [18][43][24]
and references therein).

It was first considered by Hepp in [36] and extended by Gindomd Velo in [30][31] by the squeezed
coherent states method well-known as the Hepp method (sed49][6]). More recently the question
of the mean field dynamics has been tackled with the so-c8IR@KY-hierarchy approach inspired by
the BBGKY-method of classical kinetic theory (see [52][2Z[14] [32][1] [3][23] and also the related
works [37][17]). In [25][26][27] a specific use of the struceé of the Wick calculus in the bosonic Fock
space was used to make work truncated Dyson expansionsfonghan field dynamics of specific states.
The aim of our work started in [7] was to restore the phaseesgaometric nature of the problem in the
spirit of [11][33][38][39] and to extend as much as possitdi¢he infinite dimensional case, the methods
well understood for the semiclassical finite dimensionalpem. In this first article, we explained the
construction of Wigner measures, analyzed accuratelydbeofiinformation carried by Weyl observables
and Wick observables and use these Wigner (or semiclassiealsures to reformulate known propagation
results. In [8], we reconsidered the truncated Dyson expamsethod of [25][26][27] in order to prove the
propagation of Wigner measures for some specific familiesaiés. We are now able to state the following
general result (still with a regular interaction term camrto many other works cited above).

Theorem 1.1 Let(p¢)c(05) be a family of normal states o#f” with a single Wigner measuyg and such
that

va en,  limTrip:N] :/ 12129 dpio(2) < +oo. @)
E— %

Then for all te R, the family(pe(t) = e‘i%prgéﬁHf)se(Qg) has a unique Wigner measuge = (Ft).lo,
which is the initial measurgly pushed forward by the flow associated w(ith.
Moreover the convergence

lim Tr {pg(t)b"vic"} = /fgbo Fi(2) duo(2)



holds for any be Zag(2) = G5y Ppa( %) - _
Finally, the convergence of the reduced density matrices

1
J712%° di(2)

holds in thez*(\/P 2)-norm for all pc N .

tim 2°' () = [, 0@ dn@ =P ),

Comments: The existence of Wigner measures as Borel probability nreasequires a uniform estimate
Tr [pgNﬂ < Cs for somed > 0, but such an assumption would be redundant with the existeibounded
limits stated in (2).

The uniqueness of the Wigner measpgeis not really a strong assumption since it suffices to repthee
whole family (pg)cc(0,5) by a suitable extracted sequer(@, Jken, limk—.« & = 0, in order to fulfill this
requirement. Such a reduction argument after extractidiroften be used.

The fact that the quantities Tp:N?] are uniformly bounded w.ra € (0, €) is also very natural within the
mean field framework and satisfied by all known physical exasip

Actually the strong assumption which is not satisfied in aies is that the limit in (2) equaJs. |2 do.
This condition prevents from the phenomenon of “infinite dimional defect of compactness” identified
in [7] and which was shown to appear in the physical examplthefBose-Einstein free gas (the non
condensated phase is responsible for a discrepancy betivedeft- and right-hand sides of (2)). The
analysis of this phenomenon is improved in Section 2.

Finally our proof no more uses truncated Dyson expansioriteeofjuantum flow and relies only on the
good properties of the classical flow, after exploiting ak & priori information given by the Weyl and
Wick calculus.

Outline: The Section 2 introduces the various objects used for ouysisaWick and Wey! calculuses,
Wigner measures, reduced density matrices. The condificegented in [8] are reduced to the simple
equivalent form (2) in Subsection 2.7. After this the Sulisac?.8 is devoted to the notion of states local-
ized in a ball.

The dynamics is studied in Section 3. First a simple condlisgroved to ensure, via some equicontinuity
argument, the possibility of a common extraction progegken for all timest € R. Then the propagation
of Wigner measures is proved for states localized in a baknTthe truncation is removed and all the argu-
ments are gathered for the proof of Theorem 1.1 in Subse8tibriinally, additional simple consequences
are listed in Subsection 3.5.

Examples are presented in Section 4. Itis recalled thattpdar interactions are physically relevant within
the modelling of the rapidly rotating Bose condensateseriibwest Landau Level approximation. Details
are given about the propagation of non trivial Wigner meassgupported on a torus, which shows the ad-
vantage of this formulation compared to the BBGKY hierarnisthod. Finally, the propagation of Wigner
measures provides a nice formulation of the Hartree-vomieun limit.

2 Information carried by Wigner measures

After introducing the symmetric Fock space withdependent CCR’s and recalling some properties of
the Wick quantization, the connection between infinite disienal Wigner measures and the BBGKY

presentation of the many body problem is explicitly spedifi€his section ends with the notion of states

localized in a ball, which will be usefull in the proof of Threson 1.1.

2.1 Fock space

Consider a separable Hilbert spagéendowed with a scalar produgt.) which is anti-linear in the left
argument and linear in the right one and with the associatethie] = \/(z 2. Leto =Im(.,.) and

S= Re(.,.) respectively denote the canonical symplectic form and ¢ scalar product ove#”. The

symmetric Fock space off is the Hilbert space

H =P\ Z =),
n=0



where\/" Z is then-fold symmetric tensor product. Almost all the direct sumsl &ensor products are
completed within the Hilbert framework. This is omitted Imetnotation. On the contrary, a specitig¢
superscript will be used for the algebraic direct sums csdeproducts.

For anyn ¢ N, the orthogonal projection @®" 2 onto the closed subspag€' 2 will be denoted by

. Forany(&1,&,,...,&) € 2", the vectoré, vV E Vv --- v &y € /" 2 will be
EVEN Vi = S0 E D E) = = &) © S @)

n! S

where&,, is the symmetric group of degree The family of vectors{El\/ -V &n)g ez is atotal family of
V" Z and thanks to the polarization identity

n

&1VéV--Vién= 2nln| %gl...sn(z‘gjfj)@ny (4)
1

&= =1
the same property holds f6€ “") \_y ¢ c » -
For two operatordy : \/ik & — \/J'k Z, k=12, the notatiorA; \/ A, stands for
AL\ Ao = Fjpii,0 (AL AY) 0 Ay, € L(\) 1H220 \[ 12 77).
Any z € Z is identified with the operatde) : \V° 2 = C 3 A — Aze 2 = \/* % while (7 denotes the

linear form% > & — (z, &) € C. The creation and annihilation operataf$é ) anda(¢ ), parametrized by
€ > 0, are then defined by:

a)ynz = Ven (€@,
&)y = Ve+1) Fnae(1§)@hny)=em+1) &\ Iyny
and satisfy the canonical commutation relations (CCR):
[a(é1),a(&2)] = [a"(é1),a"(&2)] = 0,  [a(éy),a"(&2)] = &(&1, &)1 (5)
We also consider the canonical quantization of the reabldgs® (&) = \i[z(a*(f) +a(é))andN(é) =
P(ié) = |ﬁ( (&) —a*(&)). They are self-adjoint operators g#f and satisfy the identities:

[®(&1), P(&2)] =iea (&1, &)1, [®(&1),M(&2)] =ieS(&1, &)1

The representation of the Weyl commutation relations inRibek space

W(ENW(E) = e 20CLéW (& + &) (6)
e e0E W (&)W (&),
is obtained by settingV(&) = €®(¢). The number operator is also parametrizedby0,
N‘Vn@e = th\/ngg’.
It is convenient to introduce the subspace
alg

<%ﬂfin :@vnff

neN
of 27, which is a set of analytic vectors fbt.
For any contractiol® € £ (%), |S|j ) < 1,T(9) is the contraction inZ defined by
rSynzr =SS --®S.

More generallyl (B) can be defined by the same formula as an operato#Zgp for anyB € £ (%).
Meanwhile, for any self-adjoint operatér: & > 2(A) — %, the operator B(A) is the self-adjoint oper-
ator given by

e';dl' (eltA)
n

k
For exampleN =dr(l).



2.2 Wick operators

The Wick symbolic calculus on (homogenous) polynomialsné®duced in [7] is recalled with its basic
properties.

Definition 2.1 For p,q € N, &, 4(Z°) denotes the set ¢p,q)-homogeneous polynomial functions gh
which fulfill : o .
b(z) = (z°9,bZ°P) with be .,2”(\/ pff,\/ 1.

The subspace & 4(2) made of polynomials b such thiats a compact operatds L2\PZ N )
(resp. be 2" (VP Z,V9.2)) is denoted by?7 (Z) (resp. 2} 4(2)).
On those spaces, the natural norms are

blopq = [blzypz\vaz) and |blgy =[blgrypeyaz), 1<r.

Ppa( %) (resp.a29_ P4 (Z)

The set of non homogeneous polynomials, the algebraldmum@ 0,0eN

with 1 <1 < =), will be denoted by?,4(Z) (resp. 744(Z)) .

p,geN

Owing to the conditiorb € Z(\V/P 2,V9.Z) for b € P,4(%), this definition implies that any Gateaux
differential ) d¥b(z) at the poiniz € 2 belongs taZ(\/ XZ,\/ 1 Z) with

J 5k _ p! g—j p—k

In particular, we recover the operafpfrom b(z) via the relation

b= Eq—apaqb( nez(\/Pz.\/92).

With any "symbol’b € &, 4(Z), alinear operatds”°k called Wick monomial can be associated according
to:

Wick .
b  Hiin — jffin,

| _
b1V, _1[p.+m)(n)w e (B Iynoy) €2(\ "2\ MPz), (@)

with b= (p)~(q")~*aPd;b(z) . The basic symbol-operator correspondence:

(z&) — a(d) V28(&,2) —— ®(§) (zZA2 — dr'(A)
(&2 — a@) V20(§,2) «— N(&) 2> — N,

and more generally

p q Wick
(rl Z,i) I] (€j:2 ) =a'(n)--a'(np)a(és)---a(éq)-

We have the following properties.

Proposition 2.2 The following identities hold true ap¢3i, for every be &y o(Z):

(I) (bWick)* _ t_)Wick.

(i) (C (@b b(2)A(2))"" = CWickgWickaWick if A € 57, o(Z), C € P p(Z).

(ili) e/ £ (A pWickg 1207 () — (b(e-tAZ)) V' if A is a self-adjoint operator o1

A consequence of i) says tHat 'k is symmetric whem = p andb* = b. Moreover the definition (7) gives

(q=p and b>0)= (bW‘C"z 0 on%n) , (8)



which is false for general non negative polynomial symhaor an increasing net of non negative opera-
tors(bg )a, be € £ (VP Z) (againg = p), it also gives

(B=supbo in 2\ °2)) = (v € . (6.599) —suto L") ). (@
a a
WhenZ = L2(RY,dx), the general formula fd"V' with b € 22, 4(2) is simply

pWick /Rqu) B(y1, ..., Yo, Xt - -, Xp) @ (Y1) ... & (Yg)alxa) ... a(Xp) dxq - --dxpdys - - dyq,

whereb(y, x) is the Schwartz kernel df and wherea(x) = a(dx,) according to the usual convention.

Proposition 2.3 For b € 2, 4(Z), the following number estimate holds

’<N>_% bWiCk<N>—gp

<1Ibl, .
o g (10

The relations (8) and (9) now become foe &, ,(Z') orbg € Pp p(Z)

(q=p and b>0) = ((N)"P2VIkN)"P/2>0 in.Z()), (11)
(b=sup, by in Z(VPZ)) = ((N)~P/2pWickiN)~P/2 = sup, (N)~P/2bYIK(N)~P/2in Z (7)) (12)
An important property of our class of Wick polynomials istthacomposition ob‘{ViCKo b‘é\”c'( with by, by €
Pag(Z) is a Wick polynomial with symbol in?,4(Z). Forby € Pp q,(Z), b2 € Pp,q,(Z), kK€
N and any fixedz € 2, dkby(2) € £ (V¥ 2Z;C) while d¥by(2) € \/* 2. The C-bilinear duality product
0Xb1(2).0%b,(2) defines a function of € 2 simply denoted bydkb;.0%b,. We also use the following
notation for multiple Poisson brackets:
{by,by} 0 = 9Xby.0%b, — 0Kb,.0%0y, keN,
{by, bz} = {by, b}

Proposition 2.4 Let by € &y, ,(Z) and by € P, ,(Z) .
For any ke {0,...,min{p1, 0z} }, 0Xb;.0Xb, belongs taZy, « q,—k(Z’) with the estimate

pa! Q2!
(pr—K)! (g2 — K)! D1/ 75, 00 [P2l 5, 0,

|05b1.0fb2] 7, <

The formulas

: wick_pwick _ [T gk " 02,06 Wick
(|) bl e o b2 ek — % W az blazbz - (e£< o (/J> bl(z)bz(w) |Z:0J) ’
£ !

max{min{py.dz} . min{pz.a1}} gk y Wick
i {by, by} ,

(i) [wwwwz(

=
Il

1

hold as identities o#3jn.

2.3 Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections#rand for a giverp € P let Lp(dz) denote
the Lebesgue measure on the finite dimensional subgpé&ceA function f : 2 — C is said cylindrical if
there existp € P and a functiorg on p% such thatf (z) = g(p2), for all ze Z. In this case we say thdt
is based on the subspapg’. We sety(Z) to be the cylindrical Schwartz space:

(f € Zep(2)) & BpeP,3ge 7 (pZ), (2 =9(p2).

1This property should not be confused with the positivityhef finite dimensional Anti-Wickjuantization which associates a non
negative operator to any non negative symbol.



The Fourier transform of a functiohe ¢y (2°) based on the subspapg” is defined as
FI@) = [ 1) e Lyde)
pZ
and its inverse Fourier transform is
f(z) = / FIH)(2) 1528 L (d2).
pZ
With any symbob € .y (Z) based orpZ’, aWeyl observablean be associated according to
pWeyl — / ZIb)(2) W(V2r2) Lp(d2). (13)
pZ
After the tensor decompositions

1
H=TyZ)=Ts(pZ)3Ts(1—p)Z) dueto Z=pZd(1-pZ
Vze pZ, W(V2m) =W (V212) @ Ir 1 p)»
whereW, » denotes the reduced representatiod(p.2’), one sees that the Weyl quantization of cylin-
drical observables based @ amounts to the usual finite-dimensional Weyl quantizatidence more

general classes of symbols can be considered.
For p € P, the symbol classes defined forOv < 1 on the finite dimensional phase spac#’ ,

| dZ
SPZ re:EgZ >Bff’ <Z>2V )’ (14)
pZ
where( ) =1+|z32 bz are natural Weyl-Hormander algebras associated witfitite dimensional har-

monic oscillator HamiltonianNp = (|z]2 )i = (|23, )oY - dmbZ ¢, They contains the polynomial
functions onpZ’. The associated class of Weyl quantized operators afteotamation withlr (1 p)) # IS
denoted by Oﬁ;y. For a cylindrical polynomiah € Z7,4(2") based orpZ, b(z) = b(p2z), the asymptotic
equivalence of the Weyl and Wick quantization in finite dirsiem says for any € [0, 1]

bWick= PVt Gi(e) in OpSy . (15)

Such polynomials have finite rank kernels and make a denge e, () but notin Zug(Z).

2.4 Wick observables and BBGKY hierarchy

When & = L?(RY), mean field results are often presented or even analyzednirs tef reduced density

matrices or more precisely in terms of a sequené@)peN with yép) € ZY\PZ). This follows the

general BBGKY approach of the kinetic theory and flecorrespond in the classical case to the empirical
distributions.

The basic example is when € £(\V/"%),n= [1] : Foranype N, p<n, WP e #1(\yP %) is defined

as the partially traced operator with the kernel

(P)(

Ve (X1, XpiY1-.-Yp) i= /Rdmfp) Pe (X1, Xp, X, Y1, ... Yp, X) Lgdn—p) (dX).

With the polarization identity (4), the familfj¢®") (") yc » forms a total set of#2(\/" 2). Hence the
formal identity

(a(y1) ... alyp) ", a(xa) ... a(xp) ")
= Tr[a(yy)...a (Yp)alxa)....alxp) ") (=]

7L WP P ) . W B . D)

carries over t; € Z1(\V" ) :
n!

n=p)i WP 00, X,y Yp) = Tr[a (ya) ... &' (Yp)alxa) .. alxp)Pe] -

vpe{l,...,n}, &P




The correct meaning of this definition is

~ 15 1) (N) .
(MRl [P, +e) Wick
i [VE b} N epn(n—l)...(n—pqtl)-rr {pgb } , Vbe Ppp(Z).

Moreover after noticing that the facta®n(n—1)...(n— p-+ 1) is nothing but Tp(|z?*)V°{| when
Tr[pe] = 1 andp; € £(\V" %), it becomes

] _ Tr(pe] Wick
Tr [yg b] = S [pgb } Vbe Py (%), (16)

with the convention that the right-hand side is 0 WherﬁpI(|z|Zp)W‘°k} = 0. The extension to general
pe € LY(A) requires an assumption. Moreover it works for a generalrségpaHilbert space? .

Proposition 2.5 Assume thap, € .#*(#) satisfieg, > 0andN¥2p,N¥/2 ¢ #1(# ) forallk € N. Then
for any pe N, the relation(16) defines a unique eIemeyﬁtp) >0of ZY (VP Z).

Proof. Suppose T[pe(|2/2°)WiK] > 0. Writing
Tr [png‘Ck} =Tr [(1+ N)P/2pg (1+ N)P/2(1 4+ N)~P/2pWick 1 4 N)=P/2

with our assumptions and the estimates (10) ensureb thalr [png‘Ck} defines a continuous linear form
on.Z(\/P %) . The positivity comes from (11) and the normality of the assted state after normalization,

which sayS/,f-p) € £Y(\PZ),is a consequence of (12). O

We end with this discussion with a natural definition.

Definition 2.6 Whenp, € .£(%) satisfiespe > 0 andN¥2p,N¥/2 ¢ #1(#) for all k € N, the reduced
density matrixy,f-p), p € N, associated wittp; is the element af#?(\/P &) defined by

gl Trlpe] Wick
Tr [VePB| = o [0eb™eH| | Wb e 2pp(2). (17)

with yém = 0in the case wheifr [p¢(|Z]?P)Vi*K] = 0.

2.5 Wigner measures
The Wigner measures are defined after the next result pro&d Theorem 6.2].

Theorem 2.7 Let(pg)ge(o’g) be a family of normal states o’ parametrized by. Assumé’r[pgNé] <Cs
uniformly w.r.t. € € (0,€) for some fixed > 0 and G € (0,4). Then for every sequen¢e,)ney With
limn—e & = O there exists a subsequen@s, )wey and a Borel probability measure on 2 such that

im Trip, 8" = [ b(z) du(2),
k—o0 3 73

forallb € Upep F 1 (Mp(pZ)).
Moreover this probability measuye satisfies| |22°du(z) < «.

Definition 2.8 The set of Wigner measures associated with a fafpily;c o z) (resp. a sequena@s, )ncn)
which satisfies the assumptions of Theorem 2.7 is denoted by

A (pe,€ € (0,€)), (resp..#(ps,,nEN)).
Wigner measures are in practice identified via their charastic functions according to the relation

A (P, € € (0,€)) = {p} & lim Tr[peW(V27E)] = .7 (1) ().



The expression/ (pg, € € (0,€)) = {u} simply means that the familipe )¢ (o ¢ is "pure” in the sense
lim Tr oo = / b(2) du,

for all cylindrical symbolb without extracting a subsequence. Actually the genera cas be reduced to
this after reducing the range of parametet to {snk, ke N} .

A simple a priori estimate argument allows to extend the eogence to symbols which have a polyno-
mial growth and to test to Wick quantized symbols with contpaenels belonging tc@mg( ) (see [7,
Corollary 6.14]).

Proposition 2.9 Let (pg)¢c 0z be a family of normal states o’(#”) parametrized bye such that
Tr[peN?] < Cq4 holds umformly with respect to € (0,¢) for all a € N and such that# (pg, € € (0,€)) =
{u}. Then the convergence

lim Trlpeb™=2¢d — [ b(z) du(2). (18)

holds for the Weyl quantization of anyahS; ,» with pe P andv € [0,1], and for the Wick quantization of
any be ).

Wigner measures are completely identified by testing witlyl@antized observable and possibly by re-
stricting to some countable subsgfy Dn, p, WhereDn, p, is a countable dense subset®f (.#(pn2)),
and(pn)nen IS a sequence df such that sup.y ph = 2 (see [7]). One may question whether testing on
all thebVick with b € 223 (2) also identifies the Wigner measures. Whhis finite dimensional, this
amounts to the well-known Hambiirger moment problem oftifigng a probability measure onR from

its moments, = [ X"dv(x), n € N, for which uniqueness fails without growth conditions oa fequence
(an)nen ([47] [5]), which can be translated in our case to growth d¢gors of (SUR.c oz Tr [PeN])aen-

We shall circumvent this difficulty, by identifying the Wignmeasures in two steps by approximating the
states(pe )< (05) by stateg07""),< (07 for which the growth condition is satisfied. We shall recdesithe
moment problem later, but the comparison argument is giedow

alg

Proposition 2.10 Let (pgj)ge(o.g), j = 1,2, be two families (or sequences) of normal states@rsuch that
Tr [pg Né} < Cs uniformly w.r.t. € € (0,¢) for somed > 0 and G € (0, +). Assume furtherx//(pé,e €
(0,€)) = {u;} for j=1,2. Then

/|H1— M| < Iirgnl(r)lf |psl_p82|$1(.%f’) :

Proof. For a symbob € .“y(Z), the finite dimensional Weyl semiclassical calculus qh%yﬂf(%) <
[[bl[e + O (€) with [[blje = [|b[| = (p2) - This implies for a givem € 7y (2),

|/, b@d(a— p2) @] = fim [Tr((p? ~ 2"

< [[b]lwliminf oz — pZ| 17 -

The measurgl; — iy is absolutely continuous with respect to the Borel protb@hheasure’%. Hence
there exists a Borel functioh on 2 such thaj; — 1 = A (2) 4522 with the additional properti (2)| < 2

%—almost everywhere. But for any Borel probability measuren %, it was checked in [7] that
Fey(Z) is dense inLP(Z,v) for p € [1,00) on the basis of a general measurable version of Stone-
Weierstrass theorem (see for instance [19]). Hence thésesexsequenogh )nen in Sy (2) such that

. A
M [1Bn === Laz0llLa o gy = O

Bry

and after extraction lif., Bn, (2) = ‘;—‘(z)l{,\ ~0}(2), H1512-almost everywhere. By settirig = 20
k

we get a sequend®y)ken such that
VkeN, bxe Sy and |byflo<1,

A@ M1+ H2
lim by(2) = e S 120y (2) 5 ae




We conclude with

+
[im=iel= [ p@1dESEE

= im [ @) du® — 42)(2| < 1< lminf Jof — P2l 1)
— 00 £—

. O
When the two sets# (p}, € € (0,£)) have more than one element, the extraction of subsequeEgRsy,
can be made simultaneously and the result has to be modified in

inf / — o] < limsuplpt — p2| o, o 19
et phectomy e appscon) ] PRl S IMSUPlee — Pzl i) (19)

2.6 Wigner measures and the BBGKY hierarchy

The compactness conditidne ;(;g(&”) for the Wick quantization in Proposition 2.9 is not a teclahic
restriction and the convergence is no more true for a getetal’,4(2). It was identified in [7] as a
“dimensional defect of compactness” and illustrated withreples, one of them being related with the
Bose-Einstein condensation of the free Bose gas.

This terminology comes from the idea that this defect of caatpess does not come from the infinity in
the phase space like in the finite dimensional case (see2B3Jput from the non compactness in the norm
topology of balls in infinite dimension. Actually this was deamore accurate in [8]: under the assumptions

M (P, € € (0,€)) = {u} and Tr[peNK] < AK, we provedT) = (P) with
(P)  Vbe Pag(Z), limTr[pbVeK| = /J b(2) du(2);
(T) vn>0,3P, P, Tr{(1-T(Py))pel <n,

where(T) appears as a quantum Prokhorov conditionifgrthess condition in the strong topology).

The condition(P) which will be simplified in the next subsection, actually tains, for alla € N, the
uniform bound w.r.t. £ of Tr[p:N?] sinceN® = [(|z/2)Wi¢q@, |t implies actually a strong relationship
between the Wigner measure formulation and the convergdieduced density matrices.

Proposition 2.11 Assume thatpe).c(o) is a family of L) with pe > 0, Trjpg] = 1, A (pe,€ €
(0,¢€)) = {u} with the conditionP) and assume: # &. Define for pe N

W= mran J, 20 20)

Then for all pe N, the reduced density matrvép) converges tcyép) in the Z-norm.

Proof. For p=0, the result is nothing but% [ =Ilimg_oTr[ps] = 1.
For p € N*, the condition(P) with i # & says first

im Tr [pe(12%0)"'%] = | 22" du(2)> 0
e—0 4

Hence, the reduced density matvé@ is well defined according to Definition 2.6 fer< &, small enough
(with Tr[p¢] = 1). The condition(P) gives the general convergence:

i T LB — jim 1T [PD™ ] 0@ du@ ey
i, T {VE b} _yLnoTr[pg(|z|2P)WiCk] [y |22 du(z) =T [Vo b} ’

for all b e &, (%), where the last equality is @-integration of the equality of continuous functions
b(z) = (Z°P, b2*P) = Tr [|Z°P)(2*P|b] .

This proves the weak convergenceyé‘f) to yém in ZY(\VPZ). But sinceyP= and yép)

with Tr[yép)] =1=Tr {yém} , this implies the norm convergence according to [50][4][Z0 O

are non negative

2In a more general framework, it is said th#t' (\/P %) has a uniform Kadec-Klee property (see [40] and refereriwa®in).
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2.7 A simple criterion for the reliability of Wick observabl es

The proof of Proposition 2.11 can be adapted in order to malezjaivalent condition toP) with a weaker
and easier to handle formulation:

(Pl) Va €N, IimOTr[pgN“] :/ 122 d(2) < 4.
E— 3

Proposition 2.12 For a family (Pg)¢c(0,¢) I LY() such thatpe > 0, Tr[pe] = 1, .4 (pe,€ € (0,€)) =
{u}, the conditionP) and(PI) are equivalent:

(w N, lim Tr[psNY] :/ 72 du(z)) . <Vbe Pag(Z), imTr [pngick} :/ b du)
£—0 x e—0 s

Proof. The condition(Pl) is a particular case dP). Let us provgPI) = (P) .

We start with two remarks:

e Forke N*, (|7%)Wick— N(N —¢)...(N— (k— 1)&). Hence the conditiofP!) is equivalent to
va en, lim Tr[pc (224" :/ 1229 du(2).
£—0 s

e For p =0 (respq = 0) the operators inZ(C,\/92) (resp. in.Z(\V/?Z,C)) are compact and
Poq(Z) = PG(Z) (resp. Zpo(Z) = P50(Z)). Hence the convergence limo Tr[p:b"ieH) =
Jb du, is consequence of Proposition 2.9 whes 0 orq=0.

According to Proposition 2.11, there are two cases. .
If 4= d&: Then forb e &y ,(2), p € N*, such thab > 0, the inequality 0< b < |b| 5, I\,» > and the
positivity (11) says

: Wick : 2p\Wick| __ 2p _
0.< lim Tr [ 6] < lim |bl,Tr e |2%?) }_[f|z| %(2) = 0.

For a generab € 2 p( %), p € N*, the decompositiob = bg , — br_ +iby  —iby _ with all theb, >0
now gives

YpEN'Ybe Ppp(2), limTr [peb"e| —0.
E—
Forp+# g, p,q € N*, write

[T [0 | = [Tr [0/ 2(p2/ 20| | < Trlpe] /2Ty ek V2

Proposition 2.4 says thalVickpWicks — 5P £.5l5 glh belongs tobl I P «(2) with an &(¢) term in
P00(Z). We have proved

VP.GEN', Yhe Ppq(2), lImTr[pe"™ 0= /z b(2)&(2),
while the case$0,q) and(p,0) are already known.
If 14 # &: Then we know by Proposition 2.11 that limp || y” — 4” || 1 = 0, which implies
vbe Ppp(2),  limTr[pebVe| = tim Tr [APB] = Tr [ 14”5 = /f b(2) du(2).

Let us consider the general case Zp4(2). The above convergence is still true when the kelnisl
compact by Proposition 2.9. Consider now a general?p o(2). Since[, |2°P)(z*9] du(2) is nuclear
(or trace-class in/9.2° @ \/? ), for anyn € N there exists a compact operatare .2~ (\VP 2,92

such thaﬂan@M = |bn|$(vpg’,\/q )= |b|f(vp@e.\/q z) = |b|{ypﬂq and

1

B [/z 272 du(z)[ﬁ—ﬁd] ’ Sk

/, (6@ —0n(@) du@
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The Lebesgue convergence theorem with
VneN, [b(2)—bn(d)| < (2b|z,,) 2" P, /j 2P+ du(2) <
¥ze %, limbn(2) = n|iLnoo<z®q,Ian@p> =b(2),
yields
im [ |b()—~bn(2)| dp(2) =
Setny(n) = [, |b(z) — bn(2)|" du(2) and>use again the Cauchy-Schwarz inequality
’Tr [ leck leck } ‘ <Tr [pg(bWick_ b}I]Vick)(bWicK* _ b‘rﬁ\”c"*)} 1/2 .

Owing to the result valid whep = q we deduce

limsup| Tr | pe (6174 By } < [ /j [b(2) — bn(2)? du(z)] o Na(n)2.

£—0

Since fomn € N fixed, lims_o Tr [peb!] = [, bn(2) du(2), we deduce

vneN, limsup Tr p bW'C" / b(z) du(2) —+r] /2,
£—0
while the right-hand side goes to Oas— . O

2.8 States localized in a ball

The condition, TfpeN?] < A“ for all o € N, used in [8] is actually equivalent to

Pe = Lp](N)pelip ] (N)

(locate the spectral measuregpffor the self-adjoint operatdy). Such an assumption remains an important
step in the present analysis, aNd= (|z]2)Wi° suggests that such a state is localized in ball of the phase-
space.

Definition 2.13 A family(p¢)¢c(0,¢) (Or @ SeqUENCED:, )nen) Of Normal states o, is said to be localized
in the ball of radius R> 0, if ps = 15 rej(N)Pe 1o re(N) for all € € (0,€) .

The meaning of the geometric intuition contained in the irotogy “localized in a ball of radiuR’, can
be made more accurate.

Lemma 2.14 For a family(p¢ ) < (0,5) (Or @ sequencépe, )ncn) Of normal states ow#” localized in a ball
of radius R> 0, all its Wigner measures are supported in the Hal <R} .

Proof. A family (pe)sc(o7) localized in a ball of radiuR satisfies Tfp:N°| < R? for all 5 > 0. Therefore

the set of Wigner measured (o, € € (0,¢)) is well defined and the convergence after extraction can be
tested with Weyl-quantized cylindrical functions in thergyol classS; introduced in (14) for any € P.

Letu € . (pe, € € (0,€)) be associated with the sequeniegner. For any finite rank projectiop € I, the
Wick quantized operatdipz2)Wick is Np ® Irg((1-p)2) WhereNy is the number operator dis(p2”) and
equals(|z| 02 » — Cp€) W™ in the finite dimensional framework @f%". For any cut-off functiory € €5 (R)
such thaty = 1 on [0, R?], the finite dimensional Weyl semiclassical calculus tefigi x)(Np) = (1—
X)(|z|[2w)wey'+ Op(€) in Z(Ts(pZ)). Further the commutative decompositiin= Np @ Ir((1_p) #) +
Irg(pz) @ N(1_p) > Np®@ Iry(1-p)2) and choosing decreasing ofD, +) implies

(1= X)(IpZH)V+ Gp(e) < (1— X)(Np® Ir((1_py2) < (1= X)(N).

We deduce
0< [ (1=x(P2P) du(@) = lim Tr [pe(1— x(1p22)"™] < im Tr e, Lio ey (N)(1— X(N))] = 0.
Hence the measuge vanishes outside a cylindéfpZ > R}. This yields the result. O

With such localized states we can solve the moment problem.
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Proposition 2.15 Let (P )< (0,7) be a family (or a sequend®s, )ner) of normal states ow#”, localized in
the ball of radius R> 0. If there exists a Borel measureon # such that

vbe Pgo(2), limTr [pngiCk} - /f b(2) du(2),

then

M (e, € € (0,€)) ={u} .

Proof. Although this is shown in [7, Proposition 6.15], we provideaé a different proof.
Let p € P and consider the direct image Ipyof the measure::

VE € B(pL), HolE) = [ 1pae)(d du(2),

where#(p%’) denotes the Borey-set onp.Z” .
For anyb € (Z), such thab(pz) = b(z) we have

alg
lim Tr [pngiCk} = /pZ b(2) dpip(2).

This holds in particular wheh(z) = |pZ% with BVi*k = NK 4 &(¢) < Nk + &/(¢) with

/pff 17 dup(2) < liLnoTr {pgN'g} < liLnOTr [pgNk} < R,

Hence all the moment, |Z%¢ dup(2) are bounded bir% and the finite dimensional moment problem

applies (see [47][5])up is completely determined by the set of valt{eﬁ,ff bdup,b polynomial} . Lety’

be a Wigner measure of the familpe ). (oz)- It is supported in the ballze 27, |z < R} so that its direct
image byp, p;, is supported in the baflz € p2’, |z <R}. Moreover there exists a sequerteg)nen, such
that

Ybe S », lim Tr [pgnbwey'} = /z b(z) dup(2),
|— 00 p»// 3

where thebV®' can be replaced by for any polynomiab such thab(z) = b(p2) according to the finite
dimensional comparison of the Weyl and Wick calculus in (Mg deduceu, = H{)- Since this holds for
all the p € P, this ends the proof. O

Let x be a continuous cut-off function supported®1], with 0 < x < 1 and such thgt = 1in [0, %].
Within the assumptions of Theorem 2.7 and especiallpsN°] < Cj, the difference between the staie

and the localized stage"" = Wx(%)pgx(gz) can be made arbitrarily small according to
FPeX =
T R P - (21)
o 0= (R/2)%-Cs’

where the right-hand side vanishegs> . Then the comparison result in Proposition 2.10 or its vdria
(19) says that the Wigner measu(@s).c(o,s) can be identified by its approximation by states localized in
balls:

Cs

inf /|U_IJ,|§7-
() e (pe,e€(0,8)) x4 (pfR £€(0,)) (R/2)2° —Cs

Then the question arises whether the famM'R)ge(o.g), or an extracted subsequence, satisfies the condi-
tion (PI) (or equivalently(P)) if the family (pe)cc(0,z) does.

(22)

Proposition 2.16 Assume that the familip; )< o,z of normal states on#” satisfies 7 (g, € € (0,€)) =
{u} and the conditior{(P1) . Let the function fc €°([0,+),R) be polynomially bounded such that the
quantityTr[p, f?(N)] is uniformly bounded from below farc (0,€) . Then the famil]pg)ge(o.g) given by

. . — 2(172
Pl = Tr[TlZ(N)]f(N)pgf(N) has a unique Wigner measuw((pgf,e €(0,¢)) = {%

the condition(PI) .

} and satisfies
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We will need the next lemma

Lemma 2.17 Let the family(p¢ )< (07 (Or @ sequencéps, )ncn) Of normal states be localized in the ball
of radius R and assume the condltlcm) with .7 (pe, € € (0,€)) = {u}. Then the equality

lim Tr [e"lege"ZNbW‘Ck} :/ elor+a2)Zp(z) dp(2) (23)
E—

¥
holds forallag,a, € Cand allbe P,4(Z).

Proof. The right-hand side of (23) is the sum of the double series

k Z (all)(l'kz / |Z|2k1+2k2b( )dIJ( )
1,k0EN

for u is a Borel probability measure supported{ial < R} andb is a polynomial function.
Due tops = pelg gy (N), the sum

ko
(O’ZN) (14N, KpkeN

S(z,k_ z pE

k=0
and the remainder term

La-t)f
Ka!

Repk = Pe€"N(L+N)K — S = /o pe (N2 1g2tN (1 L Nk dt

satisfy

ORZ( )SKz, S<2’k with |SK2k|f1 <e\0!2\R (1+R2)
« (Joz|R?) 21

. 2
and ]150 R2 N)Rk, k = Rk, x  With |RK2.|(|$1(,%¢> < g2k 1+ Rz) (Kot 11

Repeating the same estimate on the left hand sideSyjthandRy, « instead oo, implies that thez(7)
norm of

Ki Ko k1 Nk
(1_|_ N)k ealegeazN z z E(az |) (1_|_ N)k
k1=0ko=0 kz'
is bounded by
s oy [ (IR (0l (Ja Ry R
(Ky+1)! (Ko +1)! (Ke+ )N (Ko + 1)! ’

which vanishes as mfK1,K») — . We conclude with & /3-argument after noticing th&t + N)~pWick
(1+N)*is bounded fok > ks, and that the convergence as- 0 holds forb € Z,4(Z) fixed and for

the finite sumgfllzozszo owing to the conditior{PI). O

Proof of Proposition 2.16:LetC; > 1 be a constant such that [ f2(N)] > é and sup-i 1) f(s)(1+

$)~V < Cy . The inequalities Tp: N?] < C2Tr [p:N?(1+N)2'], a € N, ensure that the familypgf)ge(o.g)
admits Wigner measures without any way to identify them fier tmnoment. So take a sequer{eg)nen,

such that lim &, =0 and,///(pgfn, neN)= {uf} . We first prove that the sequen@egfn)neN satisfies
the condition(PI), then check that’ = % in the cases whefpe )< (o7 is localized in a ball and
then whenf is compactly supported, and finally conclude with approtiorearguments.

1) The condition (PI1) for the sequence: The uniform control of Tl{pgan"} < Cq, a € N, implies
[ 12?7 duf(2) < +o and the Proposition 2.9 says that the convergence

lim Tr p bW'Ck / b(z) duf(
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holds for anyb € &7 ) with a compact kernel. In particular fbz) = |pZ? with p € P andk € N,

alg(
tm Tr ok, ((1p22%) | = im T[4 192 [ 1p® au'2), (24)

while we assumed .
vbe Pag(Z),  lim Tr g,V = / b(z) du(2). (25)

Fix o € N* and taked > 0. By Lebesgue’s convergence, there exgstsP such that
[ Nz~ 12| an' @) < &
[, 122 = 1p2* | (1+ 23 du(2 < 5.

Remember that|pz?)Wick = Np @ Iry(1-p)2) = Np with Nj < N® where both sides commute wift{N)
and we get:

0<Tr [pgfn(Na - Ng)} < CTr [f(N)(N" —N)Y2p, (N — Ng)l/zf(N)}
< Ctlf(N)(1+ N)_V@(%)
 Tr [(1+ N)Y(N® —N2)Y2p, (NT — N&)V2(1+ N)"}
< CITr[peg,(N* = N§)(1+N)?] .

But we know by (25) that the right-hand side converges as to
Cf [ (2%~ Ip2P)(1+ 2 du(d < CPo.
while (24) with (|pz?)Vick= N, gives

im T [pdNg] = [ 1p2 du'(@).

Hence there exists € N such that

vn>ns, <(C}+1)5.

Tr[piNe] = [ 12 du' ()

From [, ||Z?% —|pZ%®| du'(z) < &, we deduce

imsup|Tr o, N —/ 1229 du(2)| < (C3+ 2)5.
4

n—oo

Letting & — 0 ends the proof of this part.
2) Identification of u when (Pe)ec(0,6) is localized in a ball: Assume thatpe).c (o) is localized in a
ball of radiusR > 0. The Lemma 2.17 tells us

Vil € R, Vb€ Pag(%), lim Tr [étszgnéthbW‘ck} - / drlz’p(z) y(2),
— 00 :/2"
while the uniform boundedness @+ N) *bWick(1 + N)~* entail

’Tr {eitzN Pe. gtiN bWick}

< CuTr [ gy (14+N)?| < Co(14 R0
Hence forf € #1(LY(R)), we get

i T[EN)Pe DY T, £(12%)2b(2) du(2)
no  Tr[F(N)pg, f(N)] T {2272 du(2)
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We have proved:

2\2
Vb€ Pag( %), lim Tr [pganIck} _ fyf;(|fz(||z)|2;32(2;g)(z) .

The part 1) and [g,sz](N)pgfnl[osz}(N) = pgfn ensure tha(pgfn)neN satisfies the sufficient conditions for

solving the moment problem (Proposition 2.15) arid= f;%% in this case.

3) Identification of u' when f is compactly supported: Assume thatf € €2([0,+)) is supported in
[0,Ro]. Consider fory € €2([0,+)),0< x <1, x =10n[0,1/2] and forR > 0, the truncated states
1 N N
P = X (g)PaX (gz): MEN.
T [PaX?()]

ForR > 2Ry, we have

N 1
vneN*, pf ]f(N)psF;f(N).

T Tr [PR £2(N)

By extracting a subsequence we can assuﬂﬁ(épgk,ke N) = {IJR}, and Part 1) applied t@pgk)keN
ensures that the pa(;ogfn ,pﬁn ) fulfills all the assumptions of Part 2) if € €2([0,+)) N.Z " 1LY(R).
Thus the measune' equalsM From the comparison (22) we knofyuR — u| = ¢(R™1) and

) ) [ 1£(122)% duR
sincef is a bounded functlon

[]ut- (22K ‘ _c

J1f(1Z3)[2du| ~ R

Taking the limit asR — 0 gives the result whef € 62([0, +)) N.#Z ~1LY(R). Removing the condition
f € Z71LL(R) is obtained by a comparison argument betwgkrandp,’ with f, ¢ €2n.#~1LY(R) and
SUQE[O,Jroo]'f(S) ( )|<[+l,f0r‘€€N.

4) Final approximation argument and uniqueness ofu’: Consider now the complete problem with the
—2
extracted sequencﬁpgfn)neN. We again use the cut—o,ﬁf(%‘z) but now to compargtagfn with pgfnx R%) After

u

extracting a subsequence, we can ass%épgn):(wz'),k € N) - {qu(R‘2->} . The pair(pan(sz'),pgn)
fulfills the assumptions of Part 3) and
ixr2) _ F(ZP)xP(R2ZP)p

J 12(122)x2(R2|z]?) du

But from the inequalitie$ (s)(1— x(R2s))(1+s) V"1 <CR 2 and Tr[ps(1+ N)?"*?] <C, we deduce
the uniform estimate:

u

- C’
fX(R2)

vk e N, pgnk P, 2100 < =k
Again the comparison argument (22) gives

[|u XR2Z2p |G

- f2 X?(R?(Z?) du |~ R’
and we take the limit aR — . We have provequ’ = T ((“Z“ ))du for any sequence extracted from
pgf ec(0.5) With a single Wigner measure. This proves(p;, € € (0,€)) = % while the condi-
€(0¢) T2(27) du

tion (PI) was checked in Part 1). O

3 Dynamical mean field limit

Let Q be a real-valued polynomial itPq4(2) given by

Q=S Q. with Qe(2).
j; J ] I

16



We consider the many-body quantum Hamiltonian for a systelbosons
He = dr (A) + QWi (26)

with A a given self-adjoint operator of’. Here Q"™ is the operatofy’_, Q¥ with QV* given by
(7). Clearly,H; acts as a self-adjoint operator on the symmetric Fock sp#icéVhen 2 = L?(RY), the
Schrodinger HamiltoniaA = —A +V(x) and the semi-relativistic Hamiltoniah= v/ —A -+ nm? +V(x) are
among the typical examples (e.g. [21]).

3.1 Existence of Wigner measure for all times.

The first step to prove Theorem 1.1 is to show the existenceigh®/ measures for all times. This is
accomplished in the Proposition 3.3 by following the samedias in the proof of Theorem 2.7. For this
task two useful lemmas are stated below with the first onegggiaved in [7, Proposition 2.10].

Lemma 3.1 For any be %,4(Z°) we have:
(i) bWickis a closable operator with the domain of its closure coritain

o =Vec{\W(9) Y, € Hiin, b € Z}.
(ii) For any ¢ € 2 the identity
ie

e E))Wick

W(E) bYW (&) = (b(z+ 7

holds onsg with b(- + 1£¢&) € Pa4(2) .

\/E
Lemma 3.2 For any ke N there exists &-independent constan{G 0 such that

W(E)" (NW(E) < C(&)(E)K(N)¥, (27)
for any& € 2 and uniformly ine € (0, €).
Proof. SinceN is a self-adjoint operator, the functional calculus pregithe inequality
(NYK < (14 N)X.

Therefore, it is enough to prove (27) witiN) in the Lh.s replaced byl + N). The Wick calculus in
Proposition 2.4 tell us thatl + N)¥ is a Wick operator with symbd(z) in 69‘1-;032“ (2),ie.

=~

b2 =S @002 with bl e 2 ().
J_

Now, applying Lemma 3.1 yields

W(E)" (1+ N)kW(E) =W(&)* b\IiViCk\N(E) = (bx(z+ ITZE))WiCk'

A Taylor expansion of the symbol gives us

z+—f 201'\/— 'oi(2)[€],

with D) is the jth derivatives andD'Vby(2)[£] e @mzoﬁm’n(f). So, by the number estimate (2.3) we
can derive the following bound

N)+2 (D02

)" 7] < G ey
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with G only depending oik € N. Hence, we obtain

< C(8) (&),

(N)+2 i% (D0be(aytET)"™ ()2
2o

with G only depending ork € N. Thus, we conclude thaW(&)* (1+ N)*W(&) as a positive quadratic
form is bounded by (£)<(&)<(N)X. O

Proposition 3.3 Let(pg) ¢ (0 ,¢) be afamily of normal states o#” satisfying the uniform estimale[p:N']
< C; forsomer>0.
Then for any sequende,)nen in (0, €) such thalimn_.. & = 0 there exists a subsequen@g, )ken and a
family of Borel probability measurdgt )icr satisfying

(& s g daiten ne N) = {1},
for any te R. Moreover, we have

/, 2 dm@ <.
Proof. We set
Ps(t) = e igHe psei%Hg and  fe(t) = gt (A)gigHe pseigng—igdr(A) .
(i) Consider fore > 0 the function
Ge(t,€) = Tr [Be(t) W(V2E)|
Write for any(s, &), (t,n) e Rx &
Ge(t,1) —~ Ge(s.&)| < |Tr [ (Be(t) — e(9) W(v2rm)| | + [Tr [ Be(s) (W(v2rm) ~wi(v2ne) ) ||

By differentiation, we get

~ ~ 1]t o~ ;
T [[e(®) — Pe(sw(v2m) || < \ |7 [pe(t) Q= wiv2m))| o (28)
with Qv (2) = Q(e "Az), while the second term is estimated by
T [ets) (W(v2rm) ~Wi(v2ng) )] | < (1+G) [W(v2m) -wzre N+ Y, (29)

Now, we claim that there exists a constant 0 such that the r.h.s of (28) is bounded by

2r

ot-s (S IG) S & Hnl". (30)
2,190 2,
This can be proved by first writing
Tr [5S(t’)[QtV,Vi°k,W(\/§m)]} - (31)
T [(NYBe () (N) (N~ "W(v/2rm) (N)" ) (N) ™ IW(v/2rn ) Qe (v/2rn ) — QU (N) |

and second estimating the r.h.s of (31) using Lemma 3.2 andriae3.1 (ii) so that

(N) ™" [Qu (. + —=n) Vi — QM (N)

/St Tr [ﬁs(t/)[nyiCk,W(\/éﬂr])]} dt’ \I/gi

<clt—g sup
t'e[st]

L()
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Thus, the bound (30) follows from the number estimate in Bsijon 2.3.
We recall the inequality proved in [7, Lemma 3.1],

W(v2rm) ~W(V2rE)|(N+1) 42 < C |~ &| [min(z|n] £[€]) +max(1, ).

This leads to the following bound on the r.h.s of (29)

GIT (1+\/|r7|2+|<f|2) |

Thus, we conclude that(s, &), (t,n) e R x &,

Ge(t,n) —Ge(s, &) <€ (It =s{(In|+1)% +n—¢&l/Inl2+ |E|2> : (32)
uniformly w.r.t. € € (0,€). Recall also that we have the uniform estimge(s, &)| < 1.
Now, we apply an Ascoli type argument:

e SinceR x Z is separable, it admits a countable dense et {(t,,&,), ¢ € N}. For any/ € N the
set{Ge(tr,&r) }ec(0,6) remainsin{o € C,|o| < 1}. Hence for any sequen¢en)ner such thag, — 0
there exists by a diagonal extraction process a subsequstiicdenoted by(&,)nen, such that for all
CeN, Gg,(t;,&) convergesifo € C,|og| < 1} asn — . Set

Gty &) = lim Ge, (t, &)
forall £ € N.
e The uniform estimate (32) implies that the lin@tis uniformly continuous on any set
A N{t,2) eRx Z:|t|+]7 <R}.

Hence it admits a continuous extension still den@ead (R x 2, | |, o). An “epsilor/3"-argument

shows that for anyt, &) € R x 2, limp_ Gg, (t, &) exists and equals(t, §).
Finally for anyt € R, G(t, .) is a norm continuous normalized function of positive typesi

G(t,0) = lim Tr[e(t)] = 1

N N
S AAGtE—&)=lm § A Tr [f)gn(t)W(\/én(Ei —&))] gra@d > o,
i,]=1 nﬂwi,]:l

The positivity in the last statement follows by Weyl comnmiiga relations (6). Therefore, according to the
Bochner theorem (e.g. [12, Corollary 1.4.2]) for ang R, G(t,.) is a characteristic function of a weak
distribution or equivalently a cylindrical measufie on 2 (see [51] and also [7, Section 6] for specific
information).

(i) The fact thatl; are Borel probability measures satisfying

fiu(|2*) <G <o, (33)
follows directly by [46, Theorem 2.5 Chap.VI] or by p&nt) in the proof of [7, Theorem 6.2].
(iii) Using (13) we see that for aryc .7y (2°) based on a finite dimensional subspack with p € P

fim T [e, DY = fim || Ge,(t,€) FIbl(£)Lp(d)

= | 6.8 FBIE)Ly(dE) = [ bRk,
pZ z
Therefore, according to Definition 2.8 of Wigner measuresweclude that
VER, A(Pey(t).nEN) = {fk}.

(iv) Finally the family of measureg; which satisfy the claimed statement in the proposition heeptush-
forward measures

pe = (e7"), iy
Furthermore, an analogue of (33) can be easily checkeddantrasureg;. O
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3.2 Polynomial approximations of the classical flow.

With the classical hamiltonian
M@=@A3+qﬁ=@A3+§@Wd¢%,ze@ML
=

the related nonlinear field equation is

{ i6z = Az +3:Q(z)
4—0=2.

Actually this Cauchy problem is better studied when refdated as an integral equation
. t
Z—e i / e (=94 3.0(z)ds for ze 7, (34)
0

which admits a classic&®-flow F; : R x 2 — 2°: 1) since ther are bounded a fixed point argument
gives the local in time existence and uniqueness; 2) therdhservationz| = |7| ensures the global in
time result. As a classicat®-flow, F is a%°-map satisfying, s(z) = Ft o Fs(z) andF¢(z) solves (34) for
anyze % .

Moreover, ifz solves(34), andQ;(z) = Q(e z), thenw; = "z solves the differential equation

d

&Wt = —i0:Q (W) .

Therefore for any € & ¢( %), the following identity holds

d
gt b(w)

O (W )[—102Q (W )] + Fzb(W) [—i97Q¢ (Wk )]
i{Qr, b} ().

Hence, we obtain the Duhamel formula

b(a) =t () +1 [ {Qu ) (€447, . (35)
A simple iteration in (35), using
(Qu B Hh) = {Qu i) 1 [ Qs (Qu ) (e )l
yields
o) = @)+ [ {Qubi) (@) du +17 [ ds [t (@ (Qy 01} (€242,).

Therefore, by induction and after settifg(z) = z, we obtain for an) > 1:
Kfl_k t t_1
boFi(d) = @D+ Y | /Odtl---/o dte {Qu, ... {Qub} .. 1} (@)
K=1

+ iK/Otdtl_../otK,ldtK {Q[K’{'"’{Qtl’b[}"'}}(eitKAZtK)-

With the polynomialQ we associate the norm

= max |Qilp .= max |O; 36
1Qll e r}|QJ|JH e r}|QJ|‘$(\/J.,zf,\/J,xzf) (36)

and we note thatQ|| = ||Q|| for allt € R. Notice that the flowF; preserves the norm

vVze Z, |R(2)] =14,
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and is gauge invariant . .
Vze V0 eR, Fi(d%) =€OF(2).

But for a given polynomiab(z), the mapz — b(z) does not remain a polynomial. Starting from a polyno-
mial b(z) € Zpq(Z), we study polynomial approximations bfz ).
Consider the expression

K Kfl_k t ty_1
Xtz = @+ [t [ di Q- Qb 1@ zbktz (37)

I R A Y CONERCWARSIICEY (38)
) 0 1 A o l-01Qus <)

The two approximation results that we will use are given mtilio next propositions.

Proposition 3.4 For b € %, 4(Z), the polynomial B(t,z) = 3K by(t, 2) defined in(37) belongs to

oY Py 1q(Z) with the estimates

_p+q_

Ibi(t,2)| < 2279 (p+q) (4r3)* | Q|[¥ [b| w4 [t (2~ D P (39)

Moreover, we have for'Rt, z) the estimates
RE(,2)] < 2200 (p+-0) (4r%)K [[QIX [b s, t[K 92XV 4P, (40)
Proof. With b € Zp4(2') andQ; = 3_,Qj, the polynomial
. t -1
(0= 0 [dn [ i Q- Qb))

is the sum ofr — 1)K < rk monomials

bet)=" 5>  ba(t)

. . tk—1
with bk,a(t) = (l)k 0 dtl"'/o dtk{QO!k,tka{'~~a{Q(X1,t17bl}~~~}} € ‘@\a\*ker.\C!\*kJrq(ff)'
A consequence of Proposition 2.4 saysda Zy (%),
{Qayy, €} @) < 1(P'+) Qa7 4, [6]5, , (27T,
We deduce

|bk,a(ta Z)|

IN

t k-1
[ | dl‘kfk(p+Q)---(p+q+2k(r—1))|\Q|\k|blxyp (z)Praraial-2

MNa+k+2)
rk+Lr(@a+1) a+ k+ 1

with a= Z(ﬂfql) andl" denotes the Gamma function. Now, we notice the relation thighBeta function

IN

(p+a)rk2(r — 1)< Lt Q¥ |b| 5, , (2P

F(k+1)r(a+1) 1
B(k+1a+1)— (+ @+ /t

T(a+k+2) - 23+k+1(a+ k+1)’

which yields (39).
The remainder

RE(1.2) = H{QuBN) =¥ [ dyoos [ dic Qe Q) (g,
’ ) 0 1 o KoL 19 K

is analyzed like the terr(t) . O

Proposition 3.5 Let i be a positive Borel measure d#f supported in the bal{|zl <R}, R> 0, then for
any polynomial be Zp (%),

_p+g_ _ K
[, IR (0.2 du(@ < (RIP427 (p-+ )bl vy [4%1QU Rt

Proof. It easily follows from (40). O
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3.3 Transport for a state localized in a ball

The previous approximation result allows to prove parthedtem 1.1 for states localized in a ball, intro-
duced according to Definition 2.13 and studied in Subse&in

Proposition 3.6 Let (pg, )neny be a sequence of normal states.#fi localized in a ball with radius R> 0
and such that

Ve [-T,T], (e @ np, datn neN)={u},
and  Va €N, Jim Trlpg, N :/ff|z|2" dLio(2).

Then for all te [T, T], the probability measurg is the push-forward by the flof& of the measurei,
i.e., kk = (Ft)«to. Moreover the identity

lim Tr [e ieHen g, eeananuantlze /b ) dik(2) /th )) do(2),

n—oo

holds for Weyl quantized cylindrical functionsly J,cp FY(My(pZ)) and general Wick quantized poly-
nomials be P,4(Z).

Proof. We set

Ldr(a) Ldr( )

B (1) = €T Wg o Fon s Hong 15

Itis worth noticing that for alt € R, the sequencgpg, (t))nen is localized in the ball with radiuk.
For afixedb € 2, 4(2), differentiating with respect tbthe quantity Tipe (t) bV, we obtain

. . it . .
Tr[Bey (€)Y = Tr(, (0) B4 + - /0 Tr [P (9) QY 6V ds (41)
n
and replacind by b; we end up with

Tr[pgn (t) bWiCk] = Tr psn b[WICk] +i /t Tr |:F~)5n (S) {Q57 b[}WiCk:| ds (42)

B ZZ% /Ot T {ﬁsn(s) ({Qs,bt}(J))Wick} i

Consider now the case whéne &7 ,(2°) with a compact kernelb € £* (VP Z;V9%). Then we
know that the left-hand side convergesftp b(z) du;(z). The number estimate of Proposition 2.3 with
Tr[N%pg,] < R?@ implies that the last term of the right-hand side convergdkasn — . Finally the first
term of the right-hand side convergesftp b(z) dpo(z), even wherb is not compact.

We conclude that the limit of the second term of the r.h.stexisth

/b2 a2 = [ @) doa) + im i [T (B (5) (@5 ) s,

and this initiates our induction process.
GivenK > 1, take the approximatiaol‘ (t) = S K-> by(t) to b(F¢(2)) given in (37), and assume

[ p@du@ = [ bt2) du) (43)
lim i [t [ Te [ ) (o (@B} )] @)

n—oo

A simple differentiation with respect tr gives for@ € P 4( %),

T e (609" = Tr [, 000] 1 [t 1T [ i2) (Quc 1. O) ™

r
+i 22
J:

L -\ Wick
f}! /o T {pgﬂ(tKH) ({Q[K+l’e}(1)) ] dtc11.
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Hence, choosin® = {Q,---{Q, b} } yields

[ p@dua = [ vt2 duo(@)

im i< [ e = Wick
+ Am{l /Odtl'“/o dtKTr[pgn(o)({Q[K"“{Q[Nb[}“'}) }
- L gt ot t « Wick
+ IKszzj—!/odtlm/o dt}<+1Tr[psn(tK+l)({QtK+17"'{Qt17bt}"'}) }
t & ic
+ iK”/O dty - A ditg 1 Tr [ﬁfn(tK+l)({QtK+1;"'{Qt1,bt}"'})W k}}

= L lim (111 41V).

For anyK, whenn— o, the second term (I1) convergesfg ©(z) dug(z) because the initial stat@s, (0) =

s, satisfies lim_o Tr [pgncW'Ck] J#¢(z) duo(2z) according to Proposition 2.12. Moreover, the third term
(1) vanishes, whem — oo, thanks to the number estimate in Proposition 2.3 and theHatTr{ps,N?] <

R?@ | Therefore, we have

/b dpt(2) /bK+1tz) dpio(2)
+ lim 'K+l/ dty - / dtcia Tr [pSn(tK+l) ({Q[K+l’ {Qy, b} })WiCk}.

n—oo

By Proposition 3.5 and the fact thag is supported i{|z] < R}, we deduce

Vf b(z) dke(z) - /z b(Fi(2)) dro

+ 1| lim /tdtl.../otKildtK Tr [f’sn(tK)({QtK,---{Qtl,b[}---})WiCk} .

n—oo O

_b+a_ _ K
< (RP*9221 (p+ G) bls,,, [4°1QI RVt (45)

The number estimate of Proposition 2.3 with the inequa88) of Proposition 3.4 implies

q+Kr 1)

(N) "7 ({Qu, - {Qu, i} - YV (N~

p+K(r-1)
==

_P+q_
<22 (4 0) (43 QI bl -

L(H)
This provides for the last term in the r.h.s of (45) the upprrrix

_b+q_

p+q
(R 2 K 2200 (p 4 q) (4r%) QI [b] g 1<

W with & < 1, taking the limit ag( — e now gives

vbe D0 (% /b ) dp(z /th ) diio(2).

For small timesj|t| < Ts =

But according to Proposition 3.6, the measyreis a Borel probability measure supported in the ball
{lz] <R} which is weakly compact. Meanwhile cylindrical polynonsiathich are contained i3, (),

because they are associated with finite rank kernels, makesedet in th&°(B(0, R)weak C) and there-
fore inL'(2,du) . Thus, we have proved

Vte [-Ts, Tsl,  pe = (Ft)«Ho-
Finally, since|Ft(z)| = |z] and [He,N] = 0, the pair((pg,(t))nen, i) satisfies the same assumptions as

((Pen)nen, Ho). Since the timds depends only o® andR the result extends to dllc R. O

3.4 Proof of the main result

Gathering all the information of Section 2 and 3, we are nowasition to prove Theorem 1.1.
Proof of Theorem 1.1
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Let (Pe)cc(0,5) be a family of normal states satisfying hypothesis of Theotel and lef € %°([0,»),R)
be a continuous cutoff function such thatQy <1, x(x) =1if x<1/2 andx(x) =0if x> 1. ForR> 0,
consider the family of normal states

R — _X(N/RO)pex(N/R)
© TrX(N/R3p: X (N/R?)]”
localized in the ball of radiuR. By Proposition 2.16, we know that
x*(12%/R%) } R
o aa e o) = )
(i) VYaeN, IlimTrpRNI] :/ 1229 dpR(2).
e—0 K3

(i) #(pEec(0,)=

Next, we use the notations
pg()_e Eng eIEHg and ps() —iz ngRelng

For any sequencgen)nen there exists by Proposition 3.3 a subsequef@rgken and a family of Borel
probability measureg)icr such that

(iy (R (t).keN)={u}
(i) vaeN, limTi| p,sn / 1212 d(
Applying now Proposition 3.6 witlgi)’ — (i)', we obtain that
M (PE (t),k € N) = {(F).k5}, (46)

for any timet € R. Since for any sequende,)ncy We can extract a subsequer(eg, )ken such that (46)
holds we conclude that

///(p?(t),&' € (O’ g_)) = {(Ft)*ug}’ (47)

for any R> 0 andt € R. Again applying Proposition 3.3 fdips).c(0z), there exists for any sequence
(&n)nen @ subsequenden, )ken and a family of Borel probability measurés: )icr such that

M (Pen ()K€ N) = [}

The identification of the measurgg )icr follows by ad/3 argument. For anlg € .y (Z) based inpZ,
p € P, we write

Trlpa (08"~ [ b@d(Fi).bo| < [Trlpe, (0B~ Trlof, (16"} (48)
+[Trlof, (00" - [ b(z)auf (49)
+| [, b - [ oF @] (60

Each term (48)-(50) can be made arbitrarily small by chap&trand k large enough and respectively
using the bound (21), the relation (47) and the dominatedexgence theorem. So, we conclude that
t = (Ft)« o and hence we have proved

A (pe,€ € (0,€)) = {(Ft)Ho} -
Finally, the use of Proposition 2.12 wifh (t) yields
im Tr e ()] = / boF(2) do(2),
e—0 ¥
since lime_, o Tr[pe ()N = lims_, o Tr[peN%] = [, |2?%dpo = [, |2/2*dp, for all a € N. The reformula-

tion of this result in terms of BBGKY hierarchy of reduced nizgs is a consequence of Proposition 2.11.
O
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3.5 Additional results

Although it was not written in Theorem 1.1, remember thatdkistence of Wigner measures contains a
result for Weyl observables.

Corollary 3.7 Let(p¢)ec(0,z) be a family of normal states o#” satisfying the hypothesis of Theorem 1.1.
The limit

lim Trje 1£He p, &He pWey :/ boFi(2) dio
£—0 3

holds for any b in the cylindrical Schwartz spaggy(Z) , any te R and any be S‘gg, velol], peP.

The next result, shows that the class of observables cantbedad to functions of Wick-quantized sym-
bols.

Corollary 3.8 Let(p¢)ec(0,) be a family of normal states off” satisfying the hypothesis of Theorem 1.1.
Then

i) The limit
im Trle £ p el2He £ (61 = / f(bo Fe(2)) dio (51)
E— <
holds for any fe .# ~(.#4(R)) and any be P, p( %) such tha* = b.

i) If additionally (p¢)ec(0,¢) is @ family of localized states on a ball of radius>R0, then the limit(51)
holds for any entire function(k) = Y, axX overC and any be 2, ,(Z) such thab* = b.

Proof. i) Let x € ¥°(]0,»),R) be a continuous cutoff function such thakQx < 1, x(x) =1 if x < 1/2
andx (x) = 0if x> 1. Consider the familype (t) = e '¢"¢ p.& ") o ) with
R — _X(N/R)peX(N/R)
© o TrX(N/RP)pex (N/R?)]

Letbe 22, 5(%) such thab* = b, thenb"i* extends to a self-adjoint operator o#1 satisfying[N, bW —
0. We claim that

R>0.

) o ik
voeR, TrpR(ne®"™ = g%ekTr[p§<t><bW‘°k>k]. (52)
2.

Thanks to the estimate
TrRR(O) (B = |Tr(N) P 20R()(N) P2((N) P 2oWi(N) P2y
(RPIbl, (53)

IA

the I.h.s of (52) is an absolutely convergent series unifpime € (0,&). Moreover, on can easily show
the strong limit

. N jk : - opWick
S— l\lllﬁ]oo z E ek(bWICk)kl[Osz] (N) = eleb 1[O,R2] (N) .
k=0 "
Therefore, we see that
© ik : © jk ; - opWick
Y 1 OTHOR) (B"9K] = 5 1 0Trlof(t) (B4)* 1o ey (N)] = Tr[pf(0)€®"™.
k=0 " k=0 "

This proves (52) and again by the uniform estimate (53) vépect te € (0, €), we obtain

) o ik
: Ry gooVic < I k/ K _/ —iBb(F(2))
lm TpF ()€™ = 5 0 [, bF(@) dho= |, & do.
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Now, a similard /3 argument as in the proof of Theorem 1.1

Trlpe, (060" - [ &R @] <

R
pSnk psnk zl(%ﬁ)

+

i ppWick i
Trlpf (") [ @M E @

/ei9b(Ft(2))d“g<_/ Ob(F(2) gy
z z

using the bound (21), the relation (47) and the dominatedergence theorem, yields the limit

+

)

; jobWick, _ i6b(Ft(2))
lim Trlpg, (V87" = | & @ayp,

By integrating with respect t&# (f) € .#,(R), we end the proof.
i) The proof is similar to (i). Indeed, one shows

Trlpe(t) £ (6] = iakTr[psa)(bW“k)k], (54)
k=

with a I.h.s absolutely convergent series uniformlgia (0,¢). Lettinge — 0 in (54) yields the result.(]

4 Examples

We review a series of examples. Firstly, the propagatiorobecent states and Hermite states is recalled.
Secondly, bounded interactions occur naturally withinrtteglelling of rapidly rotating Bose-Einstein con-
densates, owing to some hypercontractivity property. diithe tensor decomposition of the Fock space
allows to specify some Wigner measures for which the profi@yaannot be translated in terms of the
reduced density matrices without writing all the BBGKY taezhy. Finally, the result of Theorem 1.1
provides a new way to consider the Hartree-von Neumannilintite mean field regime.

4.1 Coherent and Hermite states

The coherent states on the Fock sp&geZ’) are given byE (&) :W(\i/——ff)Q —et e Q, whereQ is the

vacuum vector of (%), £ € Z and[a(f),a*(g)] = £(f,g)| . The Hepp method ([36][30][31]) consists
in studying the propagation of squeezed coherent statéghdlgllarger class which includes covariance
deformations. The normal state made V&€ ) is

pe(®) = WCZE)2) (W25)0).

We proved in [7] that# (pe(§), € € (0,€)) = {¢ } and a simple computation shows that the propg®ty
is satisfied:

lim TripeNY] = €™ = & (12%).

E—

A second example is given by Hermite states, also well stidithin the propagation of chaos technique
or other works (e.g., [44][13][23]). They are given by

on () = 9N (9N, (55)

with ¢ € &, |¢|» = 1 and discrete values far = ﬁ We know from [7] that# (pn(¢),N € N) =

{%T 02" 5eie¢ d6} where the rotation invariance is the phase-space tramslafithe gauge invariance of
the Hermite state¢ — €°¢ . One easily checks the propet®l):

) 1 2
lim Trion($)N = 1= Er/o 12%5404(2)d6.

Itis convenient to introduce a notation for this Wigner meas
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Definition 4.1 For ¢ € #, the symboﬁd?1 denotes the Borel probability measure

2n
5 = 5 / 8oy dO.
Theorem 1.1 applies and the Wigner measures associated with
_jL L il jL
(e ISHSPS(E)eIEHE)se(O,E) and (e ISHSPN(‘P)eIEHE)s:l/N,NeN*

are respectivelyy, andégl, whereé; or ¢, evolves according to the classical flow.
For example when

He =dr(— 2/ V(x—y)a*(x)a*(y)a(x)a(y) dxdy
with 2 = L?(RY) the classical flow is the Hartree equation
Gy = —Ag+ (V@2

We conclude by noticing that for such statpg (¢ ) andpc(&)) the asymptotic one particle reduced density
matrix yél) (t) solves the equation

17} yél) = {—A +(V * ”yg”) , yél)}

(56)
0" (t=0) = 1E)E| forpe(€), (resp. %(t=0)=19)(8] forpu(9)).

with n (x) = yél> (%,X) .
0

4.2 LLL-mean field dynamics for rapidly rotating Bose-Einstein condensates

The case of bounded interaction terms occurs exactly in theetting of rapidly rotating Bose-Einstein
condensates in the Lowest-Landau-Level (LLL) regime. Thd § one patrticle states can be described
(see [2]) within the Bargmann space

g
¥ = {f €L3(Cqp.e” h L(d0)), O f :o}

whereL(d{;) is the Lebesgue measure @h h > 0 is a parameter which is small in the rapid rotation
regime and where the norm off is given by

2 2
1B = [Ifere S S - L ue - fee

The multiparticle bosonic problem has been considered 1h §hd the (LLL)-model has been justified
for the stationary states of such a system not only in the rfielhasymptotics. Th&-particle states are
elements of

\/QF {FELZ 3 h‘ L(dZ)))7 aEFZOa F(Za(l)---vZa(k)):F7 vO-EGK };

L(d
Flay = [ FQP S

With or without the symmetry conditior@k.ﬁf and szf are closed subspaces logf(@é e
and they are the image of the orthogonal projection (addythersetry forvk Z)

(MO = [, T 60 [
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Within the modelling of rapidly rotating Bose-Einstein ctemsates, the one particle kinetic energy term is
A=h{10;, and it is associated with

0 < Exin(f) = (f,h{107, ) .
The standard one particle nonlinear energy is given by

42

a [ L), u(@) = f(ae B
C

wherea > 0 is another parameter provided by the physics (see[2])mre general energies can be

considered
1212

= r 2 = v 2h
Eu(f) = 3 a JuPPL@). u@) = f(@e 3, ap>0. (57)

The mean field Hamiltonian is thus given by

plZal?

r
() = Bun(£) + Bu(1) = (1. 00, 1)+ 3 atp [ [1(20) PP " L(ddy).
p=2
An important property of these nonlinear energies comes fitee hypercontractivity of the semigroup
(e7t¢%),_, proved in [16] which can be written as

. 1Z? k
U[2p <CpnalUl2 if U{)=F({)ee 2, FeZ, pec[2+ow. (58)

This implies that the nonlinear energy is a norm continualgrpmial with respect td € 2 and therefore
the nonlinear mean field equation

i
i f =hd10g, f+ 5 papnh(|u*P-Hu)ngf (59)
p=2

defines a nonlinear flow on the phase-sp&taccording to Subection 3.2 (we refer the reader to [45] for a
more detailed analysis of the nonlinear dynamics of the Inhddel).

Let us consider the second quantized versigrof the energyh in 's(Z°). The kinetic energy is nothing
butd (A):

k
dr(A)|Vk@) =€ Z thdzj =¢h{.0; .
=1
and the quantum Hamiltoniaf is then
_ 4 \Wick
He=dr(A)+ 3 apQ! (60)
p=2

plZel?

with Q) = [ (@) L(dd) = [ [F(@Pe *F" L(dd) = (17, QefP).  (61)

The operato(jp is easily identified after removing the center of mass in ipldtintegrals (see [41] for
details) as

- _h p-1 ! 1 Oa+-+4 G+-+p
QpF(Z)—np<L|'|15(z,) F (Z)—(nh)pF< 5 . >

with Zj’ =(j— Lp*z" . One easily checks as well, by using additionally the hypetactivity estimate
(58) with p= +, thatQp € Z(VP Z).

The propagation result of Theorem 1.1 applies for such a hfodall initial states which fulfill its
assumptions (boundedness of all moments and condiby).
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4.3 Fock tensorization

We have already used, and it is the basis of the introductfocylindrical observables, the fact that

1
Ms(Z2) ~Ts(22)®Ts(Z) when? = 29 ® % . The definition of Wigner measures introduced via cylin-
drical observables, yields the next result.

1
Lemma 4.2 AssumeZ = Z,¢ Z and let (p,})ge(o’g), (p&?)ge(og be two families of normal states on
Ms(21) andls(2%) such thatTr [p{N?] < C; holds uniformly for somé > 0 and.Z (p{, € € (0,€)) =
{u} for £ =1,2. Letp, be the state o s(2) identified withp} @ p? in the decompositiofs(Z) ~

F's(21) ®T's(22). Then the familype )< (0,7 admits the unique Wigner measyre= ul x p? on the phase
space? = 4 x 25.

Before giving applications and variations on this resulsitvorth to notice that the identification of
the “tensor” statg, requires some care. It is not equal in generabé@ p§ since such a states does not
preserve the symmetric Fock spdcg %) .

Here is a simple example, talfe € 23 andg, € 2 with |¢| 2, = 1,N1,No € N, and sep’ = ¢, ) (¢, |
for £ = 1,2. The tensor statgs! © p? is the pure statgp; ™ © ¢5™2) (9™ © ¢5™N2| in Fs(22) @ Ms(22) .

It suffices to identify the vectap"(N-N2) ¢ I's(Z) associated Witkﬁl@Nl ® ¢§9N2 . Itis the symmetric vector
in \/"‘1Jer Z made withN;-times@; andN,-times¢, and we can summarize the situation with

2N 1 N, times ]
= —=——=2a(¢)...a"(¢) Q) InTs(Z), (=12
iV SN/fN[!
VNN (N1 +Np)! &Ny o 2 EN,
¢ = g(Nl+N2)N1!N2!yN1+N2(¢1 ®(1’2 )
1 Nz times N times

= m a'(¢)...a"(¢1)a" (¢2)...a" (¢2) |Q) inT(Z).

The tensor decomposition is especially useful wieis endowed with a Hilbert basig; ) jen+ . An Hilbert
basis ofl () is (eV")aEUTZO(N*)j given by:

va _ ﬂ A\ _ 1 * a
=\l el () = T @1

with a natural multi-index notatioar = (ay,...,ax), [a| = a1+ -+ 0k, €9 =/ @ - @ e« and
[@*(e)] =a'(er)...a" (&) %.

For example, the identification betweBg(Ce;) @ I's((Cey)*) andls(Z’) is done via the mapping defined
by &/ eV’ — eV(919) for all a; € N and alla’ € UP_(N\ {0,1})%. This can be iterated but re-
member that the definition of infinite tensor products reggithe additional specification of one vector per
component which is hopefully rather canonical for Fock gsaandowed with a vacuum vector (see [34]) .
Below is a notation convenientto the definition of tensotest@nd which allows some extensions. Consider
the linear isometrZ; on 7 = I's(Z’) defined by its action on the Hilbert ba$é§/°’)aeuz_0(N*>k

1 .
Cjeva _ eVl — a*(ej)eva — gV(a+l))

~ e &) 2o, 1 1) | (62)

with |1j| =1 and(1j)j = 1. In the tensor decompositidia(2) ~ I's(Cej) @ I's((Cej)*), this isometryC;

i

Definition 4.3 Let 2 be endowed with a Hilbert basi®j);cn+, for j € N*, and take the isometries
(Cj)jen+ defined insZ by (62). For j € N*, the operator E is defined onZY () by

is nothing but the tensor produ%%a*(ej)} ®l.
]

Ejp =CjpC;, Vpec L (7).
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For A = (Aj)jen € £1([0,+)) such thaty _; Aj = 1, the notationd .E means
AE= Z AEj.
=1

The operatorskj and A.E transform normal states dvik‘lc@‘” into normal states oiy* % and they all
commute. After takingd, = e; and¢, = e, the tensor state ons(%) identified withp! ® p? and studied
above withZ; = Ce; and 25 = (Ceyp) ™ is nothing but

EMN2)|0) (0] = E)'EN?(Q)(Q] = EPEY|Q)(Q).
Moreover the multinomial formula holds

N _ M aEa
(A.E) _\G\Z=N A ET (63)

We use these notion to formulate the propagation of noatrivigner measures. The Hamiltonian is

r

Wick 1
HdeF(A)+<ZZ<Z®',QJZ®J>> , EEY
J_
with (A, 2(A)) self-adjoint anddj = @ € (V! ). Itis associated with the mean field Hamiltonian
r
h(z2) =(z,A2 +  Qj(2)
J; j

and the flow(Ft )icr in the phase spac#”.

Proposition 4.4 Let 2 be endowed with an orthonormal basig) - and let the family(E;)jcn+ be as
in Definition 4.3. Oncey, (0) is fixedp (t) is defined by (t) = eeHe pe (0)eHe |

1) For k € N* and (vy,..., v) € [0,1] fixed such tha{‘}zl vy = 1, assume that Nequals the integer part
[vN] for £ € {1,...,k}. Then the family of state@e (t))s_1/n given bype(0) = EMN--NJ|Q)(Q| admits a
unigue Wigner measure

1 1
He= (F)<Ho = (Fi)« (8556, X - X 805e,) -
The reduced density matricvéo) (t) converge inZ*(\/? Z) to

0 = [ 127" duo@ (64

by setting g= Fiz .
2) LetA = (Aj)jen+ € £1([0,+)) be such thap {1 Aj = 1. Then the family of statg@e(t)).—1/n given
by p: = (A.E)N|Q)(Q]| satisfies the same properties as above with

o= X .
H =1 VA8

Proof. Actually it suffices to identify the measupg and to check the assumptions of Theorem 1.1 at time
t=0.
1) Itis a simple application of Lemma 4.2 with the decompositio

Fs(Z) ~Ts(Cer) @ @Ts((Co1)) @Ts((Cer® - & Cex-1)7).

In this decompositiofe M-NJ|Q)(Q| is nothing but a tensor product of Hermite staﬂﬁ”@(ef“q and
the result is a simple tensorization of the result for Heerstates witlke = ,‘\’I—Z .

2) The statep: (0) = (A.E)N|Q)(Q| belongs taZ1(\VN %) . Itis therefore localized in the ball with radius
1. According to Proposition 2.15, its Wigner measures areaietely determined if we know the limits of

Tr { 0¢(0) bWick}
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for all theb € &73,(Z°) . Due to Pythagorean summation, the meagtyre- x7_; 5 ~is supported in

alg Ve,

the ball of radius 1. The estimates
T [p=(0)(b— b/)¥e

[ (6@ -b@) duo(2
,

=\Tr[pg 0)X(N)(b— bW (N)|| < Cpalb— 1|5y

= |/, 0@ - b)) cho(a

and

= Cp,Q|b_ b/|gp,q )

with the first one deduced from the number estimate (10) ip&sition 2.3, hold for alb,b’ € Prg(Z),
p,q € N as soon ay € 65°([0,+)) is chosen such thgt = 1 on[0,1]. Hence it suffices to prove
lime_oTr [pe(0)bY'] = [, b(2) duo(2) for a total set of77g(2) . With the compact kernel condition,

anyB € Z*(\VPZ,V%Z) can be approximated by a linear combination of rank one ¢peraf the form

e (P = \/ il Lin € (€°F|. A, 1Bl = p. Iy = a. With
(2%, &)(e"P, 2°P))"'* = [a (€)Y [a(e))”
and o= 3 A° Tl eral,

we can compute directly

Tr [pe(0)(2°9, &) (e, 2P = 5 TAc ale)re’e afe)Pe’).
la]=N 7"
Actually
a(e)Pe’ \EP L ed if a=a+p
0 elsg

with a similar identity fory yields

(N—p)!
= 3, ePN(N-1)...(N—p+1)AP.

Tr [pg(o)“z@q’e®y><e®ﬁ7z®p>)Wick} _ 5B,V5PL< 3 (N—p)!/\a,>)\ﬁ
la’|=N—p

With € = 1/N and(p, q) fixed, we obtain
Tr [pe(0)(£°9, &) (e, 2P = gg AP = [ (29, &)@ 2°7) dpi(@).

O
We conclude with two remarks:

e The tensorized Hermite staé™--N:-)|Q) (Q| with N, = [A,N] andy$"_; A} = 1 can be studied and
behaves asymptotically like\ .E)N|Q)(Q] .

e When those tensor states are not Hermite states, the redansity matrices satisfy no closed equa-
tion and all the hierarchy has to be considered. In the exatepding to (56) for Hermite states the

general equation fo,rél> (t) writes
13067 () = (=016 1003) + [ V=X 00Xy = Y7 O X )V (y =) .

and the equation foyé2> invoIvesyéB) and so on. .. The propagation of Wigner measures gathers all
the asymptotic information in this case. Geometricallysiinteresting to notice that if the initial

Wigner measure i8S _ x 5% ,with A1+ A, =1, itis supported by a 2-dimensional torus. After
Mer T /Azer

the action of the continuous flow, the supporpefemains topologically a 2-dimensional torus but in
general deformed in the infinite dimensional phase spademnitexact finite dimensional reduction.
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4.4 Condition (PIl) for Gibbs states

Foro(g) € £(Z), which is a non negative strict contraction:

:goi(s)la(s)ﬂa(sﬂ , 0<ai(e) <1, _2@(8)<+w7

where(g(€))ien+ is a Hilbert basis of2, the operatoF (g(€)) belongs taZ (7). It equalsT (a(€)) =
Smo-7n(0(€))®".~, and the tensor decomposition gives

© 1
:il:lil—ai(S) ER,.

Hence we can consider the quasi-free state

1

o)) )

Pe =

It is more convenient to write

U‘(g):vizie()si _ with wi(e) €[0,+<),

and the conditiory ;2 ; 0i (&) < +o0 is equivalenttdy j_; Vi(€) < 4.

Lemma 4.5 For a(¢) = 37° 4 vi‘zs()i)rs
satisfies

lei(e))(a(e)| € L1 Z), the quasi-free statp, = mr(a(s))
vke N, sup Tr [pgNk} < +oo
ec(0,€)

if and only if there exists G 0 such thaty;” ; vi(¢) < C. In such a case, the quantity [pgNk], keN,is
equivalent to

ase — 0, with the usual multi-index conventmmg )Y =iy Vi(€)%

Proof. Consider fox € [—c,c], ¢ > 0, the quantity

ﬂ?olil
= x:fg(lﬁx) o 1

M, +8 :i: 1-vi(e)x

|z

Tr [pg(1+ £X) }

When Tr[pgNk] is uniformly bounded w.r.¢ € (0,¢), for allk € N it is a4’ function arounck = 0 with
okTr [pg(1+ sx)ﬂ | o=TrlPeN(N—g)...(N— (k— 1)) ~ Tr [pgNk} ase — 0.

But the first derivative is nothing but

(o)

oxTr {pg(1+ sx)ﬂ o= ; vi(e),

which says that the uniform bourgf” ; vi(¢) < C is a necessary condition.
Reciprocally wherp 2, vi(g) < C, then the function]i*.,(1— vj(e)x) 1 is analytic with respect tg in a
disc of radiusR: and equals

i|j(1 vj(e = ﬁ Jm vi(g)Ix) ki)Xk szv(e)“] ,

which yields the result. 0
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A Gibbs state is a quasi-free state wilic) = e ¢-(¢) whereL(¢) is a strictly positive operator assumed
here with a discrete spectrum:

Le)= 3 le)la)(al, fie) < fiale). (©5)

where the basiej)cn- is assumed independent®E (0,¢) for the sake of simplicity . There is a simple
traduction of the assumptions of Theorem 1.1, the non olsvime being the conditiofP!) hidden in the
assumption (2).

Proposition 4.6 The Gibbs stat@, = ﬁ[r(e}—m‘)ﬂl‘(e‘g'-“)) with L(¢) given in(65) satisfies the assump-
tions of Theorem 1.1 if and only if

e Foralli € N* the limitlimg_q{i(€) = i (0) exists in(0, 4] .

e IfJ € N*U{} denotes the largest elementlif U {} such that/;(0) < 4o for all i <J, the two
conditions are verified

J o1
I;m < +00, (66)

—&li(€)
and lim £€

M2 a—ee@) O (67)

Proof. First of all, writing o(¢) = e ¢-(¢) allows to apply Lemma 4.5 with(g) = -£& 0"

=1 - From
e ¢i(8) > 1 g/;(g) we deduce

e*ggi(‘g)
li(€)

Hence the uniform boundedness oi{iﬁgNk] for k € N, which is equivalent tg ;2 ; vi(g) < C implies

Vi (8) >

inf l; = 0. 68
[N £ (02) (&) =k> (68)

We now use the assumption that the fanfy) . o z) admits a unique Wigner measyg. As a quasi-free
state,pg is given by its characteristic function (see for exampld |rid [7] for thee-dependent version)

S =g
TripeW(f)] =e i-e

But the Wigner measure is characterized by its charadtefisiction
G(¢) :/ e 2828 dpg(2) = lim Tr {pgw(\/inf)} .
3 £~

By takingé = g, i € N*, this implies that the limit

_em2 146 89

lime ? 1-e®i®
£—0

exists inR . With the constraint (68) there are two possibilities: eithm;_.o¢i(€) = 4i(0) € [k, +) and

_
G(e) =e 4O orlimg_pfi(€) =+ andG(g) = 1. After recalling that thei(¢) are ordered and by
introducing the indeX like in our statement, we get fdr= 32, &g € &

2
G(§) —e " HHT,

The measurglp has to be the gaussian measure

J [4(0) —£i(0)|z[? }
= e L(d , 2= €.
Ho iil n (dz) i; 48
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Our assumptions imply that the integya} |z duo(2) equals

J
izlﬁ = /f |2 duo(2) = lim Tr[peN]

After Lemma 4.5 we know that

7514
I|m =lim
Z ( Eﬂoli £—0 Z\ 1- £€

which enforces the two conditions (66) and (67) .
Conversely assume that all the conditions are satisfiedori&idering the final argument in the proof of
Lemma 4.5 says that the function

(o)

(1—vi(e)x) 7t
i=J+1

convergesto 1 in a given neighborhoodkef 0. Hence

—eti(e) \ ¢
. K] _ firm Kl 5 ce ¢t o 5 —a
é|2I—>0Tr |:p£N :| él,‘l—>0k. (1_ e—£fi(£) K é(O) ’

|al=k, lal=k,
a;=0 fori>J ;=0 fori>J
which is easily checked to be equalftg |2 dpo(2) . O

In the Bose-Einstein condensation of the free Bose gas iremsion 3, considered in [7], the first
eigenvalue is tuned so théi(0) € (0,+) and all the other eigenvalues are such théd) = +«. The
condition which fails and gives rise to a physical exampldiofensional defect of compactness is (67).

4.5 The Hartree-von Neumann limit

Let pg be a non-negative trace class operatoLHer) satisfying Tfpo] = 1 and let
p®N =p®---®p.
Consider the time-dependent von Neumann equation for arsystN particles

{id[pN(t) = [Hn,pn(t)]

(69)
pn0) = g,

with pn(t) is a trace class operator @A(RY)EN ~ L2(RIN). HereHy is the Hamiltonian of th&\ particles

system
N

HN—Zl® QAR ®1+NZV>q Xj),

i<)

with A is a self-adjoint operator and € L*(RY) real-valued satisfyiny (x) = V(—x). As will appear in
the proof, more general interactions could be consideréukispirit of Theorem 1.1, but we prefer to stick
to the usual presentation for an example.

The next result concerns the limit of the von Neumann dynar(6®) in the mean field reginld — o
already studied in [10][9]. We shall see that although thdiglas are not assumed to be bosons, our
bosonic mean field result apply to this case due to the symyroéthe tensorized initial statpg@’\‘ .

Proposition 4.7 Let (pn(t)) denote the solution t¢69), and consider the trace class operam,&k) (t) €
ZLY(L2(R*)) defined by relation

VB e Z(L3(R), Tr [0,3'0 (t)B} —Tr [pN 1) (B® 'L2<Rd<w—k>>>} .

Then the convergence

lim ol = p(t)= (70)
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holds in.Z*(L2(R9)) for all t € R and wherp(t) solves the Hartree-von Neumann equation

igp(t) = [A+(Vxnpy)p(t)]
{ p(0) = po, a (1)

with ny(x,t) == p(Xx,t) .

Proof. The proof will be done in three steps: Bosonisation, Lidiasl and mean field limit.
Bosonization: The phase space that we will consider is not the one parﬁdeekz(IR{d) but

7 = L2 (LA(RY),
the space of Hilbert-Schmidt operatorsici{R?) . It is endowed with the inner product
(@1, wp) 7 = Trp2 (o] wy]

where Ty2[.] here denotes the trace bA(RY) andwj is the adjoint ofw, .
The cyclicity of the trace leads to

Trzpen |PN)(B& I 2panw)) | = (PN(L), (B& 1 2pan-1)) PN (L)) zon (72)

with Wy(t) = e N /pg?Neltiin
The important pointis that at tinte= 0, Wy (0) = \/m‘@"' ,is a Hermite state ilyN 2 and that the evolution
preserves this symmetry so that

VteR, Wyit)e\/NZ, wn0)=p™.

With any bounded operatd@: L?(R9) — L?(RY), the action by left (resp. right) multiplication is defined
by
Lg (respRe):\/*2 — \/*&
W~ ABwW), (resp.Z(w® B)),

where.% is the orthogonal projection fromk% onto VAl Since(w?) ye # is a total family in\/kf
this defines a bounded operaltgre .,iﬁ(\/k %) (resp.Rs € .,iﬁ(vk %)) suchthatf =Lgp: (resp.R;=Rs+).
WhenB(xq,...,%,VY1,.-,Yk) is the Schwartz kernel @& € .Z(L?(R%)), Lg (resp. Rg) is the left (resp.
right) multiplication by the operator with kernel

1
W > BXo(1) - Xa(k)»Yo(1)- - Yok)-

t0e6y

Hence the trace (72) equals

TriL2yen [PN(I)(B@) |L2(Rd(N—k))):| = (YN (t),L[B®|®(N—k)]LPN (t)>\/N3[v.
With an operatoB € .Z(L%(R%)), we can now associate a symbol

bB(w) = <w®k, LBw®k>vk@ = TF(L2>®k [(O)*)‘@ka@k} S gak’k(ff).
Sincel g, -k is nothing butLg VI n-k ,» We get

(N —K)!
NIk

| 1
(WN(t) bR WN ) s =

Tri2)en [PN (t)(B®|L2(Rd(N—k))):| = N

Liouvillian: Let us now determine the appropriate Hamiltonkdg of this problem which is actually a

Liouvillian. The map , .
RSt e—ltAwenA
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defines a continuous unitary group éfiwith a self-adjoint generator
LA Y — %
w — [Auwl.
The interaction is a bounded self-adjoint oper&oly/ 22 — \/ 2% givenbyQ = 3(Lv —R/) € Z (V2 2)

and we associate the symi@lw) = (w®2, Qw®?) . For anyw € Z the kernel 0ofQw®2 € \/2 % is given
by

~ 1 1
(Q™?) (X1, Y1; X2, Y2) = EV(Xl —X2) (X1, Y1) W(X2,Y2) — EV (Y1 —Y2) (X1, Y1) W(X2,Y2) -
After introducing the Hamiltonian '
Hg — dr (SA) _|_ QWICk7
acting as a self-adjoint operator 6g(%), we get foro € \V N2 N 2(dr (£a)),
£ H,0=[HN,0] with &=1/N.
This implies _ _ .
LPN(t) _ e—ltHN (\/m)@NeltHN — e—l%H;,(\/m)@N c \/ N&w.

Mean field limit: The initial datgps (0) = |/po"")(/Po" | is a Hermite state which fulfills the assump-
tions of Theorem 1.1 with
Sl
Ho = 6\/;70 .
The classical energy associated with the Hamiltoilats

1
h(w) = (@, £AW) > + E<w®2, (Lv —R/)w®2) »
and the mean field flow; is nothing but the one given by
idw=dgh(w) = [A W+ (Vsnl) w—w(Vnd),

whereV «ni, are multiplication operators anf,(x) = [pa |W(X,Y)[?dy, n%,(y) = [za |@(X,y)[*dX when
w(x,y) denotes the kernel ab. Beside the invarianc(w)|» = |w|» and Fi(e ?w) = e 19F(w),
the flowF; also satisfies

Thus previous equation becomes equivalent to the HarwaeNeumann equation (71) wigh(t) = w(t)?
whenw(0) = /po. The Theorem 1.1 says

. i 1
Vbe (%), I\IllianrVN ¥ [|LIJN(t)><LPN(t)|bWI0k} _ /; b(ca) 5\5/’3_0 =b(\/p(t)).
In particular wherB € .Z(L2(RYK)), this implies

l\|liLno°Tr |:pN(t)(B®|L2<Rd(N—k)>):| = Tri2(rak) {P(t)®k8} .

This proves the weak convergence in (70), but since it is eoredd with non negative trace class operator
and Tr[o,(qk) (t)} =1="Tr [p(t)®X] the convergence holds in tt&*-norm. O

We end with three remarks:
e Whenp is a pure state, the result of Proposition 4.7 is the same&s (5

e Whenp is not a pure state the Subsection 4.3 has already shown nieahas to be very care-
ful with tensor products. Actuallp®N € #*(@N 2) commutes with the symmetrization projec-
tion A (or the antisymmetrization#y for fermions) but the corresponding states,ﬁﬁl(\/N )
(resp.ZY(A\N %)) are

NPNA (resp.aip®N ).

But as shows the formula Ts(0)] = Mrco(p) =5 (r€SP. T a(p)] = Maco(p) Tox)- the trace

of APEN.A (resp. op®Nay) converges to 0 abl — . We leave for subsequent works, the
guestion whether normalizing these states would lead tedhee asymptotics as in Proposition 4.7.
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e We recall that a tensorization based on the tensor decotiposf Fock spaces in Subsection 4.3 led
to the evolution of Wigner measures which cannot be tragdlat terms of Hartree-von Neumann
equations.

Acknowledgements:This work was finished while the second author had a CNRSetadalh semester in
Ecole Polytechnique.
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