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Abstract. A Bernoulli free boundary problem with geometrical consttais studied. The domaif?
is constrained to lie in the half space determinedchy> 0 and its boundary to contain a segment of the
hyperplane{z; = 0} where non-homogeneous Dirichlet conditions are imposee.ak¥ then looking for
the solution of a partial differential equation satisfyiadDirichlet and a Neumann boundary condition si-
multaneously on the free boundary. The existence and umégseof a solution have already been addressed
and this paper is devoted first to the study of geometric apchpiotic properties of the solution and then
to the numerical treatment of the problem using a shape @attian formulation. The major difficulty and
originality of this paper lies in the treatment of the geomngeatonstraints.
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1 Introduction

Let (0,1, ..., zx) be a system of Cartesian coordinate®Rit with N > 2. We setRY = {R”" : z; > 0}.
Let K be a smooth, bounded and convex set suchihitincluded in the hyperplangr; = 0}. We define
a set ofadmissible shape® as

O = {Q open and convexs’ C 0Q}.



Figure 1: The domaif in dimension two.

We are looking for a domaif2 € O, and for a functior. : 2 — R such that the following over-determined
system

(1) ~Au=0 inQ,

(2) u=1 onk,

3 u=0 ondN\ K,

(4) [Vul| =1 onT :=(0Q\ K)NRY

has a solution; see Figule 1 for a description of the geometgblem [[IL){() is dree boundary problern
the sense that it admits a solution only for particular geoegof the domairf. The sefl” is the so-called
free boundarywe are looking for. Therefore, the problem is formulated as

(5) (F) : FindQ € O such that problen{1) @) has a solution.

This problem arises from various areas, for instance shppmiaation, fluid dynamics, electrochemistry
and electromagnetics, as explainedin [11] £. B, 10]. Folicgtipns in NV diffusion, we refer to[[26] and for
the deformation plasticity sef][2].

For our purposes it is convenient to introduce thelset (092 \ K) N {z; = 0}. Problems of the type
(F) may or may not, in general, have solutions, but it was alrgadyed in [2}] that there exists a unique
solution to(F) in the class). Further we will denoté€* this solution. In addition, it is shown ifi [R4] that
00* is C?*+e for any0 < a < 1, that the free bounda§Q* \ K meets the fixed boundary tangentially
and thatL* = (0Q* \ K) N {xz; = 0} is not empty.

In the literature, much attention has been devoted to thedd#r problem in the geometric configura-
tion where the boundar§$? is composed of two connected components and sucl}limtonnected, (for
instance for a ring-shaped), or for a finite union of such domains; we refer [ [B, 9] foremiew of theo-
retical results and tq[4, 1 8,]14,]19] 22] for a descriptioseferal numerical methods for these problems. In



this configuration, one distinguishes the interior Berfiguubblem where the additional boundary condition
similar to (4) is on the inner boundary, from the exterior iailli problem where the additional boundary
condition is on the outer boundary. In the problem studiethis paperp<) has one connected component
and(2 is simply connected.

In comparison, probleriF) presents several additional difficulties, both from thete&cal and numer-
ical point of view. The difficulties here stem from the pautar geometric setting. Indeed, the constraint
Q c RY is such that the hyperplangr; = 0} behaves like an obstacle for the doméirand the free
boundarydQ \ K. Itis clear from the results il [R4] that this constraint vié active as the optimal set
L* = (0Q* \ K) N {x; = 0} is not empty. This type of constraint is difficult to deal withshape op-
timization and there has been very few attempts at solviegetproblems. From the theoretical point of
view, the difficulties are apparent i ]24], but a proof teigue used for the standard Bernoulli problem may
be adapted to our particular setup. Indeed, a Beurlinglsnigoe and a Perron argument were used, in the
same way as inf[14, [L7,]18]. To be more precisedgtc O be the class of smooth, bounded and convex
domains inR” such that/ belongs to the boundary of the domain. Fdre O,, we denote by, the
function fulfilling

—Au; =0 inQ,
up =1 onk,
up =0 ondQ\ K.

Let us introduce the following classes of domains

A = {QE(’)S: liminf |Vui(y)| > I,VxeaﬁﬂRf} ,

y—x TS

Ag = {Qe@s: lim sup |Vu1(y)|>1,V:U€89\K},

y—x z€N

B = {QEOS: lim sup |Vu1(y)|§1,V:U€39\K}.

y—x zeN

It has been proved i [R4] thad N B # (), and thus that there exists a dom&irsuch thafVu;| = 1 onT'
in addition to the Dirichlet boundary condition. Neverimsd, the proof of the existence and uniqueness of
the free boundary is mainly theoretical and no numericairdlyn may be deduced to construct

From the numerical point of view, several problems ariséwhbe discussed in the next sections. The
main issue is tha®(2 \ K is a free boundary but the sktis also a "free” set, in the sense that it is unknown
and should be obtained through the optimization processthier words, the interface betweérandI” has
to be determined and this creates a major difficulty for thmeical resolution.

Our approach to obtain an efficient numerical algorithm isde a penalization of one of the boundary
condition in (IL)-{#) and then to minimize a shape functicemin [1B[14[19] to determine the free bound-
ary. In order to deal with the problem of determining the Betve use another penalization of the partial
differential equation under consideration.



2 Shape sensitivity analysis

To solve the free boundary problef#’), we formulate it as a shape optimization problem, i.e. asrtim-
mization of a functional which depends on the geometry ofdibmains? C O. In this way we may study
the sensitivity with respect to perturbations of the shape @se it in a numerical algorithm. The shape
sensitivity analysis is also useful to study the dependafice* on the length ofi, and in particular to
derive the monotonicity of the domafer with respect to the length dt’.

The major difficulty in dealing with sets of shapes is thatytde not have a vector space structure. In
order to be able to define shape derivatives and study thdigign®f shape functionals, we need to con-
struct such a structure for the shape spaces. In the literahis is done by considering perturbations of an

initial domain; see[]6] 14, 27].

Therefore, essentially two types of domain perturbatiaescansidered in general. The first one is a
method of perturbation of the identity operatthe second one, theelocity or speed method based on
the deformation obtained by the flow of a velocity field. Theeghmethod is more general than the method
of perturbation of the identity operator, and the equivedehetween deformations obtained by a family of
transformations and deformations obtained by the flow afaigl field may be showr(Jd, 7]. The method
of perturbation of the identity operator is a particularckiof domain transformation, and in this paper the
main results will be given using a simplified speed method weipoint out that using one or the other is
rather a matter of preference as several classical texsbaoét authors rely on the method of perturbation
of the identity operator as well.

For the presentation of the speed method, we mainly rely erptesentations ir{][d, P7]. We also
restrict ourselves to shape perturbationsabgonomousrector fields, i.e. time-independent vector fields.
LetV : RN — R be an autonomous vector field. Assume that

(6) V e DFRY,RY) = {V e C*(RY,RY), V has compact suppdrt

with & > 0.
Forr > 0, we introduce a family of transformatiofi3(1")(X) = z(¢, X) as the solution to the ordinary
differential equation

dt

@ {ix(t,X) — VX)), 0<t<T
z(0,X) = X eRN.

For 7 sufficiently small, the systenf](7) has a unique solutjoh.[ZTie mappindl; allows to define a family
of domainsQ2, = T;(V')(€2) which may be used for the differentiation of the shape fumati. We refer to
(B, Chapter 7] and[[27, Theorem 2.16] for Theorems estallisthe regularity of transformatiorig.

It is assumed that the shape functiondl?) is well-defined for any measurable fetc RY. We
introduce the following notions of differentiability wittespect to the shape
Definition 1 (Eulerian semiderivative)LetV € D¥(RN, R™) with k£ > 0, the Eulerian semiderivative of

the shape functional (2) at €2 in the directionV” is defined as the limit

(8) dJ(V) = }i\i}% M

)
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when the limit exists and is finite.

Definition 2 (Shape Differentiability) The functionalJ(2) is shape differentiable (or differentiable for
simplicity) at2 if it has a Eulerian semiderivative &t in all directionsV and the map

9) Vs dJ(Q,V)

is linear and continuous fror®* (R, RY) into R. The map@) is then sometimes denot&d/($2) and
referred to as the shape gradient.bfand we have

(10) dJ(Q, V) - <VJ(Q), V>D_k(]RN,]RN),Dk (IRN,]RN)

When the data is smooth enough, i.e. when the boundary ofdiid {2 and the velocity fieldV’
are smooth enough (this will be specified later on), the sligsivative has a particular structure: it is
concentrated on the bounda®y2 and depends only on the normal component of the velocity fietoh the
boundaryof2. This result, often callegtructure theorenor Hadamard Formulais fundamental in shape
optimization and will be observed in Theor¢m 4.

3 Geometric properties and asymptotic behaviour

In shape optimization, once the existence and maybe unéggesf an optimal domain have been obtained,
an explicit representation of the domain, using a paranzetéwn for instance usually cannot be achieved,
except in some particular cases, for instance if the optitoaiain has a simple shape such as a ball, ellipse
or a regular polygon. On the other hand, it is usually posdibldetermine important geometric properties
of the optimum, such as symmetry, connectivity, convexityifistance. In this section we show first of all
that the optimal domain is symmetric with respect to the @edicular bissector of the segméiit using a
symmetrization argument. Then, we are interested in thenpstic behaviour of the solution as the length
of K goes to infinity. We are able to show that the optimal don§iris monotonically increasing for the
inclusion when the length ok increases, and th&t* converges, in a sense that will be given in Theorem
B. to the infinite strip0, 1) x R.

3.1 Symmetry

In this subsection, we derive a symmetry property of the freendary. The interest of such a remark is
intrinsic and appears useful from a numerical point of view, tfor instance to test the efficiency of the
chosen algorithm.

In the two-dimensional case, we have the following resultyshmetry:

Proposition 1. Let2* be the solution of the free boundary probléii}#). Assume, without loss of gener-
ality that (Oz1) is the perpendicular bissector & . Then,Q2* is symmetric with respect {@z1).

Proof. Like often, this proof is based on a symmetrization arguménnay be noticed that, according to
the result stated irf [24, Theorem 1] is the unique solution of the overdetermined optimizatiapbfem

(By) - minimize J(Q,u)
07"\ subjectto Qe O,ue H(Q),

where
H(Q)={uec H(Q),u=10onK,u=00ndQ\K and|Vu| = 10onT},

5



and
J(,u) = /Q V() 2dz.

From now on,Q* will denote the unique solution df3;), K being fixed. We denote b§ the Steiner
symmetrization of2 with respect to the hyperplang = 0, i.e.

-~

1 1
Q= {m = (2/,z2) such that— §]Q(x')] < a9 < E\Q(x’)],x' € Q'} ,

where
V' = {2/ € R such that there exists, with (z/, z5) € Q*}

and
Q(2') = {z2 € R such thata’, z5) € Q}, 2’ € Q.

By construction{) is symmetric with respect to th€x;) axis. Let us also introduce, defined by

@ : 2 € Q — sup{csuch that: € w/*(\c)},

~

wherew*(c) = {z € Q* : u(xz) > ¢}. Then, one may verify thai € H(Q2) and Polyd’s inequality (see
() yields )

J(Q,u) < J(QF u*).
Since(Q*, u*) is a minimizer ofJ and using the uniqueness of the solutior{/8§), we getQ* = €. O

Remark 1. This proof yields in addition that the direction of the noidmector at the intersection df and
(Owl) is (Owl)

3.2 Monotonicity

In this subsection, we show th&" is monotonically increasing for the inclusion when the kngf K
increases. For a given> 0, definek, = {0} x [—a,a]. Let (F,) denote problent.F) with K, instead of
K and denoté), andu, the corresponding solutions. We have the following resuith® monotonicity of
Q. with respect ta.

Theorem 1. Let0 < a < b, thenQ), C €.

Proof. According to [2}],(F,) has a solution for every > 0 anddf), is C?*,0 < a < 1. We argue by
contradiction, assuming th&, ¢ €2,. Introduce, fort > 1, the set

Q={reQ,: txreQ,}.

We also denote by; := {0} x [—ta,ta] andT; := 9\ (02 N (Ox2)). The domairt2, is obviously a
convex set included ife, for ¢ > 1. Now denote

tmin = inf{t >1,0; C Qb}

On one hand), C € is equivalent td,,,;, = 1. On the other hand, if2, ¢ Q,, thent,,;, > 1 and
for t large enough, we clearly ha¥e, c €, thereforet,,;, is finite. In addition, ifQ, ¢ , we have
Iy, . NIy # (. Now, choosey € ;. NTY%. Let us introduce

min min

ug, T € Q= Ug (bnin®).

min

6



Then,u; . verifies

—Autmm =0 in thm,
utmin - 1 on Ktmin’
ug,,., =0 only .
so that, in view ofQ; . C Q, andK;,, C K3, the maximum principle yields;, > v, , in € . .
Consequently, the functioh = u;, — w,,,, is harmonic inQ; . , and sincei(y) = 0, h reaches its lower
bound aty. Applying Hopf's lemma (se€[][7]) thus yield$,h(y) < 0 so that|Vuy(y)| > [V, (v)].
Hence,

which is absurd. Therefore we necessarily hgyg, = 1 and(), C €. O

3.3 Asymptotic behaviour

We may now use the symmetry property of the free boundarytaiothe asymptotic properties 9f, when
the length of K" goes to infinity, i.e. we are interested in the behaviour efftee boundary', asa — oo.
We actually show thaf', converges, in an appropriate sense, to the line parall&l,tand passing through
the point(1,0). Let us introduce the infinite open strip

S =]0,1[xR,

and the open, bounded rectangle
R(b) =]0,1[x] — b, b[C S.

Let
ug:r €S —1—x.

Observe that, sincg, is solution of the free boundary problef ({)-(4), the cufyen {—a < x5 < a} is
the graph of a concav@“ functionzs +— 1, (z2) on[—a, a]. We have the following result

Theorem 2. The domair2, converges to the stri in the sense that for all > 0, we have
(12) e — 1, uniformly in[—b, b], asa — +oo.
We also have the convergence
ug — ug in HY(R(b)) asa — oo,
for the solutionu,, of ({I})-(@).

Proof. Let us introduce the function
va (1) = ug(z1,0).

According to [Ib, Proposition 5.4.12], we have for a domiof classC? andu : Q — R of classC?
(12) Au = Aru + Hou + 9%,
whereAru denotes the Laplace-Beltrami operator. Applying formfi2) in the domains

wq(c) == {z € Qq,uq(z) > ¢},

7



we getAru, = 0 ondw,(c), Au, = 0 due to [1) and thus
(13) OPug = —HaOpuq  ONAw,(c),

wheren is the outer unit normal vector to,(c) and#,(z) denotes here the curvaturea@b,(c) at a point
x € dwg(c). Thanks to the symmetry 61, with respect to the:; -axis, we haved,,u,(z1,0) = v/ (x1) and
O2uq(21,0) = v (x1) for z; > 0. According to [2B], the sets,(c) are convex. Thereforg(, is positive
0N dw,(c) andw, (1) is non-increasing. Thus

(14) ?)Z(I‘l) = _,Ha(wlvo)véu(wl) >0,

which means that,, is convex. Letn, be such thaf’, N (R x {0}) = (m,,0), i.e. the first coordinate of
the intersection of the-axis and the free boundaty,. The functionv, satisfies

(15) —vl(x1) <0 forxy €]0,my],
(16) val0) = 1,

) va(ma) = 0,

as) oy ma) = 1.

In view of [I3),v, is convex on0, m,]. Sincev,(0) = 1 anduv,(m,) = 0, then

Z1
Vg(x1) <1— .

Furthermoreyn, < 1, otherwise, due to the convexity of, the Neumann conditiorﬂllS) would not be

satisfied. Sinc€), is convex, this proves th&l, C S and that, is bounded.

Moreover, from Theorer] 1, the map— ©, is nondecreasing with respect to the inclusion. It follohatt

the sequencém,,) is nondecreasing and bounded sifi;eC S. Hence,(m,) converges ton., < 1.

Let us define

The previous remarks ensure that for every 0, v, < .
Let D(a) be the line containing the poin{®), a) and (¢, (b),b) and 7T (a) the line tangent td’, at
(14(b),b). Letsp(a) ands7(a) denote the slopes @(a) and7 (a), respectively. For a fixetl € (0,a),

we have
b—a

~ Pa(b)

since0 < v, < 1. Due to the convexity of2,, we also have(a) < sp(a). Therefore

sp(a) — —00  asa — oo,

st(a) - —oc0 asa — oo.

Thus, the slopes of the tangentslipgo to infinity in 2, N R(b). Furthermore, due to the concavity of the
function,, we get, by construction d(a),

%(a — x2) < Ya(x2) < Moo, Ya > 0, Yag € [—b, b].
Hence, we obtain the pointwise convergence result:

(19) lim ¢a($2) = Meo, \V/iEQ € [—b’ b]a

a——+400



which proves the uniform convergencewf to m., asa — +oo.

From now on, with a slight misuse of notatiom, will also denote its extension by zero to all 6f
Finally, let us prove the convergence

Ug = Uso 1N HY(Ruo (D)), asa — oo,
where R (b) denotes the rectangle whose edges are:= {0} x [—b,b], X2 = [0, m] X {b}, X3 =
{moo} x [=b,b] andXy = [0, moo| x {—b}.

According to the zero Dirichlet conditions & and using Poincaré’s inequality, proving tHé-convergence
is equivalent to show that

(20) / |V (ug — uso)|* = 0 asa — oo.
Roo(b)

For our purposes, we introduce the cuﬁ)@(a) described by the pointX, ; solutions of the following
ordinary differential equation

@) { ot (1) = Vug(Xap(®)), 10,

dt
Xa,b(o) = (07 b)

The curveX,(a) is naturally extended along its tangent outsidegf $,(a) can be seen as the curve
originating at the point0, b) and perpendicular to the level set curvesf We also introduce the curve
334(a), symmetric to3;(a) with respect to ther;-axis. X4(a) is obviously the set of point¥, , solutions
of the following ordinary differential equation

(22) dt

{ DYab () = Gug(Yan(t)), ¢ 0,
Yap(0) = (0, -b).

Then the sef)(b) is defined as the region delimited by thg-axis on the left, the line parallel to the-axis
and passing through the poifit., 0) on the right and the curves;(a) andX4(a) at the top and bottom.
We also introduce the s&k;(a) := Q(b) N ({ms} x R). See Figurg]2 for a description of the sés (b)

andQ(b).

SinceR(b) C Q(b), we have

/ 1V (10 — o) ? < / 1V (10 — 0)
Roo (D) Q)

Using Green’s formula, we get

/ 1V (e — une)? = / 1V (10 — o) + / 1V (1t — 1100) 2
Q(b) Q(b)NQ Q()\Qaq

= —/ (Ug — Uoo)A(Ug — Uso) — / (Ug — Uoo) A(Ug — Uso)
Q)N Q()\Qa

—|—/ (Ug — Uoo )0y (Ug — Uso) + Z/ (Ug — Uoo ) Op+ (Ug — Uso),
aQ(b) T «NQ(b)

9



T2 i

31— .\E

24

S4(a)

Figure 2: The set®..(b) andQ(b).

wherer denotes the outer normal vector@gb) on the boundaryQ(b), n is the outer normal vector tQ,,

on the boundary', ando,,+ is the normal derivative ofi, in the exterior or interior direction, the positive
sign denoting the exterior direction fo,. The functionsu, andu., are harmonic, and using the various
boundary conditions fot, andu., we get

IV (1 — tog)|? :/~  (ug = Uoo) Oy (Ug — Uso) +/ Uoo-
Y2 (a)UXy4(a)

Q(b) T'aNQ(b)

According to [1P) and using., = 0 on X3, we get

b
/ Uso = / Uoo (Vo (22))V/ 1 4+ ¢ (x2)2dzy — 0 asa — oo,
TaNQ(b) —b
where we have also used the fact thigfx2) — 0 for all 2 € [—b, b]. The limit functionu., depends only
on z1, thus we havé,u., = 0 on Xy U X4. Denote nOWzZa : [0,ms] — R the graph oﬁg(a) (which
implies that—{Ea is the graph 0@4(@)). The slope of the tangents to the level setsptonverge to—oco
asa — oo in a similar way as fol,, therefored,, u, (1, (1)) converges uniformly t in [0, m.] as
a — oo, and in view of [21) we have that, — b uniformly in [0, m..] and since(uq — uso) is uniformly
bounded i}, we have

(23) /~  (ug — Uso) Oyl — 0 @Sa — 0.
Ya(a)UXy4(a)

In view of the definition ofQQ(b), the outer normal vectar to Q(b) at a given point oy (a) U $4(a)
is colinear with the tangent vector to the level set curvélgfpassing though the same point. Therefore

10



dyuq = 0 0n3y(a) U L4(a) and we obtain finally
(24) 0< / |V (g — uso)|? < / V(g — uso)|> = 0 asa — occ.
oo (b) Q(b)

The end of the proof consists in proving that, = 1. Let us introduce the test functiap as the
solution of the partial differential equation

{ —Ap=0 inQ(b)

(25) ©=0 onY; U Ss(a) U Ss(a)

p=1 onXs(a).

It can be noticed thap € H'(R4(b)).
Using Green’s formula and the same notations as previowslyget

V(ug —uso) - Vo = / V(ug — o) -Vgo—i—/ V(g — uso) - Vo
Q(b)NQq Q(b)\Qa

= _/ @A(ua - uoo) - / @A(ua - uoo)
Q)N Q)24

+/ Spav(ua - uoo) + / Spani (ua - uoo)
0Q(b) Z

— /~ 90y (ug — uso) + /~ 0O (Ug — Uso) — / ©
$a(a)US4 (a) S3(a) TNQ(b)

_ / jL_/ o
3(a) Moo TaNQ(b)

According to [1P), and since we deduce frdm| (24) that

Q(b)

V(ug — ) - Vo — 0 asa — oo,

Q(b)
we get
j;_/’@za

3 Moo 3
which leads to )

<_ - 1) S5 = 0.

Moo

In other wordsyn., = 1, which ends the proof. O

4 A penalization approach

4.1 Shape optimization problems

From now on we will assume tha{ = 2, i.e. we solve the problem in the plane. The problemNor> 2
may be treated with the same technique, but the numericdkimgntation becomes tedious. A classical

11



approach to solve the free boundary problem is to penalizeafrihe boundary conditions in the over-
determined systen](1)}(4) within a shape optimization aggih to find the free boundary. For instance one
may consider the well-posed problem

(26) “Au; =0 inQ,
(27) uy=1 onk,
(28) up =0 ond\ K.

and enforce the second boundary conditidn (4) by solvingtbblem

| minimize J(Q2)
(29) (Bu): { subjectto Q € O,

with the functionalJ defined by
(30) J(Q) = / (Opuq + 1) dr.
r

Indeed, using the maximum principle, one sees immedidtalyu; > 0 in  and sincer; = 00ndN \ K,
we obtaind,u; < 00ndN\ K. Thus|Vu;| = —0,u; ondN \ K and the additional boundary condition
@) is equivalent ta),u; = —1 onT. Hence, [(J0) corresponds to a penalization of conditibn @ one
hand, if we denote:} the unique solution of[1)F{4) associated to the optimal®etve have

J(Q") =0

so that the minimization problenp (29) has a solution. On thehand, if7(Q*) = 0, then|Vu}| = 1 on
I" and therefore:} is solution of [1){}#). ThugF) and(3;) are equivalent.

Another possibility is to penalize boundary conditigh (@3tead of [(4) as i;), in which case we
consider the problem

(31) _AUQ =0 in Q,
(32) uo =1 onk,
(33) us =0 onL,
(34) Opus = —1 onT,

and the shape optimization problem is

(By) { minimize J(Q)

(35) subjectto Q € O,

with the functional.J defined by
(36) J(Q) = / (ug)?dl.
r
Although the two approachdg$3;) and (B,) are completely satisfying from a theoretical point of viei,

is numerically easier to minimize a domain integral rathemta boundary integral as i [30) arjd](36).
Therefore, a third classical approach is to solve

| minimize J(Q2)
(37) (Bs) { subjectto Q € O,

12



Figure 3: Polar coordinates with origify;, and such tha#; = 0 corresponds to the semi-axis tangenf'to

with the functionalJ defined by

(38) J(Q) = /Q (uy — ug)?.

For the standard Bernoulli problemi§ [3, 9], solvi(i§;) is an excellent approach as demonstrated ih [13,
@,]. However, we are still not quite satisfied with it imr@ase. Indeed, it is well-known that due to the
jump in boundary conditions at the interface betwdeandT in (83)-(34%), the solution:, has a singular
behaviour in the neighbourhood of this interface. To be npoeeise, let us define the points

{Al, A2} = fﬂf,

and the polar coordinates;, 6;) with origin the pointsA4;, : = 1,2, and such thaf; = 0 corresponds to
the semi-axis tangent tb; see Figurd]3 for an illustration. Then, in the neighbouthob A4;, u, has a
singularity of the type

Si(’l“i, 91) = C(AZ)\/TTZ COS(QZ‘/2),
wherec(4;) is the so-calledtress intensity factaisee e.g.[[17, 21)).

These singularities are problematic for two reasons. Thedifficulty is numerical: these singularities
may produce inacurracies when computing the solution meapoints{ 4, A2}, unless the proper numer-
ical setting is used. It also possibly produces non-smoetbrthations of the shape, which might create in
turn undesired angles in the shape during the optimizationgalure. The second difficulty is theoretical:
sincel is a free boundary with the constraintc ]RiV , the points{ 4;, As} are also "free points”, i.e. their
optimal position is unknown in the same waylags unknown. This means that the sensitivity with respect
to those points has to be studied, which is doable but tedaitiough interesting. The main ingredient in
the computation of the shape sensitivity with respect tsghmints is the evaluation of the stress intensity
factorsc(A;).

4.2 Penalization of the partial differential equation

In order to deal with the aforementionned issue, we intredufourth approach, based on the penalization
of the jump in the boundary conditions [33){(34) fos. Lete > 0 be a small real parameter, and let
. € C(RT,R™) be a decreasing penalization function such that> 0, 1. has compact suppoit, -],
and with the properties

(39) B: — 0ase — 0,
(40) e (0) = 0o ase — 0,
(42) Ye(x1) > 0ase — 0, Vx> 0.

13



A simple example of such function is given by
(42) Yo (1) = e L (max(1 — e %1, 0)) g+,

with ¢ > 0. Note thaty. is decreasing, has compact support and verifies assumBahf4]1), with
. = 4. We will see in Propositiofi 2 that the choicewf is conditioned by the shape of the domain. Then
we consider the problem with Robin boundary conditions

(43) —Aulg =0 in Q,
(44) uze =1 ONnkK,
(45) 8nu2,€ + 1,[)5(561)2@75 =—-1 onof \ K.

The functionus . is a penalization ofi; in the sense thaty . — us ase — 0in HY(Q) if 1. is properly
chosen. The following Proposition ensures fi&-convergence ofi, . to the desired function. It may be
noticed that an explicit choice of functiaf. providing the convergence is given in the statement of this
Proposition.

Proposition 2. LetQ be an open bounded domain. Thendergiven by(42), there exists a unique solution

to (B3)-(B3) which satisfies
(46) Uz — ug in H(Q) ase — 0.

Proof. In the sequel¢ will denote a generic positive constant which may changeatse throughout the
proof and does not depend on the parameter
We shall prove that the difference
Ve = U2 — U2

converges to zero i/ }(£2). The remainder; satisfies, according t¢ (31)-{34) arjd](4B)}(45)

(47) —Av. =0 inQ,
(48) ve =0 oOnK,
(49) Onve + 1 (0)v. =14 dpus oONL,
(50) OnVe + Ve(71)ve = Ye(w1)uz  ONT.

Multiplying by v. on both sides of{(47), integrating éhand using Green’s formula, we end up with

(51) /Q Vel + /8 (e = /F Grusvs + /L (1 + B,uz)ve.

Sincev. = 0 on K we may apply Poincaré’s Theorem afd| (51) implies

(52) VH%H%{I(Q) <c (||71Z)6U2HL2(F)HUEHL?(F) + [T+ anu2HL2(L)||Us||L2‘(L)) )

According to the trace Theorem and Sobolev’s imbedding Tdmapwe have

lvell2ry < ellvell gz < cllvellm @),

[vellzery < ellvellgrrz(ry < ellvellmra)-

14



A; I
Figure 4:T is locally the graph of a convex function, with a tangent t:th-axis.

Hence, according td (52), we get
(53) Vel () < elleuallpzry + clll + Onuallr2(r)

Now we prove that|i.ua|| 2y — 0 ase — 0. We may assume that the system of cartesian coordinates
(O, x1,x2) is such that the origi® is one of the points!; or As and thaf" is locally above the:; -axis; see
Figure[4. Since is convex, there exist > 0 and two constants > 0 and 3 such that for alk:; € (0, 6),

I" is the graph of a convex functiofi of ;. For our choice of)., since supp). = [0, 5], we have the
estimate

Jeualfagr = [ (eu)®
<¢€ / u2 \/1—|—f/ 561 dwl

According to [1R,[21] and our previous remarks in secfiory & haveu, = /7 cos(0/2) + s, With
use € H?(Q), and(r,0) are the polar coordinates defined previously with originThus there exists a
constant: such that

lua| < cv/7cos(6/2)

in a neighborhood 06 with § € (0,7/2). Indeed,u,, is H? thereforeC! in a neighborhood of 0 and
then has an expansion of the form., = c,r + o(r), asr — 0. Note thatr = +/z} + 23 and thus

r=+/x? + f(z1)?2 onT. Then
Be 1/2
Jocvaliay < evl0) ([ (Feos(O/2)PVTT T

a0 | i e ) i) "
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The functionf is convex andf(0) = 0, thus f’ > 0 for ¢ small enough. Since the bounddrys tangent to
the (Ox9) axis, we have

f'(x1) — oo aszy; — 07,
r1 = o(f(z1)) asx; — 07.

Thus, fore > 0 small enough

1/2

[beuzl| L2y < cpe(0 ( OBE f(@1)f' (@1 dw1>
< ey (0) (£(8.)* )”2 = c-(0) f(8.)-
Sincef(xz1) — 0 asz; — 0, we may choos@.(0) andj. in order to obtain). (0) f(5.) — 0 ase — 0 and
(54) [eualz2qy = 0  ase — 0.

Then, in view of [5B), we may deduce that. || ;1 (@) Is bounded for the appropriate choiceiaf. Conse-
quently, ||v. || ,2(r) and||vz || 121,y are also bounded. Usinfy {51), we may also write

DOl lay = [ 0% < [ @,

(55) < [[YeuallLzllvell L2y + 11 + Onuzll 2z l|vell 2z
Sincey.(0) — oo ase — 0 and all terms in[(§5) are bounded, we necessarily have
||v€||L2(L) — 0ass — 0.
Finally going back to[(§2) and using the previous resultspi@in
HvEHHl(Q) — 0ase — 0,
and this provesi . — ug ase — 0, in H(1Q). O

The following theorem gives a mathematical justificatiorttef numerical scheme implemented in sec-
tion [§ to find the solution of the free Bernoulli problef#’), based on the use of a penalized functional
defined by

(56) J(Q) = /Q (ug,e —u1)?,

whereu; is the solution of[(26){(38) and, - is the solution of[(43){(45).

Theorem 3. One has
lim inf J.(Q) = inf J(Q) =
e—0Q€e0 Qeo
Proof. The main ingredient of this proof is the result stated in Beifon[2. Indeed, this proposition yields
in particular the convergence @f . to uy in L2((2), whenQ is a fixed element of. It follows immediately
that
J:(Q) — J(2), ase — 0.
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Let us denote by2* he solution of the free Bernoulli proble(d). Then, we obviously have
i < ).
Jnf Jo(2) < Je(27)

Then, going to the limit as — 0 yields

< T i <1 X _ X _
0< ili%égfol]g(Q) < ;g%l]g(Q )=J(Q) =0.

O

Remark 2. Theoren{]3 does not imply the existence of solutions for thielgminf{.J.(Q2),2 € O} and
the following questions remain open: (i) existence of a miner 2 for this problem, (ii) compactness of
() for an appropriate topology of domains. These problems apg#ficult since to solve it, we probably
need to establish a Sverak-like theorem for the Laplaciah Robin boundary conditions and some counter
examples (see e.d][5]) suggest that this is in general et tr

Nevertheless, if (i) and (ii) are true, Theordin 3 implies toavergence as — 0, of Q} to Q*, the
solution of (l)-(@).

5 Shape derivative for the penalized Bernoulli problem

In order to stay in the class of domai@s the speed” should satisfy

(57) V(z)=0 VzekK,
(58) V(z) -n(z) <0 Vzel.

Condition {5F) will be taken into account in the algorithmgdg(s8) will be guaranteed by our optimization
algorithm. We have the following result for the shape deiwead J. (2; V') of J.(£2)

Theorem 4. The shape derivativéJ.(2; V') of J. at 2 in the directionV is given by
dJ.(;V) = / (Vp1 - Vur + Vpo - Vg + poH + (ug — use)?) V- ndl,
r
+ [ (V01 Vir = Vi Vus )V
L

where?{ is the mean curvature af andp,, p, are given by(E8)-(69) and (79)-({72), respectively.
Proof. According to [§[1p[ 37], the shape derivative.bfis given by

(59) dJ.(; V) = / 2(uy — ug)(u) — u'gg) +/ (up — u275)2V -n,
Q o0
whereu) andus, . are the so-calledhape derivativesf u; andus, respectively, and solve
(60) AU, =0 inQ,
(61) uy =0 onk,
(62) uy = —0,u1V-n ondN\ K,

17



63) ~Au,.=0 inQ,
( 2,

(64) up, =0 onk,
(65) u’2,€ = —0Opuz.V -n onlL,
8nu'27€ + 1/151/275 =divr(V - nVrua,)
(66) ~HV -n —OpuzV -n onT,

where#H denotes the mean curvaturelgfandVr is the tangential gradient dndefined by
Vru = Vu — (Opu)n.

Note thatu andu’% both vanish on¥, indeed,X is fixed due to@?) which follows from the definition of
our problem and of the clag3. Further we will also need

(67) Onusy . = divp(V - nVrug.) —HV -n onT,
which is obtained in the same way @s](66). We introduce thairstidjtates; andps

(68) —Apl = 2(’LL1 — u278) in Q,
(69) p1=0 onoQ,

(70) —Apz = 2(u1 — u27€) in Q,
(72) po=0 onLUK,

(72) Onp2 =0 onT.

Note thatp; andp, actually depend on although this is not apparent in the notation for the sakeaf+
ability. Using the adjoint states, we are able to compute

/2(u1—u275)u'1 = /—Aplull
Q Q
= /—Aulﬂ?l —/ Onpruy — p10nus
Q [e]9)
- —/ 311101“,1
A\ K

= / 8np16nu1V - Nn.
OO\K

Observing thaWp; = 9, p1n andVu; = d,uin ondN \ K due to [2B) and ($9) we obtain

(73) / 2(uy — ug e )ufde = / Vp1 - Vu V- n.
Q ONK

For the other domain integral ifi (59) we get

/2(101—“2,5)“'2,5 = /_ApQU/Q,a
Q Q

- / A pa - / (Bupatdy, — padutd).
Q o0
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At this point we make use of (63)-(67) and we get

/ 2(uy — u2,€)u/2,€ = /pg(din(V -nVruge) —HV -n)dl + / Onp20pua .V -ndL.
Q I L

Applying classical tangential calculus to the above eguafsee [27, Proposition 2.57] for instance) we
have

/ 2(uy — u27€)u'2’8 = - /(Vppg -Vrug eV -n —poHV - n)dl + / Onp20puaV -n dL
Q r L

= - /(Vpg -VugV -n —paHV - n)dl' + / Vpa - Vuy V- ndL,
r L

and the proof is complete. O

6 Numerical scheme

6.1 Parameterization versus level set method

For the numerical realization of shape optimization protdethe main issue is the representation of the
moving shapé&). Several different techniques are available: for our psepthe most appropriate methods
would beparameterizatiorand thelevel set methadin the parameterization method for two-dimensional
problems, curves are typically represented as splines diyecontrol points;, = (£1x,$2%), K = 0,..,m
with m € IN*. The coordinates of these control points then become theesthesign variables. In the level
set method, the boundary of the domainHf is implicitely given by the zero level set of a function in
RN*L, Parameterization methods are the easiest to implememe ifopology of the domaif2 does not
change in the course of iterations, whereas the level sétadé$ more technical to implement but thanks to
the implicit representation, it allows to handle easilydimgical changes of the domain, such as the creation
of holes or the merging of two connected components.

For instance, in[[4, 22], the level set method is used to sBamoulli free boundary problem where the
number of connected components is not known beforehandurloase, we are solving the free boundary
problem(F) in the clas0D of convex domains, thus the domains only have one conneoreganent and
the topology is known. In this case it is better to opt for tlaegmeterization method which is easier to
implement and lighter in terms of computations.

The free boundary' C 012 is represented with the help of a Bezier curve of degrnee IN*. Let

2(s) = (21(s),22(5)), s €[0,1]

be a parametric representation of the open cliread let

Ek = (El,kvglk)? k= 07 - M

be a set oin + 1 control points such that the parameterizatiod cfatisfies
(74) 2(s) = (@1(s),22(5)) = Y _ Brom(5)ék,
k=0
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where

(75) Bn(s) = (1} ) st = sy,

and (') are the binomial coefficients. The geometric features sscthe unit tangent (s), unit normal
n(s) and curvaturé{(s) are easily obtained from the representation (74). Indeedave

(76) 7(s) = 2'(s)/]2' (s)];

with

(77) '(s) =Y Bl ()
k=0

The coefficients3;  (s) are derived from[(75)

m — m— m—k—
(78) B,’am(s) = <k:> [k:sk Y1 —s) k]l{kzl} + (k- m)sk(l —s) k 1]1{k§m,1} )
Sincen(s) - 7(s) = 0, we deduce the expression for the unit norm@i)

_ ZLO Bllc,m(s)fli_
ZZLZO Bllﬁ,m(s)gli_

(79) n(s)

with & == (&, —&1.%)- The curvaturéi(s) is obtained with the help of formula
(80) 7'(s) = H(s)n(s).

Thus we take

(81) H(s) = 7'(s) - n(s).

Remark 3. According to([78), (77) and (8), we obtain

_ &% _ S —&m
&1 — &o|’ |&m — Em—1]

Thus, in order to create a curve which is tangent to the &xis= 0}, we need to takéy, & and§,,—1,&m
on{z; = 0}.

(82) 7(0)

(1)

6.2 Algorithm

For the numerical algorithm we use a gradient projectionhagtin order to deal with the geometric con-
straintQ) C ]Rﬂf : see the textbooks [PD,]25] for details on the method. A gmiufor dealing with the shape
optimization problems with a convexity constraint is tograeterize the boundary using a support function
w. If one uses a polar coordinates representatiofl) for the domains, namely

Q= {(r,&) €[0,00) x R;r < ﬁ},
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wherew is a positive an@r-periodic function, the2,, is convex if and only ifw” + w > 0; see [2B] for
details. However, in our case, the convexity constrainff@ not implemented (i.e. we relax this constraint)
for the sake of simplicity, but the convexity property is ebgd at every iteration and in particular for the
optimal domain if the initial domain is convex. Moreover,etiiem 6.6.2 of[[15] may be easily generalized
in our case and guarantees the convexity of the solution effrie boundary problemiF) even if the
convexity hypothesis were not contained in the@et

We will denote by a superscriggt) an object at iteratioh. The algorithm is as follows: we are looking
for an update of the design varialgg of the type

(83) & = P& + adg)),

whereP stands for the projection on the set of constraints@aisthe steplength which has to be determined
by an appropriate linesearch. In our case, the constrafditisR Y, which implies the constraint

(84) z1(s) >0, Vsel0,1].

In view of (74), it is difficult to directly interpret the cotraint (84) for individual control points;. We
choose therefore to impose the stronger constraint

(85) €16 >0, Vke{l,.,m}.

for the control points. Constrairft (85) is stronger thiarj) (8#eed, on one hand there might exigy,auch
that¢&; , < 0 while ([B4) is still satisfied, but on the other hand, condit{@3) implies [84). However, in
our case, the tipg(0) andz(1) of I are moving and the constraint should not be active for thatpaf
I" on the optimal domain. WitH (B5) we only guarantee that th@aia stays feasible, i.€2 ]Rf for all
iterates. In view of Remar|H 3, we also impose

&o0=681=6m1=m=0

in order to preserve the tangent to the akis = 0} at the tips ofl". Therefore, fork = 0,..,m, 5,2” is
updated using,

(86) et = max (¢fY) + aagf}, 0),
®7) s = s ady,

(88) dell} = def) =0,

(89) dell), | = def), =0.

The link between the perturbation fieldand the step¢;, is directly established using) {74), and we obtain
(90) V(x(s)) =Y Brml(s)d.
k=0

Thus, with a shape derivative given by

(91) dJ. (V) = - VJe(z)V(z) - n(z)dl(z)
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as in Theorenh]4, we obtain usifg](90) apd (91)

T V) = / VI (2(5)V ((s)) - n(s) [ (5)] ds

/VJ

_ngk / V Je(2(8)) Brm(s)n(s) |2 (s)| ds.

ZBM dgk] n(s)|a!(s)] ds

Thus, a descent direction for the algorithm is given by

(92) de, = — / VI (2(5)) Bo (s)n(s)[' ()] ds,

and the update is then performed accordind td (B6)-(89). stéyex is determined by a line search in the
spirit of the gradient projection algorithrh [20]: a step #@istated if we observe a sufficient decrease of the
shape functional. measured by

m

J.(QUHD) — g O) < _° (l+1
5( ) —_ )\ k: b

where| - | denotes the Euclidian distance. The line search considiadimg the smallest integer (the
smallest possible being= 0) such that

o= pun®,
wherep andn < 1 are user-defined parameters. To stop the algorithm, we estollbwing stopping
criterion: we stop when

€D gD < el — )

wherer, is a user-defined parameter.

7 Numerical results

For the numerical resolution we take = 40 control pointsé;. We discretize the intervdD, 1] for the
parameterization:(s) using400 points. The domairk’ is chosen as

K = {O} X [0.5 — k1,0.5 + Iﬁ:l],
with k1 =~ 0.129. The initial domainL is chosen as
L= {O} X [0.5 — ko,0.5 — Iﬁ:l] U [0.5 + k1,0.5 + HZQ],

with ko =~ 0.233. We use the Matlab PDE toolbox to produce a gridlmand solveu;, us ., p1, p2 using
finite elements. The geometric quantities such as tangentai and curvature are computed usihd (76)-
(D), (79) and[(q1), respectively. We initialize the poigtdy placing them evenly on a half-circle of center
{0} x {0.5} and radiud).3, except for the two firsfy, £&; and two last points,,,1, &, Which have to lay on
the axis{x; = 0} as mentionned earlier. We chogse= 10, n = 0.5 for the line search and. = 5 x 10~*
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for the stopping criterion. For the penalization we @) choose = 10~! andg = 4.

The algorithm terminated aft@20 iterations. The results are given in Figufés $]to 7. In Fidirthe
two states:; andus . as well as the two adjoint statps andp, are plotted. The difference betweenand
ug . in the final domairt2s;,,,; is plotted in Figurd]6, along with the residual(Q2) given by {56). In Figure
[1, the initial and final boundaries are plotted in blue and respectively, while the set of control points of
the curvel is plotted in green. We observe that the optimal domain isnsgtric as expected from section
B.1. The optimal set f;,,.; is given by

Lfinar = {0} x [0.5 — £¢,0.5 — k1] U [0.5 + £1,0.5 4+ K]
with x¢; = 0.2342. The value ofJ, on the initial domain is
Je(Qinitiar) = 2.6 x 1072,
and the value of/. on the final domain is
Je(Qpinal) ~ 3.3 x 1078,

as may be seen in Figufle 6. Therefore, the shape functibrials been significantely decreased and is close
to its global optimum.
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