
HAL Id: hal-00462484
https://hal.science/hal-00462484

Preprint submitted on 9 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent processes as wireless proof nets
Emmanuel Beffara, Virgile Mogbil

To cite this version:

Emmanuel Beffara, Virgile Mogbil. Concurrent processes as wireless proof nets. 2010. �hal-00462484�

https://hal.science/hal-00462484
https://hal.archives-ouvertes.fr

Concurrent processes as wireless proof nets

Emmanuel Beffara1 and Virgile Mogbil2

1 IML - UMR6206, CNRS - Université Aix-Marseille 2
2 LIPN - UMR7030, CNRS - Université Paris 13

Abstract. We present a proofs-as-programs correspondence between
linear logic and process calculi that permits non-deterministic behaviours.
Processes are translated into wireless proof nets, i.e. proof nets of multi-
plicative linear logic without cut wires. Typing a term using them consists
in typing some of its possible determinisations in standard sequent cal-
culus. Generalized cut-elimination steps in wireless proof nets is shown
to correspond to executions that avoid deadlocks.

1 Introduction

Proof nets [5] were introduced with linear logic as its natural proof syntax, and
the graphical formulation of cut elimination in them emphasizes the fact that
linear logic is a logic of interaction. However, twenty years later, the search for
formal relationships with the theory of concurrency, in the form of a satisfactory
proofs-as-programs correspondence, is still an active research domain.

A type system for processes was proposed by Yoshida, Berger and Honda [12]
to characterize normalizable processes, and further study revealed thas it was
very close to LL [6]. LL itself was used as a type system by the first author [1]
with comparable results, providing an interpretation of proofs as concurrent
processes. Nevertheless, these approaches are not satisfactory yet as a logical
account of concurrency, because they lack the inherent non-determinism of actual
concurrency, precisely because they use logic to gain determinism.

Several approaches to the question of non-determinism in logic were also
proposed. The use of the additive connectives of LL as a proof-theoretic repre-
sentation of it was for instance explored by Mairson and Terui [8] to provide a
notion of non-determinsitic cut-elimination, or by Maurel [9] who used it to rep-
resent the kind of non-determinism familiar in complexity theory. In a different
style, differential logic was recently developped by Ehrhard and Regnier [4] and
its untyped proof formalism was shown to represent the π-calculus faithfully [3].

The present work proposes a new approach to combine these two independent
treatments of concurrency in logic. We start from the well studied framework of
proof-nets, and we gain expressiveness by relaxing the determinism constraints
imposed by the discipline of cut wires in LL proofs. We obtain wireless proof-nets,
a very liberal syntax for proofs which enjoys parallel and non-determistic reduc-
tion while preserving logical correctness using an extension of familiar criteria.
Terms of a variant of the π-calculus are translated naturally in this formalism,

which gives a notion of typability that ensures a good behaviour without im-
posing determinism. The idea is that typability of a term in our sense means
the existence of possibly different typings for different executions of this term.
The formalisation of this notion reveals a fine-grained correspondance between
operational aspects of both formalisms.

The correspondence we establish extends previous work on correspondences
between logic and concurrent programs, and can serve as a starting point for
various further studies. Wireless proof nets allow for the study of parallel com-
putation in a logical setting, as shown by the second author in related work [10],
and work is in progress on relationships with parallel complexity in the style
of implicit comptuational complexity (work by Terui [11] in this direction is a
notable source of inspiration in this respect). Parallel semantics for processes
is another direction for future work, for instance it can be expected that type
disciplines would allow for a study of parallel computation in a more explicit
way than in usual semantics of process calculi.

The paper is organised as follows: In section 2, a form of π-calculus is defined,
together with new tools for the study of its operational semantics. Section 3
defines an interfacing discipline and a notion of determinisation, and section 4
adapts the LL typing of processes [1] and recalls the properties of typed terms.
Section 5 presents wireless proof nets and their cut-elimination, and section 6
establishes the correspondence between these two formalisms.

2 A polarized process calculus

Let N be an infinite set of names, partitioned into positive (a, b, c ∈ N+) and
negative (ā, b̄, c̄ ∈ N−) ones, with in involution (written ·̄) between them. Names
of arbitrary polarity are ranged over by letters x, y, z. The polarity of a name
x is written pol x, an element of {´, ˆ} for positive and negative respectively.
Finite sequences of names are written as Greek letters. Let L be an arbitrary
set of locations, used to identify occurrences of names without ambiguity.

Definition 1 (terms). The set −→π of terms is defined by the following grammar
with the restriction that all locations in any term are always pairwise distinct:

P,Q ::= xℓ(ζ).P action, with ℓ ∈ L, x ∈ N , ζ ∈ N ∗

aℓ
⊸b̄m forwarder, with ℓ, m ∈ L, a ∈ N+, b̄ ∈ N−

P | Q, 1, (νx)P parallel composition, inaction, hiding

By convention, inputs are actions on positive names and outputs are actions on
negative ones. All actions communicate private names, i.e. z1 . . . zn are bound
in x(z1 . . . zn).P . Intuitively, (νx) closes a channel by connecting its input and
output parts and making them private; hence (νx) is a binder for both x and x̄,
and it is equivalent to (νx̄). A name x is called hidden if it is bound by a (νx)
and action-bound if it is bound by an action prefix. The set FV (P) of free names

of P contains all other names. Terms are considered up to injective renaming of
bound names, provided that renaming preserves the polarity of all names:

(νa)P = (νb)P [b/a, b̄/ā] if b, b̄ 6∈ FV (P)

xℓ(αyβ).P = xℓ(αzβ).P [z/y] if pol y = pol z and z, z̄ 6∈ FV (P) ∪ α ∪ β

Using renaming, we use the convention that in a term xℓ(z1 . . . zn).P , the dual
names z̄1 . . . z̄n do not occur free in P .

Let L(P) be the set of locations occurring in P . Given ℓ ∈ L(P), the subject
of ℓ is the name tagged by ℓ, written subjP ℓ, its polarity is that of its subject,
written polP ℓ. If ℓ is tags an action x(z1 . . . zk), then for each i, the name zi is
the i-th object of ℓ, written objiP ℓ. For each free or bound name x, let ♯(P, x) be
the number of occurrences of x in P , not including any binder. Prefixing is the
partial order ≤P over L(P) such that ℓ <P m for all subterm xℓ(ζ).Q of P and
all m ∈ L(Q). In each case, the subscript P can be omitted if it is clear.

Definition 2 (structural congruence). Structural congruence is defined in
a standard way so that parallel composition is associative and commutative and
that hiding enjoys the usual scoping rules, adapted to the polarity discipline:

P | (νa)Q ≡ (νa)(P | Q) scope extrusion, if a, ā 6∈ FV (P),

(νa)P ≡ P garbage collection, if a, ā 6∈ FV (P).

Definition 3 (pairing). A pairing of a term P is a partial involution c over
L(P) such that for all ℓ ∈ dom c, pol c(ℓ) = pol ℓ, and either subj c(ℓ) = subj ℓ,
or subj ℓ = obji m and subj c(ℓ) = obji c(m) for some m ∈ L(P) and i ∈ N.

For a pairing c, let ∼c be the smallest equivalence that contains c and all the
(ℓ, m) such that there is a forwarder aℓ

⊸b̄m. The pairing c is consistent if dom c
is closed for ∼c, downwards closed for ≤P and ≤P quotiented by ∼c is acyclic.

Observe that pairings and consistency are preserved by structural congru-
ence, as a direct consequence of the fact that subjects, objects, polarities and
prefixing are preserved by all structural congruence rules.

Definition 4 (execution). Execution is the relation over terms up to structural
congruence, labelled by involutions over L, defined by the following rule in any
context made of parallel compositions and hidings, for any n ≥ 0:

(νa0) . . . (νan)
(
āℓ0
0 (ζ̄).P | am0

0 ⊸āℓ1
1 | · · · | a

mn−1

n−1 ⊸āℓn
n | amn

n (ζ).Q | R
)

→
{(ℓi,mi)}

n
i=0

ex (νa0) . . . (νan)
(
(νζ)(P | Q) | R

)

Note that this rule assumes that the objects in the synchronizing actions have
dual names. As a consequence, actions can synchronize only if their objets have
the same arity and opposite polarities. The annotation c in P →c

ex Q describes
which occurrences are matched in the execution step, we write P →ex Q if c is
unimportant. Similarly, we keep locations implicit when they do not matter.

Remark that for two terms P and Q, several pairings c may correspond to a
reduction P →c

ex Q, because of the role of forwarders. For instance, the execution

(νu)
(
ūa(x).P | ub

⊸ūc | ud
⊸ūe | uf (x̄).Q

)
→ex (νux)(P | Q)

can be annotated either {(a, b), (c, d), (e, f)} or {(a, d), (e, b), (c, f)}. However,
for a given c, there is at most one term Q such that P →c

ex Q, since the pairing
c contains enough information to identify which subterms of P interact.

Lemma 1. Let P →c
ex Q be an execution and d be a pairing of Q, then dom c∩

dom d = ∅ and c ∪ d is a pairing of P . If d is consistent, then so is c ∪ d.

By iterating this, from an execution P0 →c1
ex P1 →c2

ex · · · →cn
ex Pn we can

deduce a pairing c = c1 ∪ · · · ∪ cn of P0. This pairing represents the execution
above, because it contains all the choices made during this execution. Indeed we
can prove that executions that yield the same pairing are equivalent.

Lemma 2. Let P →c1
ex Q1 and P →c2

ex Q2 be two executions with dom c1 ∩
dom c2 = ∅. Then there is a unique R such that Q1 →c2

ex R and Q2 →c1
ex R.

As an interesting consequence of this fact, if in two execution sequences the
union of the annotations are the same, then the sequences are necessarily a per-
mutation of each other, and the final terms are the same. This supports the idea
that pairings represent executions, forgetting inessential scheduling decisions.

Proposition 1. A pairing c of a term P0 is consistent if and only if there is an
execution sequence P0 →c1

ex · · · →cn
ex Pn such that c =

⋃n
i=1 ci.

Proof (sketch). Remark that the set {dom ci} must be the set of equivalence
classes for ∼c in dom c. Consistency ensures that ≤P is an order over these
classes, and we get an run of P0 by picking any total extension of this order.

Definition 5 (liveness). A term P exhibits a forward a⊸b̄ if there is an exe-
cution step (νab)(P | āℓ | bm) →c

ex P ′ with ℓ, m ∈ dom c. P exhibits an action on
a if there is an execution step (νa)(P | āℓ(ζ)) →c

ex P ′ with ℓ ∈ dom c for some ζ.
P is alive if it has a reduct (by any number of execution steps including 0) that
exhibits a forward or an action.

3 Interfacing and determinisation

Definition 6. Assume an infinite set V of indeterminates ranged over by α.
Sorts are defined as follows:

name sorts ι := ǫI, α, ᾱ with ǫ ∈ {´, ˆ} and α ∈ V,
channel sorts I := n1ι1, . . . , nkιk with k, ni ≥ 0,
interfaces I := x1 : n1ι1, . . . , xk : nkιk with k, ni ≥ 0.

The rules for interfacing of processes are given in table 1.

P :: I, x : nǫ(n1ι1, . . . , nkιk), {zi : niιi}
k

i=1 ǫ = pol x

x(z1 . . . zn).P :: I, x : (n + 1)ǫ(n1ι1, . . . , nkιk)

ι is positive

a⊸b̄ :: a : 1ι, b̄ : 1ῑ

P :: {xi : piιi}
k

i=1 Q :: {xi : qiιi}
k

i=1

P | Q :: {xi : (pi + qi)ιi}
k

i=1 1 :: ∅

P :: I, a : n´I, ā : nˆĪ
(νa)P :: I

Table 1. Interfacing rules

Positive name sorts are ´I and α, negative ones are ˆI and ᾱ. The k in a
channel sort is the arity and the ni are the multiplicities. In the present work, we
assume that the sum of multiplicities in any channel sort is never zero3 The xi in
interfaces are pairwise distinct and interfaces are considered up to permutation
and addition of nullary assignements. The dual ῑ of a name sort ι is obtained by
inverting all polarities in ι and replacing each occurrence of an indeterminate α
by ᾱ, and vice-versa. The definition extends to channel sorts and interfaces.

Definition 7 (determinism). A term is deterministic if it has an interface
derivation where channel sorts only use multiplicity 1 and interfaces only use
multiplicities 1 and 0.

It is easily checked that interfacing is preserved by structural congruence
and execution, since it is designed for this purpose. Besides, the very strong
constraint on deterministic terms guarantees a very regular behaviour:

Proposition 2. Every deterministic term has a unique maximal pairing. Exe-
cution in deterministic terms is strongly confluent.

We now describe a way to turn arbitrary interfaced terms into deterministic
terms. Interfaces are strong contraints on processes, mainly because of multiplic-
ities, and the only actual source of non-determinism is how actions on a given
channel are paired. A prototypical example is the term

T = (νa)
(
ā(x).P1 | ā(x).P2 | a(x̄).Q1 | a(x̄).Q2

)

which has two cases of execution (and two schedulings for each case), one leading
to (νx)(P1 |Q1) | (νx)(P2 |Q2) and the other to (νx)(P1 |Q2) | (νx)(P2 |Q1). Of
course this situation can occur indirectly, after other communications.

Hence a way to make a process deterministic is to associate each action with
the action it will eventually synchronise with. Pairings describe this information,
and the idea to impose a pairing is to split each name a into multiple names
a1, . . . , ak with one occurrence each, so that ai will only synchronize with āi.
Moreover, we have to do that also for hidden and action-bound names, accord-
ing to some pairing. To implement this, we assume an injective function that
associates to each name x and integer i a name written xi (such a function
obviously exists since the set of names is infinite).

3 This is just for simplifying the subsequent theory of proof nets, and it is not a strong
constraint with respect to expressiveness.

Definition 8 (numbering). A numbering is a function from L to N. For a
term P , a numbering of P is a numbering φ such that

– for all ℓ ∈ L(P), 1 ≤ φ(ℓ) ≤ ♯(P, subj ℓ),
– the mapping ℓ 7→ (subj ℓ, φ(ℓ)) is injective.

Given a numbering φ, the determinisation of P according to φ is the term ⌊P ⌋φ

defined inductively as follows:
⌊
xℓ(z1 . . . zk).P

⌋
φ

:= xφ(ℓ)(z1
1 . . . z

♯(P,z1)
1 . . . z1

k . . . z
♯(P,zk)
k). ⌊P ⌋φ

⌊(νa)P ⌋φ := (νa1 . . . amax(♯(P,a),♯(P,ā))) ⌊P ⌋φ⌊
aℓ

⊸b̄m
⌋

φ
:= aφ(ℓ)

⊸b̄φ(m) ⌊P | Q⌋φ := ⌊P ⌋φ | ⌊Q⌋φ ⌊1⌋φ := 1

Proposition 3. Let the determinisation of an interface I be the interface ⌊I⌋
defined inductively as follows, where In denotes n successive occurrences of I:

⌊{xi : niιi}1≤i≤k⌋ := {xj
i : 1⌊ιi⌋} 1≤i≤k

1≤j≤ni

⌊ǫ(n1ι1 . . . nkιk)⌋ := ǫ((1⌊ι1⌋)
n1 . . . (1⌊ιk⌋)

nk)

For all term P :: I and numbering φ of P , ⌊P ⌋φ is deterministic and ⌊P ⌋φ :: ⌊I⌋.

As a consequence of propositions 3 and 2, for any interfaced term P and any
numbering φ of P , the determinisation ⌊P ⌋φ has a unique maximal pairing cφ.
The following proposition is a converse of this fact.

Proposition 4. For all interfaced term P and maximal pairing c of P , there is
numbering φ of P such that c is the maximal pairing of ⌊P ⌋φ.

4 Linear Type System

We now define a typing relation between terms and formulas of a presentation
of multiplicative linear logic with unlimited arities, called MLLu.

Definition 9 (formulas). The formulas (written A, B,C, . . .) of MLLu are
built from literals α, α⊥ by n-ary multiplicative conjunction

⊗n
i=1 Ai and dis-

junction
˙n

i=1 Ai, with n > 1 in each case. The negation A⊥ of a non-literal

formula A is defined by de Morgan duality as (
⊗n

i=1 Ai)
⊥

=
˙n

i=1 A⊥
i .

A type (written Γ,∆ . . .) is a finite set of assignements x1 : A1, . . . , xn : An

where the xi are pairwise distinct names and the Ai are MLLu formulas. Type
derivations are built made from the rules of table 2. A term P has type Γ if there
is a type derivation with conclusion P ⊢ Γ .

Formulas of MLLu and deterministic name sorts are isomorphic in a direct
way. Assuming that positive literals and indeterminate sorts are taken from the
same set V, for a name sort ι, we define the formula JιK by induction as follows:

JαK = α, JᾱK = α⊥, J´(1ι1, . . . 1ιk)K =

k⊗

i=1

JιiK , Jˆ(1ι1, . . . 1ιk)K =
ķ

i=1

JιiK .

Axiom and cut (A is a literal α or a � formula):

a⊸b̄ ⊢ a : A, b̄ : A⊥
(ax)

P ⊢ Γ, a : A Q ⊢ ∆, ā : A⊥

(νa)(P | Q) ⊢ Γ, ∆
(cut)

Multiplicatives (ζ stands for z1 . . . zn):

P ⊢ Γ, z1 : A1, . . . , zk : Ak

ā(ζ).P ⊢ Γ, ā :
˙

k

i=1
Ai

(`)

˘

Pi ⊢ Γi, zi : Ai

¯k

i=1

a(ζ).
Q

k

i=1
Pi ⊢ (Γi)

k

i=1, a :
N

k

i=1
Ai

(⊗)

Table 2. Inference rules in MLLu

Proposition 5. For all term P and deterministic interface I, if P ⊢ JIK then
P :: I. If P :: I and P is typable, then P is deterministic and P ⊢ JIK.

Hence typed terms are always deterministic. In the following statements we
will thus identify locations and names, since in deterministic terms, each name
has at most one occurrence, so for any name u there is at most one location ℓ
such that subj ℓ = u. A type derivation Π for a term P corresponds uniquely
to an assignement of types to names/locations in P , although obviously not all
type assignements correspond to a type derivation. Given a derivation Π, we
will thus denote by Π(ℓ) the MLLu formula associated with the location ℓ in Π.

Definition 10 (typing constraint). A typing constraint for a term P is an
equivalence relation over L(P). A type derivation Π for P is said to respect
the constraint R if for all locations (ℓ, m) ∈ R, either polP ℓ = polP m and
Π(ℓ) = Π(m), or polP ℓ = ¬polP m and Π(ℓ) = Π(m)⊥. If there is a derivation
Π that respects R and with conclusion Γ , we write P ⊢R Γ .

Typing constraints impose that distinct names in a given term have the same
type even if they are unrelated. The idea is to represent the fact that distinct
names are actually occurrences of the same name after determinisation.

We consider type substitution as usual in the following:

Proposition 6. Let P be a term and R a typing constraint for P . Let (Π : P ⊢
Γi)i∈I be a family of type derivations of P . Then there exists a type Γ and a
family of substitutions (σi)i∈I such that P ⊢R Γ and Γi = Γσi for each i ∈ I.

Proof (sketch). Remark that R is just a unification constraint, and that typing
rules simply impose further similar constraints. We then prove an extension of
this result to a family of terms under a global constraint, by a standard unifica-
tion technique, and the typing hypothesis guarantees the success of unification.

Corollary 1 (principal typing). If a term P is typable under a constraint
R, then there is a type Γ , unique up to renaming of the literals, such that all
possible types of P under R are substitutions of Γ .

The final property we prove for our type system is subject reduction. For
this purpose, we define an annotated cut elimination relation →c

sc, where c is
a pairing as of definition 3. Cut elimination steps are standard from the point
of view of sequent calculus, only refined to handle locations. We describe them
informally, according to the nature of the premisses of a given cut rule:

logical steps for multiplicatives. If the premisses are multiplicative intro-
ductions for the cut formulas, then the cut and these rules are replaced by
one cut for each immediate subformula.

logical steps for axioms. If one premiss is an axiom rule for the cut formula,
then this rule and the cut are removed, and in the other premiss the location
ℓ of the cut formula is replaced by that of the other side of the axiom:

Π : P ⊢ Γ, ā : A⊥ am
⊸b̄n ⊢ a : A, b̄ : A⊥

(ax)

(νa)(P | am
⊸b̄n) ⊢ Γ, b̄ : A⊥

(cut)
→c

sc

Π[b̄n/āℓ]
....

P [b̄n/āℓ] ⊢ Γ, b̄ : A⊥

commutation steps. If one of the premisses is not an introduction rule for the
cut formula, then the cut can be permuted with the last rule of this premiss.

commutativity steps. The premisses of a cut rule may always be permuted.

In the first two cases, two name occurrences are eliminated, then the annotation
c is the involution that associates them. In the last two cases, c is empty.

Definition 11. The annotated cut elimination relation →c
sc over type deriva-

tions is the reflexive transitive closure the rules above in all contexts. In the
transitive closure, for Π →c

sc Π ′ →d
sc Π ′′ we define Π →c∪d

sc Π ′′.

We recall that MLLu sequent calculus proofs, as well as type derivations,
admit a standard cut-elimination theorem using the rules of this definition.

Theorem 1 (subject reduction). For all type derivation Π : P ⊢ Γ and
execution step P →c

ex P ′, there is a derivation Π ′ : P ′ ⊢ Γ such that Π →c
sc Π ′.

Proof (sketch). The first step is to remark that, for a given execution step P →c
ex

P ′, we can use commutation of cuts and commutativity (which relate structurally
congruent terms) to get the type derivation of P in a canonical form

P ≡ C[(νan)(· · · (νa1)((νa0)(ā0(ζ).S | a0⊸ā1) | a1⊸ā2) · · · | an(ζ̄).T)]

where C is a context made of cut rules. Then we use the axiom rules to eliminate
the forwarders and the multiplicative rule to eliminate the actions.

Corollary 2. All typable terms are alive.

Proof (sketch). Since we consider terms without replication, all execution se-
quences are finite, so by subject reduction we can consider terms irreducible by
execution. Then we can proceed by induction on the type derivation.

Definition 12. Let Γ = {xi : Ai}
n
i=1 be a type. A context for type Γ is a family

of typed terms Ti ⊢ ∆i, x̄i : A⊥
i that exhibit actions on the x̄i. For any term P ,

define C[P] = (νx1 . . . xn)(P | T1 | · · · | Tn).

Definition 13 (extended execution). Let ∼ be the equivalence generated by
the following rules in all contexts, assuming (ξ ∪ {ȳ}) ∩ FV (Q) = ∅:

x(ζ).(y(ξ).P | Q) ∼ y(ξ).x(ζ).(P | Q) (νa)(y(ξ).P | Q) ∼ y(ξ).(νa)(P | Q)

Extended reduction →xx is the relation such that P →c
xx Q iff P ∼→c

ex∼ Q.

Proposition 7. For all terms P ∼ Q, and type Γ , P ⊢ Γ iff Q ⊢ Γ . Then, for
all context C[] for type Γ , C[P] and C[Q] have the same consistent pairings.

Proof (sketch). For type derivations, these rules are commutations of ` intro-
ductions with � introductions and cuts, which are correct in sequent calculus.
Pairings are obviously preserved, and consistent ones are preserved because of
the structure of cuts: exchanging two prefixes that are both cut does not change
pairings since the processes they are cut against are necessarily independent.

5 Wireless proof nets

Definition 14 (paired graph). A paired graph G = (V,E ⊎ A, P) is a mixed
simple graph (V,E⊎A) with undirected edges E, directed edges (or arcs) A, plus
a set of paired arcs P ⊂ P(A) which are pairwise disjoint sets of arcs with the
same end node, called a pairing node. An ordered paired graph is a paired graph
where each node v is equipped a total order ≤v over its incoming edges.

Paths, cycles and the complement of a paired graph are standard definitions.

Definition 15 (wireless proof net). A wireless proof structure (WPS) R con-
sists of an ordered paired graph GR = (V,E ⊎ A, P) where each node has a sort
in {ax,�,`} and an MLLu formula as label, with two disjoint sets of nodes
CR (the conclusions) and C R (the cut nodes). A wireless proof net (WPN) is a
structure built by the following MLLu sequent calculus rules:

Ax: ({u, v}, {uv} ⊎ ∅, ∅) is a WPN, called axiom-link, with two nodes of sort ax
labelled respectively A and A⊥. Both nodes are conclusions but not cut-nodes.

`: If G = (V,E ⊎ A, P) is a WPN with conclusions C ∪ {xi : Ai}
n
i=1 and cut-

nodes C , then a WPN is obtained by extending G with a pairing node y of
sort `, labelled

˙n
i=1 Ai, adjacent with new paired arcs from (xi)

n
i=1 in this

order, with C ∪ {y} as conclusions and the same cut node set.
�: If {Gi = (Vi, Ei ⊎Ai, Pi)}

n
i=1 are disjoint WPNs with respective conclusions

Ci ∪ {xi : Ai} and cut-nodes C i, then
⊎n

i=1 Gi extended with a node y of
sort �, labelled

⊗n
i=1 Ai, adjacent with new arcs from (xi)

n
i=1 in this order,

is a WPN with conclusions
⋃n

i=1 Ci ∪ {y} and cut-nodes
⋃n

i=1 C i.

t t
✓
✒

✏
✑t. . . t t

❆
❆t✁
✁

t. . .

✓
✒

✏
✑t. . . t t

❆
❆

. . .

t✁
✁

t
✓
✒

✏
✑t. . . t

✓
✒

✏
✑t. . . t t❢

Fig. 1. Representation of WPNs: axiom link, ` node, � node and cut nodes.

Cut: If {Gi = (Vi, Ei ⊎Ai, Pi)}i∈{1,2} are two disjoint WPNs with respective con-

clusions Ci∪{xi : Ai} and cut-nodes C i and such that A1 = A⊥
2 , then G1⊎G2

is a WPN with conclusions C1 ∪ C2 and cut-nodes C 1 ∪ C 2 ∪ {x1, x2}.

A standard proof net is defined as a WPN except that there is no cut-node set,
instead in the cut rule the graph is extended with an edge {x1, x2}, distinguished
from axiom-links, usually called a wire.

When a WPN (respectively a proof net) is induced from a type derivation
Π, we write JΠK (respectively [Π]). By definition the conclusion set of JΠK is
labelled by Γ , the cut-node set of JΠK is labelled with the cut formulas of the
type derivation Π and pairing nodes are the set of ` rules in Π.

Remark that given a typed term P ⊢ Γ , if {Πi : P ′ ⊢ Γ}i∈I is the set of type
derivations of terms P ′ ≡ P with conclusion Γ then all the Πi induce the same
WPN. It is also the same WPN up to type substitution for all typings of P .

The graphical notation of WPNs is presented in figure 1. By definition there
are undirected edges only in axiom links, moreover WPNs can be drawn consid-
ering the up-bottom orientation of arcs, so we keep arc orientation implicit by
this convention. Paired arcs are joint by a circle arc on the side of the pairing
node. By definition only conclusion nodes and cut nodes have outdegree 0, we
distinguish cut nodes by drawing circles around them. Because of the building
rules, node sorts can be deduced from labels, except for axiom links, which are
identified by adjacent undirected edges, moreover the conclusion labels suffice to
deduce all labels, so we keep most of this information implicit.

Definition 16 (contractile paired graph). A paired graph is contractile if it
rewrites to a single node without edges or arcs by the following two rules, where
nodes are distinct and R2 applies only to non paired edges:

t..
t

−→R1 t
t

−→R2
t

This definition is one of the standard correctness criteria for proof nets [2].
The set of (unordered) pairs of nodes of a wireless proof net R that may

correspond to MLLu binary sequent calculus cuts, contains no edges of R but
edges in the complement graph of R. This is the following set of cut-edges:

Definition 17 (cut-edge). Let A be a MLLu formula labelling some node in a
WPN R. Call LA the set of edges of axiom-links labelled A or A⊥ in R. The set
E R

A of cut-edges of label A is the set of pairs {u, v}, with u, v ∈ C R respectively
labelled A, A⊥ such that uv 6∈ LA.

Definition 18 (cut-path). Let A be a MLLu formula labelling some node in a
WPN R. A cut-path of label A is a non-empty acyclic path whose internal nodes
are of sort ax and terminal nodes are of dual sorts � and `, such that 1. non
ending edges alternate in LA and in E R

A , 2. ending edges are in E R
A .

Cut-edges are drawn with dashed lines to distinguish them from edges in R.
A path reduction in a WPN corresponds, in sequent calculus, to a sequence a
logical cut elimination steps for axioms followed by a multiplicative step:

Definition 19 (path reduction). Let ρ be a cut-path of label A in R. A path
reduction →c of ρ is a reduction of redex ρ whose reduct is obtained by erasing
all nodes of ρ as follows:

t
❆
❆t❢
. . .

1
`

✁
✁

t
t❢ t❢ . . . t❢ t❢

t
❆
❆t❢
2

�

✁
✁

t. . .
−→c

t❢ t❢. . . t❢ t❢. . .

All nodes adjacent to 1

and 2 in R, become cut-nodes

Definition 20 (non-deterministic reduction). Let R be a WPN. Let FR be
the set of formulas A labelling R for which E R

A 6= ∅. We call cut-choice in R a
set C of cut-paths of distinct labels A ∈ FR such that the paired graph R ∪ C is
contractile. We write CR the set of cut-choices in R. WPN reduction R ⇒CA

R′

is defined by a cut-choice CA of R containing a cut-path ρ of label A whose set
of nodes is the redex. The reduct is obtained by path reduction of ρ.

Definition 21 (permutation equivalence). Two WPNs R,S are equivalent,
written R ≃ S, if they are equal up to the ordering of edges and for all x and i,
the source of the i-th incoming edge of x in R and in S have the same label.

Proposition 8 (bisimilarity). If R ≃ S and R ⇒CA
R′ then there is an S′

such that S ⇒CA
S′ and R′ ≃ S′.

6 Translation of processes

Definition 22 (translation). The translation JP :: IK of an interfaced term is
a WPS in which the node set is L(P), sorts and edges are defined as follows:

– For all forwarder aℓ
⊸b̄m occurring in P , put an undirected edge between ℓ

and m, both of which are of sort ax.
– For all action xℓ(z1 . . . zk).Q occurring in P , put an arc (m, ℓ) for each m

such that subj m = zi for some i, and order these arcs in any order such that
for all i < j, (m, ℓ) < (n, ℓ) if subj m = zi and subj n = zj. If pol x = ˆ, then
ℓ has sort ` and these arcs form a pair and ℓ is a pairing node, otherwise
the sort of ℓ is �.

The label of a node ℓ is JιK if ι is the sort of subj ℓ, the conclusion set is the set
of locations of free names in P , and the cut node set is the set of locations of
hidden names in P . Figure 2 illustrates this translation.

ta
JιK

tb̄
JῑK

✓
✒

✏
✑JP K
✓
✒

✏
✑JQK

✛
✚

✘
✙t. . .x t

JP K

t. . .z1 t
σ1

PPP❅

. . .

txq
⌊ǫ(n1ι1 . . . nkιk)⌋

y

t. . .zk t
σk

✏✏✏�

✛
✚

✘
✙

JP K

t❢a
. . . t❢ t❢ā

. . . t❢

Fig. 2. Translated forwarder, parallel composition, action and hiding. The σi are arbi-
trary permutations of ni

Note in particular that the translation is only defined up to some class of per-
mutations, which corresponds to permutation equivalence. The definition above
can also be formulated in an inductive way, from which we easily deduce that
for a type derivation Π : P ⊢ JIK, JP :: IK is a WPN of conclusion JIK.

Definition 23. An interfaced term P :: I is called correct if JP K is a WPN.

We now formulate our main result, which is the precise correspondence in
dynamics between correct terms and wireless proof nets. Correspondence is up
to commutation of actions, which is an operation that is not observable by typed
contexts, as stated in proposition 7.

Theorem 2. Let P :: I be an interfaced term. Let U by the equivalence relation
{(ℓ, m); subj ℓ = subj m or subj ℓ = subj m}. For all numbering φ of P and type
derivation Π : ⌊P ⌋φ ⊢U Γ , JΠK ≃ JP K. If P is correct, then for all reduction
JP K ⇒CA

R there is an extended execution step P →xx P ′ such that JP ′K = R.

The first point is a simple verification. For the second one, the existence of
a WPN reduction implies the existence of a cut choice, which induces a proof
net, which can be sequentialised into a typing derivation Π for a determinisation
⌊P ⌋φ, using commutation as of definition 13. Extended execution in turn imple-
ments all proof net reductions. The following diagram sums up the argument:

P

translation

++�

det.
//

xx c��

⌊P ⌋φ

typing
///o/o/o/o/o/o/o

sc c��

Π : ⌊P ⌋φ ⊢U Γ � J−K
// JΠK

CA��

JP K≃

CA��
P ′

translation

33
� det. // ⌊P ⌋′φ

typing
///o/o/o/o/o/o/o Π ′ : ⌊P ⌋′φ ⊢U Γ � J−K

// JΠ ′K JP ′K≃

Hence cut choices correspond to deadlock-free executions, and WPN reduc-
tion steps implement the steps of these executions. The deadlock-freeness prob-
lem of concurrent processes is thus translated into a correctness problem in
wireless proof structures of MLLu. We hope to find an efficient way to do this
as deciding the correctness in standard proof structures is NL-complete [7].

References

1. Emmanuel Beffara. A concurrent model for linear logic. In 21st International Con-
ference on Mathematical Foundations of Programming Semantics (MFPS), volume
155, pages 147–168, may 2006.

2. Vincent Danos. La logique linéaire appliquée à l’étude de divers processus de nor-
malisation (et principalement du λ-calcul). PhD thesis, Univ. Paris VII, 1990.

3. Thomas Ehrhard and Olivier Laurent. Interpreting a finitary π-calculus in dif-
ferential interaction nets. In Lúıs Caires and Vasco T. Vasconcelos, editors, 18th
International Conference on Concurrency Theory (Concur), volume 4703 of LNCS,
pages 333–348. Springer, September 2007.

4. Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Workshop
on Logic, Language, Information and Computation, 2004. Invited paper.

5. Jean-Yves Girard. Proof-nets : the parallel syntax for proof theory. Logic and
Algebra, 180, 1996.

6. Kohei Honda and Olivier Laurent. An exact correspondence between a typed
π-calculus and polarised proof-nets. Submitted, November 2008.

7. Paulin Jacobé de Naurois and Virgile Mogbil. Correctness of multiplicative additive
proof structures is nl-complete. In Proceedings of the twenty-third annual IEEE
symposium on logic in computer science (LICS), pages 476–485, 2008.

8. Harry G. Mairson and Kazushige Terui. On the computational complexity of cut-
elimination in linear logic. In Carlo Blundo and Cosimo Laneve, editors, Theoretical
Computer Science, 8th Italian Conference, ICTCS, volume 2841 of Lecture Notes
in Computer Science, pages 23–36. Springer, 2003.

9. François Maurel. Nondeterministic light logics and NP time. In Martin Hofmann,
editor, Typed Lambda Calculi and Applications (TLCA), 6th International Confer-
ence, number 2701 in LNCS, pages 241–255. Springer, 2003.

10. Virgile Mogbil. Parallel and non-deterministic linear logic. Unpublished
manuscript, Sept. 2009.

11. Kazushige Terui. Proof nets and boolean circuits. In 19th IEEE Symposium on
Logic in Computer Science (LICS), pages 182–191, 2004.

12. Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the
π-calculus. In 16th IEEE Symposium on Logic in Computer Science (LICS), pages
311–322, 2001.

A Proofs on the calculus and determinization

Lemma 1

Proof. First remark that, by definition of execution, we have L(P) = L(Q) ⊎
dom c, besides dom d ⊂ L(Q) so the domains of c and d are disjoint. We can
thus define the involution c′ = c ∪ d, and we check that it is indeed a pairing of
P .

Let ℓ ∈ dom c′. If ℓ ∈ dom c then ℓ is the location of an action involved in the
execution step, so subjP ℓ is a hidden name and we have subjP c(ℓ) = subjP ℓ by
definition of execution, and subsequently we get subjP c′(ℓ) = subjP ℓ.

Otherwise ℓ is in the domain of d. If subjQ ℓ is action-bound in Q, then

there is a location m ∈ L(Q) and an integer i such that subjQ ℓ = objiQ m

and subjQ d(ℓ) = objiQ d(m). In this case, we can easily check that the property

also holds in P , that is subjP ℓ = objiP m and subjP c′(ℓ) = objiP c′(m). If, on
the contrary, subjQ ℓ is hidden in Q, then two sub-cases may occur for subjP ℓ:
either it is also hidden or it is bound by an action labelled by some some location
m in the domain of c. In the first sub-case, by definition of execution, the same
property holds for d(ℓ), so we have subjP c′(ℓ) = subjP ℓ. In the second sub-case,
the only way we can have subjQ d(ℓ) = subjQ ℓ is if there is an integer i such that

subjP ℓ = objiP m and subjP d(ℓ) = objiP c(m), hence subjP c′(ℓ) = objiP c′(m).

Hence c′ is a correct pairing pairing of P .

Now suppose d that is consistent but c′ is not. Then there exists a cycle
ℓ0 ≺c′ ℓ1 ≺c′ · · · ≺c′ ℓk = ℓ0. If all the ℓi are in Q then this is a cycle in ≺d,
which cannot be. Since c annotates a reduction of P , all elements of dom c are
minimal for ≤P , so the cycle cannot consist only of elements of dom c. So we may
assume ℓ0 ∈ Q and ℓ1 ∈ dom c. This means either ℓ0 <P ℓ1 or c′(ℓ0) < c′(ℓ1), in
each case this implies that some location in dom c is prefixed, which is impossible.
Hence c′ is consistent.

Lemma 2

Proof. By the existence of the execution step P →c1
ex Q1, we know that P can

be written

P ≡ (νu)
(
āℓ0
0 (ζ̄).S | (a

mi−1

i−1 ⊸āℓi

i)n
i=1 | a

mn
n (ζ).T | P ′

)

such that dom c1 = {ℓi, mi}
n
i=0. The term P can be decomposed in a similar way

to jusitfy the execution step P →c2
ex Q2:

P ≡ (νu)
(
b̄
ℓ′0
0 (ζ̄ ′).S′ | (b

m′

i−1

i−1 ⊸b̄
ℓ′i
i)n′

i=1 | b
m′

n′

n′ (ζ ′).T ′ | P ′′
)

with dom c2 = {ℓ′i, m
′
i}

n′

i=0. By hypothesis the domains of c1 and c2 are disjoint,
so all the ℓi and mi are distinct from all the ℓ′j and m′

j . As a consequence the

term P can be decomposed as

P ≡ (νu)
(
āℓ0
0 (ζ̄).S | (a

mi−1

i−1 ⊸āℓi

i)n
i=1 | a

mn
n (ζ).T

| b̄
ℓ′0
0 (ζ̄ ′).S′ | (b

m′

i−1

i−1 ⊸b̄
ℓ′i
i)n′

i=1 | b
m′

n′

n′ (ζ ′).T ′ | P ′′′
)

and the terms Q1 and Q2 have execution steps with the expected annotations,
with the common reduct R = (νuζζ ′)(S | T | S′ | T ′ | P ′′′). Unicity of R up
to structural congruence is a consequence of the fact the c1 and c2 completely
describe which subterms of P,Q1, Q2 interact and in which way.

Proposition 9. Let P0 be a term. For any two execution sequences

P0 →c1

ex P1 →c2

ex · · · →cm
ex PmP0 →

c′1
ex P ′

1 →
c′2
ex · · · →

c′n
ex P ′

n
with

m⋃

i=1

ci =

n⋃

j=1

c′j

we have Pm ≡ P ′
n. Moreover, m = n and there is a permutation σ of {1, . . . , n}

such that for all i, c′i = cσ(i).

Proof. We first establish that m = n and that the sequences are permutations of
each other. Let c =

⋃m
i=1 ci =

⋃n
j=1 c′j be the pairing induced by the considered

reduction sequences. Consider an index i. By construction, the set dom ci can
be written {ℓk; 1 ≤ k ≤ 2p} for some integer p ≥ 1, so that ℓ1 is the location
of a negative action, ℓp is that of a positive action, for each k < p there is
forwarder from ℓ2k to ℓ2k+1, and for each k ≤ p we have c(ℓ2k−1) = ℓ2k. Since
ℓ1 ∈ dom ci ⊆ dom c, there is a j such that ℓ1 ∈ dom c′j . Then we must have
c′j(ℓ1) = ℓ2. For each k < p such that ℓ2k ∈ dom c′j , since the location ℓ2k is that of
one side of a forwarder, necessarily dom c′j contains the location of the other side,
namely ℓ2k+1. Then ℓ2p−1 ∈ dom c′j , and c′j(ℓ2p−1) = c(ℓ2p−1) = ci(ℓ2p−1) = ℓ2p.
As a consequence, we have ci = c′j . By the same argument, for each j there is
an i such that c′j = ci, besides the sequences (ci) and (c′j) consist of pairwise
distinct pairings, so this estabishes a permutation σ between the two sequences,
and subsequently m = n.

We now prove that the final terms Pn and P ′
n are equal (up to structural

congruence). Call d(σ) the number of pairs (i, j) such that i < j and σ(i) > σ(j).
We proceed by induction on d(σ). If this number is 0, then σ is the identity
function and the sequences match, so obviously we have Pn = P ′

n. Otherwise,
consider a minimal i such that σ(i) 6= i, hence σ−1(i) 6= i and σ−1(i) > i, and let
j = σ−1(i)−1. The reduction sequences match in their first i−1 steps, then one
has a reduction labelled ci while the other has a reduction labelled c′i = cσ(i).
By repeated applications of lemma 2, we can deduce that for each k ≥ i there is

a term Qk such that P ′
k →ci

ex Qk and Qk−1 →
c′k
ex Qk if k > i:

Pi

c′i A
AA

AA

ci+1 // · · ·

Pi−1

ci
<<yyyyy

c′i !!C
CC

CC
C

Qi

c′i+1 // · · ·
c′j−1

// Qj−1

c′j
// Qj

P ′
i

ci
??~~~~~

c′i+1

// · · ·

ci

==zzzzzzz

c′j−1

// P ′
j−1

ci
;;wwwwww

c′j

// P ′
j

ci

;;wwwwwww

c′j+1

// P ′
j+1

Moreover, by construction c′j+1 = cσ(j+1) = ci, so P ′
j+1 = Qj , because there is

at most one possible reduction for a given annotation. Hence we can deduce a

pair of reduction steps P ′
j−1 →

c′j+1

ex Qj−1 →c′j
ex Pj+1. This yields a new reduction

sequence from P0 to P ′
n that corresponds to a new permutation σ′ of the sequence

(ci), and σ′ is σ where σ(j) and σ(j +1) are swapped. By definition of j we have
σ(j) > σ(j + 1) so σ′(j) < σ′(j + 1). For any a 6∈ {j, j + 1} we have σ(a) < σ(j)
if and only if σ′(a) < σ′(j +1), and the same exchanging j and j +1, so we have
d(σ′) = d(σ) − 1, and we can conclude by induction hypothesis.

Proposition 10 (canonical form). Any term P can be decomposed as

P ≡ (νa1) · · · (νan)
(k∏

i=1

xi(ζi).Pi

∣∣∣
p∏

j=1

bj⊸c̄j

)

where the product stands for any parallel composition of a family of terms.

Proof. We proceed by induction on the structure of the term P . For parallel
composition, we use the scope extension rule to get all the hidings at top level,
then associativity and commutativity of parallel compositions allow the neces-
sary reordering of actions and forwarders. All other cases are immediate.

Proposition 11. Interfaces and determinism are preserved by structural con-
gruence and execution.

Proof. Preservation of interfaces by the commutative monoid laws for parallel
composition are immediate, since parallel composition reduces to summation of
muliplicities in interfaces. Commutation of hidings on different names is imme-
diate. For the scope extrusion and garbage collection rules, remark that in an
interfaced term P :: I, the free names of P are exactly those appearing with a
non-null multiplicity in I. Therefore if a is a name such that neither a nor ā are
free in P , then we may assume that I does not contain a sort assignement for
a and ā, then we can write P :: I, a : 0´I, ā : 0ˆĪ, on which we can apply the
hiding rule to get (νa)P :: I.

Let us now consider an instance of the execution rule T →ex T ′, with the
notations of definition 4. Suppose that the left-hand side is interfaced. Then, in

the derivation of this interface, there are interfaces I, J , K and a channel sort
I such that the sub-terms are interfaced as

P :: I, ā0 : mˆĪ , ζ̄ : Ī Q :: J , an : p´I, ζ : I R :: K

and subsequently ā0(ζ̄).P | (ai−1⊸āi)
n
i=1 | an(ζ).Q | R has interface

I + J + K +
(
ā0 : (m + 1)ˆĪ , {ai−1 : 1´I, āi : 1ˆĪ}n

i=1, an : (p + 1)´I
)

where the sum notation represents the operation of adding multilicities for com-
patible interfaces, as in the interface rule for parallel composition.

If we do not assume that T is deterministic, then the interfaces I, J and
K may contain assignements for the names ai and āi, but the presence of the
(νai) in the complete term impose that the number of occurrences of ai and āi

match for each i (with independent multiplicities for different values of i). In the
reduct, we deduce the interface as

P | Q | R :: I + J + K +
(
ā0 : mˆĪ , an : p´I, ζ : I, ζ̄ : Ī

)

in which, for each i, the multiplicities of ai and āi match (indeed they are one
less as in the previous term). The multiplicities and sorts also match for the fresh
names in the sequence ζ, therefore the hidings on (νζ) and (νai) are admissible.
The interface of (νa0 . . . an)

(
(νζ)(P | Q) | R

)
is the same as that of the initial

term, namely the sum I+J +K with any assignement to the ai and āi removed.
If T is assumed to be deterministic, then in the previous argument we must

have m = p = 0, and the interfaces I, J and K may only contain assignements
for the ai and āi with multiplicitiy 0. In T ′, we thus have multiplicity 0 for all
the ai and āi, so T ′ is determinstic too.

Proposition 2

Proof. Let P be a determinstic term. The set of pairings is not empty, since the
empty function is always a pairing. Suppose we can find two distinct maximal
pairings c and d. The set of locations on which c and d do not coincide is not
empty (and obviously finite), so we can consider an element ℓ of this set that is
minimal for the prefixing order ≤P . At least c(ℓ) or d(ℓ) is defined, we assume
it is c without loss of generality. Two cases may occur, depending on whether
subj c(ℓ) is action-bound or hidden.

First suppose it is action-bound, then there is a location m and an integer i
such that subj ℓ = obji m and subj c(ℓ) = obji c(m). If d(ℓ) is also defined, we
must also have subj d(ℓ) = obji d(m), and by the minimality of ℓ we must have
c(m) = d(m), hence subj d(ℓ) = subj c(ℓ). By the determinism hypothesis, the
name subj c(ℓ) occurs exactly once in P , so we must have d(ℓ) = c(ℓ), which is
contradictory with the definition of ℓ. Therefore d(ℓ) cannot be defined.

Similarly, if d(c(ℓ)) is defined, since subj c(ℓ) = obji c(m), then we must
have subj d(c(ℓ)) = obji d(c(m)), but since c(m) = d(m) we have d(c(m)) =
d(d(m)) = m, hence subj d(c(ℓ)) = obji m = subj ℓ. By the determinism hy-
pothesis this implies that d(c(ℓ)) = ℓ, an by involutivity of d this implies that

c(ℓ) = d(ℓ), which is contradictory. Hence both d(ℓ) and d(c(ℓ)) are undefined.
We can thus extend d by setting d(ℓ) = c(ℓ), which yields a larger pairing than
d, contradicting the maximality of d.

As a consequence, subj c(ℓ) cannot be action-bound, so we have subj c(ℓ) =
subj ℓ. By the determinism hypothesis, the names subj ℓ and subj c(ℓ) have ex-
actly one occurrence each, at respective locations ℓ and c(ℓ). Therefore, either
d(ℓ) is defined and equal to c(ℓ), or d(ℓ) and d(c(ℓ)) are undefined. The former
contradicts the minimality of ℓ, the latter contradicts the maximality of d.

Hence c = d and we get the uniqueness of the maximal pairing.

Proposition 12. Execution in deterministic terms is strongly confluent.

Proof. Let P be a deterministic term, in a canonical form using the notations
of proposition 10. Consider a pair of distinct execution steps P →ex Q and
P →ex Q′. We prove that the set of actions and forwarders involved in these
executions are disjoint. Let m ∈ N and f : [1, m] → [1, n] be such that the
execution P →ex Q involves a negative action on āf(1), forwarders af(i)⊸āf(i+1)

for each 1 ≤ i < m and a positive action on af(m). Define m′ and f ′ for the
execution P →ex Q′ similarly. For contradiction, suppose there are j and j′ such
that f(j) = f ′(j′). By hypothesis the term P contains exactly one occurrence
of the name af(j). If this occurrence is a forwarder af(j)⊸āk then we have
m > j, m′ > j′ and f(j + 1) = f ′(j′ + 1) = k, otherwise it is an action and
we have m = j and m′ = j′. Similarly, P contains exactly one occurrence of
āf(j). If this occurrence is a forwarder ak⊸āf(j) then we have j > 1, j′ > 1 and
f(j − 1) = f ′(j′ − 1) = k, otherwise it is an action and we have j = j′ = 1.
From this we deduce that if the codomains of f and f ′ intersect, then m = m′

and f = f ′, and the executions P →ex Q and P ′ →ex Q′ are actually the same.
Hence these reductions involve disjoints parts of the term P , so we can find a
decomposition P = (νa1 . . . an)(P1 |P2) such that P →ex Q is a reduction P →ex

(νa1 . . . an)(P ′
1 | P2) and P →ex Q′ is a reduction P →ex (νa1 . . . an)(P1 | P ′

2).
By setting R = (νa1 . . . an)(P ′

1 | P ′
2) we get the execution steps Q →ex R and

Q′ →ex R, which proves strong confluence.

Proposition 3

Proof. For a subterm Q of P , a name x and an integer i, let δ(Q, x, i) be the
number of locations ℓ ∈ L(Q) such that subj ℓ = x and φ(ℓ) = i (hence 0 or
1). We actually prove, by induction on the interface derivation of P , that for
all subterm Q of interface I := {xi : niιi}1≤i≤k the term ⌊Q⌋φ has interface

⌊I⌋Q :=
{
xj

i : δ(Q, xi, j)⌊ιi⌋
}

1≤i≤k
1≤j≤♯(P,xi)

.

Consider a subterm Q′ = xℓ(z1 . . . zn).Q of P . By induction we have an
interface derivation that ends as

Q :: I, x : nǫ(n1ι1 . . . nkιk), {zi : niιi}
k
i=1 ǫ = pol x

xℓ(z1 . . . zn).Q :: I, x : (n + 1)ǫ(n1ι1 . . . nkιk)

By induction hypothesis the term ⌊Q⌋φ has interface

⌊I⌋Q ,
{
xj : δ(Q, x, j)ǫ

(
(1⌊ι1⌋)

n1 . . . (1⌊ιk⌋)
nk

)}
1≤j≤♯(P,x)

,
{
zj
i : δ(Q, zi, j)⌊ιi⌋

}
1≤i≤k

1≤j≤♯(P,zi)

The names zi are bound by the action xℓ(z1 . . . zn), so for each i, all ni oc-
currences of zi in P are in Q, therefore for all j we have δ(Q, zi, j) = 1. Be-
sides, by the injectivity of ℓ 7→ (subj ℓ, φ(ℓ)), we have δ(Q, x, φ(ℓ)) = 0 and
δ(Q′, x, φ(ℓ)) = 1, and δ(Q′, y, j) = δ(Q, y, j) when (y, j) 6= (x, φ(ℓ)) and y is not
one of the zi. Therefore Q′ has interface

⌊I⌋Q′ ,
{
xj : δ(Q′, x, j)ǫ

(
(1⌊ι1⌋)

n1 . . . (1⌊ιk⌋)
nk

)}
1≤j≤♯(P,x)

which concludes this case.
Similar arguments apply for all other syntactic constructs, so we get ⌊P ⌋φ ::

⌊I⌋P , and ⌊I⌋P = ⌊I⌋ by construction.

Proposition 4

Proof. Choose an arbitrary total order � over L and define, for each location
ℓ ∈ L(P):

φ(ℓ) =

{
φ(c(ℓ)) if ℓ ∈ dom c and pol ℓ = ˆ
♯{m ; subj m = subj ℓ, m � ℓ} otherwise

Actions on a given name are numbered consecutively according to the chosen or-
der over L, so the numbering is clearly valid for all locations except the ℓ ∈ dom c
such that pol ℓ = ˆ. For those locations, we use the fact that P is interfaced: in
this case there are as many occurrences of subjP ℓ and subjP c(ℓ), and c estab-
lishes a bijection between them. As a consequence, φ is a numbering of P .

We first prove that c is a pairing of ⌊P ⌋φ. We have pol⌊P⌋φ
m = polP m

for all m, hence the polarity condition holds for all locations. Let ℓ ∈ dom c,
then subjP ℓ is either hidden or action-bound in P . If subjP ℓ is hidden, then
subjP c(ℓ) = subjP ℓ, and by construction of ⌊P ⌋φ we know that subj⌊P⌋φ

ℓ is

hidden, and by the first case of the definition φ we have φ(c(ℓ)) = φ(ℓ), so
subj⌊P⌋φ

c(ℓ) = subj⌊P⌋φ
ℓ. If subjP ℓ is action-bound, then there is a location m

and an integer i such that subjP ℓ = objiP m and subjP c(ℓ) = objiP c(m). By con-
struction of φ we have φ(ℓ) = φ(c(ℓ)). Set j = φ(ℓ) +

∑
k<i ♯(P, objkP m), so that

subj⌊P⌋φ
ℓ = objj⌊P⌋φ

m. By the interfacing hypothesis we have ♯(P, objkP m) =

♯(P, objkP c(m)), hence we also have subj⌊P⌋φ
c(ℓ) = objj⌊P⌋φ

c(m). Therefore c is

a valid pairing of ⌊P ⌋φ.
We now prove that c is maximal among pairings of ⌊P ⌋φ. For this, assume

there is a location ℓ ∈ L(⌊P ⌋φ) \ dom c, and take ℓ minimal. Let x = subj⌊P⌋φ
ℓ.

By proposition 3 ⌊P ⌋φ is deterministic, so the multiplicity of x in the interface

derivation of ⌊P ⌋φ is 1. If x is free, then ℓ cannot be in the domain of any
pairing (be it greater than c or not). If x is hidden, then x̄ has one occurrence
at a location m, and m cannot be in the domain of c, otherwise we would have
c(m) = ℓ; therefore c can be extended with the pair (ℓ, m), which contradicts
the maximality of c. Otherwise x is action-bound, so there is a location m and
an integer i such that obji⌊P⌋φ

m = x. If m was in the domain of c then c could

be extended so that c(ℓ) is the location of the occurrence of obji⌊P⌋φ
c(m), which

would contradict the maximality of c, so m is not in the domain of c, but this
contradicts the minimality of ℓ. Hence c is maximal.

B Proofs about the type system

Proposition 5

Proof. Point 1 is straightforward. Point 2 is proved by induction on the typing
derivation of P :

– Case a⊸b̄ ⊢ a : A, b̄ : A⊥. Since P = a⊸b̄ we have I = a : 1ι, b̄ : 1ῑ such
that ι is positive. By construction JιK is a positive formula and JῑK = JιK

⊥
.

– Case ā(z1 . . . zk).P ⊢ Γ, ā :
˙k

i=1 Ai. By induction and nullary assignements,
we have P :: I ′, ā : 0ˆ(1ι1 . . . 1ιk), {zi : 1ιi}

k
i=1 The result follows by applying

an action rule of interfacing.
– Case a(z1 . . . zk).

∏k
i=1 Pi ⊢ (Γi)

k
i=1, a :

⊗k
i=1 Ai. By induction we have

{
Pi ::

Ii, zi : 1ιi
}k

i=1
such that all elements are distinct. The result follows by

applying a sequence of parallel rules of interfacing and one action rule.
– Case (νa)(P |Q) ⊢ Γ,∆. By induction we have P :: I, a : 1´ι and Q :: J , ā :

1ˆῑ such that I ∩ J = ∅. The result follows by applying a parallel rule of
interfacing and a rule (νa).

Proposition 6

Proof. We actually prove a more general statement: Let (Pj)j∈J be a finite
family of a terms with pairwise disjoint location sets, let R be an equiva-
lence over

⋃
j∈J L(Pj). For each i ∈ I, assume a family of type derivations

(Πi,j : Pj ⊢ Γi,j)j∈J that globally respects R, that is such that for all (ℓ, m) ∈ R,
with ℓ ∈ L(Pj) and m ∈ L(Pk), either polPj

ℓ = polPk
m and Πi,j(ℓ) = Πi,k(m),

or polPj
ℓ = ¬polPk

m and Πi,j(ℓ) = Πi,k(m)⊥. Then there is a family of deriva-
tions (Πj : Pj ⊢ Γj)j∈J that globally respects R and a family of type substitu-
tions (σi)i∈I such that for each i, j we have Γi,j = Γjσi. The statement of the
proposition is the case where J is a singleton.

If I or J is empty, then the result holds trivially, so we can assume that they
are not. We proceed by induction on the multiset of the sizes of the Pi.

– If each Pj is a forwarder aj⊸b̄j , then for each i ∈ I we have Γi,j = aj :
A⊥

i , b̄j : Ai for some formula Aj . We can thus assume that (aj , b̄j) ∈ R for
each j ∈ J . Let S be the equivalence relation over J such that (j, k) ∈ S

if (aj , ak) ∈ R or (aj , b̄k) ∈ R. By hypothesis, for each i ∈ I the family
(Πi,j)j∈J globally respects R, so for all (j, k) ∈ S we have Aj = Ak. For
each equivalence class A of J , pick a fresh type variable αA. For each j ∈ J ,
define Γj = aj : α⊥

̄ , b̄j : α̄, and for each i ∈ I define σi as the substitution
that maps each α̄ to the formula Aj . Then the families (Γj)j∈J and (σi)i∈I

are appropriate solutions.

– If some Pj has the shape (νa)P ′, then the last rule of any type derivation
of Pj is a cut rule, so we can decompose Pj as (νa)(Q | Q′). For each i ∈ I
we have a derivation

Q ⊢ ∆i, a : Ai Q′ ⊢ ∆′
i, ā : A⊥

i

(νa)(Q | Q′) ⊢ ∆i, ∆
′
i

(cut)

for some ∆i, ∆
′
i, Ai with Γi,j = ∆i, ∆

′
i. Since a and ā must have opposite

types, we can assume that the equivalence R contains the pair (a, a′). Then
we can apply the induction hypothesis to the family obtained by replacing
each Πi,j : Pj ⊢ Γi,j by the derivations of Q ⊢ ∆i, a : Ai and Q′ ⊢ ∆′

i, ā : A⊥
i ,

under the same constraint R. This way, we get two types ∆ and ∆′, a formula
A and a family of substitutions σi such that ∆i = ∆σi, ∆′

i = ∆′σi and
Ai = Aσi, and derivations of Q ⊢ ∆, a : A and Q′ ⊢ ∆′, ā : A⊥. The fact
that the types a and ā match is guaranteed by the constraint in R. We
conclude using the same family of transitions, replacing the derivations for
Q and Q′ by a derivation of Pj ⊢ ∆, ∆′.

– If some Pj has the shape a(z1 . . . zn).P ′, then the last rule of any type deriva-
tion is a n-ary tensor rule, so we can decompose P as a(z).

∏n
k=1 Qk, and

for each i ∈ I we have a derivation

{
Qk ⊢ ∆k, zk : Ai,k

}n

k=1

a(z).
∏n

k=1 Qk ⊢ (∆i,k)n
k=1, a :

⊗n
k=1 Ai,k

(⊗)

We can conclude by induction hypothesis on the family obtained by replac-
ing, for each i ∈ I, the derivation Πi,j : Pj ⊢ Γi by the derivations of the
Qk ⊢ ∆k, zk : Ai,k.

– If some Pj has the shape ā(z).P ′, we conclude as above using a par rule.

No other case may occur, because of the typability constraint, since the family
of type derivations is supposed to be non-empty.

Lemma 3. For all typed term (νa)(āℓ(ζ).P | am
⊸b̄n) ⊢ Γ, b̄ : A we have the

typing b̄n(ζ).P ⊢ Γ, b̄ : A

Lemma 4. Let Π : P ⊢ Γ be a type derivation and let P →c
ex P ′ be an execution

step. Then there is a type derivation Π0 : C[R] ⊢ Γ , where C[] is a context made
of parallel compositions and hidings, such that Π →∅

sc Π0, P ≡ C[R] and the

typing of R has the form

ā0(ζ).S ⊢ Γ, ā0 : A⊥ π1

...

(cut)

πn

[· · ·] ⊢ Γ, ān : A⊥
(cut)

an(ζ̄).T ⊢ ∆, an : A

R ⊢ Γ,∆
(cut)

for some n ≥ 0, where πi is the derivation of ai−1⊸āi ⊢ ai−1 : A, āi : A⊥ by an
axiom rule, and with

R = (νan)(· · · (νa1)((νa0)(ā0(ζ).S | a0⊸ā1) | a1⊸ā2) · · · | an(ζ̄).T).

Proof. Consider the set of all type derivations that can be reached from the
typing of P by commutation between cuts and commutativity steps. For contra-
diction, assume that this set does not contain a derivation for a term C[R] of
the appropriate form. Choose a derivation Π that contains a sub-tree Π1 of the
form

ā0(ζ).S ⊢ Γ, ā0 : A⊥ π1

...

(cut)

πk

[· · ·] ⊢ Γ, āk : A⊥
(cut)

for a maximal k. The derivation Π must contain an introduction rule Π2 for
ak : A. Moreover, the sub-tree above and this introduction must be sub-trees of
the premisses of a cut Π3 between āk : A⊥ and ak : A. The considered execution
step of P involves ak and āk, so these names cannot be prefixed by actions, hence
the corresponding sub-trees Π1 and Π2 can only be above cut rules in Π. By
commutation steps, we can thus bring Π1 and Π2 as premisses of the cut rule
Π3, which contradicts the maximality of k.

Theorem 1

Proof. By lemma 3, there is a type derivation Π0 : C[R] ⊢ Θ where R has the
shape of the statement of the lemma. Call ΠR the sub-tree of Π0 that types
R. On ΠR we can apply logical cut elimination steps to eliminate the axioms
π1, . . . , πn, which leads to

ΠR →(ā0,a0)
sc · · · →(ān−1,an−1)

sc

ān(ζ).S ⊢ Θ, ān : A⊥ an(ζ̄).T ⊢ ∆, an : A

(νan)(ān(ζ).S | an(ζ̄).T) ⊢ Θ,∆
(cut)

The premisses of the last cut rule are introduction rules for the formulas A and
A⊥. Hence the formula A can be decomposed as

⊗k
i=1 Ai and the premisses are

S ⊢ Θ, {zi : A⊥
i }

k
i=1

ān(z1 . . . zk).S ⊢ Θ, ān : A⊥
(`)

{
Ti ⊢ ∆i, z̄i : Ai

}k

i=1

an(z̄1 . . . z̄k).T ⊢ ∆, an : A
(⊗)

with ∆ = ∆1, . . . ,∆k and T = T1 | · · · | Tk. By a logical cut elimination step,
annotated (ān, an), we get a derivation of

R′ = (νz1)(· · · (νzk)(S | Tk) · · · | T1) ⊢ Θ,∆

We can easily check that the reduction R →c
ex R′ holds, up to structural con-

gruence, hence P ≡ C[R] →c
ex C[R′]. By proposition 9, this implies C[R′] ≡ P ′.

C Proofs on the wireless proof net and reductions

Proposition 13. Let Π a MLLu sequent calculus proof. If we write R̃ the trans-
formation of cut wires of a proof net R in a cut-node set of a wireless proof net

obtained by erasing, then we have [̃Π] = JΠK i.e. wireless proof nets are proof
nets without wires. If R = JΠK then there exists C a subset of the complement
graph of R such that R ∪ C = [Π].

As consequence of the contractility property, a paired graph is connected (i.e.
as usual, the undirected underlying graph is connected) if and only if it rewrites
to a single node (possibly with loops) by the previous rewriting system. A paired
graph is acyclic if and only if it rewrites without loops by the previous rewriting
system.

Proposition 14. Proof nets and wireless proof nets with empty cut-node set are
contractile.

Proof. Easy by induction on proof nets and wireless proof net.

Examples of cut-choice. If there is A ∈ CR such that for all cut-paths ρ of
label A, the paired graph R∪ρ is cyclic, then there is no cut-choice in R because
of the contractibility condition required.

Another similar example is when we consider for a given B ∈ CR, the com-
plete graph KB whose nodes are in CB . If there is A ∈ CR such that for all
cut-paths ρ of label A, the paired graph R ∪ (∪B∈C

R
\AKB) ∪ ρ is disconnected,

then there is no cut-choice in R because of the contractibility condition required.
Definitions 15 and 20 imply what follows:

Lemma 5. Let Π a type derivation such that JΠK ⇒CA
R′, then there is a

sequence of cut elimination steps such that Π →c
sc Π ′ and R′ = JΠ ′K.

Example of permutation equivalence. Let R be a wireless proof net with
{ni}

k
i=1 conclusion nodes labelled respectively Ai. Let R ∪ v be a wireless proof

net extending R with a tensor node v whose incoming edges are from {ni}
k
i=1.

Each permutation σ of the total order over the incoming edges of v preserving
the label F = �k

i=1Ai of v gives an equivalent wireless proof net. E.g. if for all
i ∈ {1, . . . , k} we have Ai = A then permutations of {1, . . . , k} give equivalent
wireless proof nets.

✓
✒

✏
✑Rt

❆
❆

. . .

t✁
✁

t
≃

✓
✒

✏
✑Rt

❆
❆

. . .

t✁
✁

t. . .

σ

