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On optimal swinging of the biped arms

Y. Aoustin and A. M. Formal’skii

Abstract— A ballistic walking gait is designed for a planar
biped with two identical two-link legs, a trunk and two one-
link arms. This seven-link biped is controlled via impulsive
torques at the instantaneous double support to obtain a cyclic
gait. These impulsive torques are applied in six inter-link joints.
Then infinity of solutions exists to find the impulsive torques. An
energy cost functional of these impulsive torques is calculated to
choose a unique solution by its minimization. Numerical results
show that for a given time period of the walking gait step and
a length of the step, there exists an optimal swinging amplitude
of arms. For this optimal motion of the arms, mentioned above
cost functional is minimum.

I. INTRODUCTION

Biped robots belong to the family of mechanical systems,
which use the environment for their displacements. In con-
sequence, their interaction with the ground is essential and
many characteristics, problems have to be taken into account,
underactuated [1], [2] or over actuated phases [16], impacts
[9], [10], [14], balancing stability, [4], stability of cyclic
motion, [1], [11], [12], [15]. In future many applications
such as medical assistance, inspection or manipulation tasks
in human environment would be entrusted to biped robots.
Another role could be to understand some characteristics
of the human walking. But it is difficult to use human as
experimental testbed to understand the dynamics of the walk
because the friction effects in joints are quasi null for human,
the energetic cost of producing muscle forces is complex to
analyze [8], the human walking gaits are the results of a com-
plex orchestration of muscle forces, joint motions, and neural
motor commands. However, from the mechanical point of
view, the design of reference trajectories for bipeds, passive
walking biped descending a gentle slope under gravity or
ballistic walking bipeds can help to do some correlations
with human experiments about the existence of a symmetry
for the link motions, exchange of energy, displacement of the
body mass center. If human and animal motions comprise
alternating periods of muscle activity and relaxation, then it
is logical to consider problem of purely ballistic swing phases
and double support phases with impulsive inter-link torques.
Similar statement of the problem is proposed in [9], [10],
[17] and [15]. Perhaps this kind of motion with ballistic parts
and impulsive torques appears to be less energy consuming,
[10].

Chevallereau et al [6] verify that when the motion velocity
of the legged robot becomes important it is cheaper to run
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than to walk from the energy point of view. In [7], authors
show that model results and experimental data both support
the proposition that the primary function of the arms during
gait is to reduce fluctuations in angular momentum. The
orientation of the trunk, the varying length of the step can
improve the stability of a cyclic walking gait [1], [2]. The
ballistic running was considered by [18] with a study of
symmetry properties of the joint variables and their velocities
during the flight for a biped with massless feet.

We consider an anthropomorphic biped with one-link arms
but without feet (with point feet). The physical parameters for
a biped are chosen from average human data. The contribu-
tion of this paper is to solve a boundary value problem to find
a walking ballistic gait with instantaneous double support and
impulsive torques for this biped and to study the effect of
arms. Furthermore we compute a minimum energy of the
impulsive torques during the instantaneous double support
phase. The research of these minimums is doing in function
of the amplitude of the arms swinging. The impulsive control
torques, which are applied in the inter-link joints between the
neighboring single support phases are described by delta-
functions of Dirac. Of course it is not possible to realize
these impulsive control torques. Therefore, our approach can
be considered as asymptotic. Using this approach we can
evaluate the role of the arms in the walking process.

Section II is devoted to the biped model presentation. Dy-
namic equations are presented, and the physical parameters
of the model are chosen. Problem definition of the ballistic
walking is given, algebraic equations for the instantaneous
double support phase are designed, the methods to find the
ballistic swing motion and to solve the algebraic equations
are described in Section III. The calculation of the energy
cost functional for the impulsive control is recalled in Sec-
tion IV. Some interesting results, which are obtained from
numerical investigations are presented in Section V. Our
conclusion and perspectives are offered in Section VI.

II. BIPED MODEL

We describe here the equations of motion of the biped
walking gait, which is composed of alternating single support
and instantaneous double support phases.

A. Equations of motion of the biped in single support phase

The studied anthropomorphic biped, depicted in Figure 1
has a trunk, two identical one-link arms and two identical
two-link legs. Its motion takes place in the sagittal plane.
It has no feet. All bodies (links) are supposed massive
and rigid and are connected by revolute joints. The two
Cartesian coordinates x, y of the hip joints and the seven



Fig. 1. Biped’s diagram in the sagittal plane: Generalized Coordinates,
Forces Applied to the Leg Tips.

orientation angles q = (q1, q2, q2, q3, q4, q5, q6, q7)∗ 1 of the
legs, torso and arms define vector X of the nine generalized
coordinates. The vector Γ = (Γ1, Γ2, Γ3, Γ4, Γ5, Γ6)∗ with
six components denotes the applied torques in the hip joints,
knee joints and shoulder joints. Let Rj = (Rjx, Rjy)∗ be
the force applied to the point foot j. When leg j is on the
ground, then Rj is the ground reaction. If leg j is the swing
leg, then Rj = 0.

Using the second Lagrange method, the equations of
motion of the planar seven-link biped in the swing phase
are obtained and they have the following well-known matrix
form, for supporting leg j = 1 or 2,

A(q)Ẍ + H(q, q̇) = DΓ + J∗
j (q)Rj . (1)

Here A(q) is the symmetric, positive definite 9 × 9 inertia
matrix; H(q, q̇) is the 9×1 vector of the centrifugal, Coriolis
and gravity forces; D is a 9 × 6 fixed matrix, consisting
of zeros and units; Jj(q) is the 2 × 9 Jacobian matrix of
constraint functions. These constraints are relative to the
contact between the ground and the tip of the stance leg
j. Setting null acceleration condition of the stance leg tip

Jj(q)Ẍ + Hj(q, q̇) = 0 (2)

implies that both horizontal and vertical coordinates of that
leg tip does not change, if its initial velocity is null. Hj(q, q̇)
is a 2 × 1 vector. Thus, in the single support the number of
degrees of freedom is seven, but there are only six torques.
This means that the biped is an under actuated mechanism
during the single support phase.

B. Double Support

During the biped’s gait, the impact occurs at the end
of a single support phase, when the swing leg tip touches
the ground. At the instant of impact, denoted by T , the
double support phase is assumed instantaneous. We check
this assumption a postiori in simulation. At the instant of
the passive inelastic impact, the mechanism looses energy.
Therefore, the velocity after the impact will not be the
desired one, if the bearing surface is horizontal. Then for
the next ballistic half step the desired initial velocity will

1Notation ∗ means transposition.

Fig. 2. Initial and final configurations of the biped.

not be reached. In consequence, a complete walking cyclic
gait of the biped cannot be realized on a horizontal surface
without active torques [11]. However, theoretically, around
the instantaneous double support it is possible to define
impulsive torques in order to ensure the desired velocity
jump, see [13] and [6]. In Subsection III-B, it is shown how
to define these impulsive torques.

C. Physical parameters of the biped

For the seven-link biped we use the physical parameters
from [10]. The whole mass of the biped is 75 kg, its height
is 1.75 m. The masses and the lengths of its seven links
(Figure 1), are: m1 = m5 = 4.6 kg, m2 = m4 = 8.6 kg,
m3 = 16.5 kg, l1 = l5 = 0.497 m, l2 = l4 = 0.41 m,
l3 = 0.625 m, l6 = l7 = 0.66 m.

The distance between the knee joint and the mass center of
the shin is: s1 = s5 = 0.324 m, between the hip joint and the
mass center of thigh is: s2 = s4 = 0.18 m, between the hip
joint and the mass center of the trunk is: s3 = 0.386 m and
between the shoulder joint and the mass center of the arm
is: s6 = s7 = 0.33 m. The distance between the shoulder
joints and the hip joints is: sb = 0.35 m.

The inertia moments around the mass center of each link
are: B1 = B5 = 0.0521 kg.m2, B2 = B4 = B6 = B7 =
0.7414 kg.m2, B3 = 11.3 kg.m2.

III. PROBLEM DEFINITION OF BALLISTIC MOTION AND

IMPULSIVE CONTROL

A. Single support

Let X(0) = [x(0), y(0), q(0)] be the initial configuration
of the biped at time t = 0. We assume the front and hind
legs are a stance and swing legs correspondingly. The final
configuration of the biped in the single support phase at a
given time t = T is noted X(T ) = [x(T ), y(T ), q(T )].
This configuration is similar to the initial configuration with
the swapping legs. In Figure 2, both boundary configurations
X(0) and X(T ) are shown. The left pose is the initial
configuration, the right pose is the terminal configuration.

Let L be the length of the half step corresponding to a
single support. We consider a ballistic motion during the
single support phase with Γ = 0. Consequently the equation



Fig. 3. Decomposition of the impulsive impact.

(1) for ballistic motion becomes,

A(q)Ẍ + H(q, q̇) = J∗
j (q)Rj . (3)

To design the ballistic walking it is necessary to find the
solution X(t) = [x(t), y(t), q(t)] of system of equations (3)
and (2) with the given boundary conditions X(0) and X(T ).
We have to find the initial velocity vector Ẋ(0) such that
X(t) reaches the given final configuration X(T ) at a given
time T . This boundary value problem can be numerically
solved using a Newton method with Ẋ(0) unknown. The
motion of the biped is admissible, if the vertical component
of the ground reaction is positive (is directed upwards) and
if the swing leg moves over the ground as 0 < t < T . These
constraints are checked after the boundary value problem
solving.

After solving the boundary value problem the vector of
initial velocities Ẋ(0) becomes known. We denote it by Ẋa.
If initial conditions X(0), Ẋa are known, then by integration
of the system (3), (2) the vector of the terminal velocities
Ẋ(T ) can be found also. We denote it by Ẋb.

B. Double support

Let us consider the current ballistic motion on the stance
leg 1 and the following ballistic motion on the stance leg 2.
The final velocity vector Ẋb of the current ballistic swing
motion and the initial velocity vector Ẋa of the next ballistic
swing motion are known from the solution of the boundary
value problem and the numerical integration of the equations
of motion (3), (2). Let us apply the impulsive torques with
the intensity vectors I− and I+ respectively just before and
just after the impact to create a complete cyclic motion. Then
we divide the double support into three sub-phases and detail
these sub-phases, which are presented in Figure 3.

• The swing leg 2 touches the ground at the end of the
ballistic single support motion on the leg 1, and an
impact occurs. Just before the touching the ground, in
the first sub-phase at time T − = T − 0, impulsive
torques Γ−(t) = I−δ(t − T−) are applied at the inter-
link joints. At the same instant T − the impulsive ground
reaction R−

1 = I−R1
δ(t − T−) is applied in the hind

leg tip. Here δ(t − T −) is the Dirac delta-function.
I−R1

(I−R1x
, I−R1y

) is the vector of the magnitudes of the
impulsive reaction in the leg 1. Under the impulsive
torques, the velocity vector Ẋ of the biped changes
instantaneously from the value Ẋb to some value Ẋ−.
The corresponding equations for the velocities jump can
be obtained through integration of equations of motion

(1), (2) for the infinitesimal time from T − 0 to T . The
torques provided by the Coriolis and gravity forces have
finite values. Thus, they do not influence the velocity
jump:

A[q(T )](Ẋ− − Ẋb) = DI− + J∗
1 [q(T )]I−R1

J1[q(T )]Ẋ− = 02×1
(4)

Here q(T ) denotes the configuration of the biped at
the instant of impulsive actions (at the double support).
This configuration does not change at the instants of the
first, second and third sub-phases. The second equality
(4) means that the velocity of the hind leg tip remains
zero after the first sub-phase. The biped has the velocity
vector Ẋ− just before the next sub-phase, which is
passive impact.

• The second sub-phase is assumed to be a passive impact,
i.e. without torques applied in the inter-link joints,
absolutely inelastic and that the legs do not slip. Given
these conditions, the ground reactions at the instant
of an impact can be considered as impulsive forces
and defined by the delta-functions Rj = IRj δ(t − T )
(j = 1, or 2). Here IRj (IRjx , IRjy ) is the vector of
the magnitudes of the impulsive reaction in the leg j,
see [10]. The corresponding equations for the velocities
jump can be obtained through integration of the matrix
motion equation (1) for the infinitesimal time. The
velocity of the stance leg tip 1 before an impact equals
to zero (see the second equation in (4))

Generally speaking, two results are possible after
the impact, if we assume that there is no slipping of
the leg tips. The stance leg lifts off the ground or both
legs remain on the ground. In the first case, the vertical
component of the velocity of the taking-off leg tip just
after the impact must be directed upwards. Also there
is no interaction (no friction, no sticking) between the
taking-off leg tip and the ground. The ground reaction
in this taking-off leg tip must be null. In this case, the
impact equations can be written in the following matrix
form:

A[q(T )]
(
Ẋ+ − Ẋ−

)
= J∗

2 [q(T )]IR2 (5)

Here Ẋ+ is the velocity vector just after an inelastic
impact. The swing leg 2 after the impact becomes a
stance leg. Therefore, its tip velocity becomes zero after
the impact,

J2[q(T )]Ẋ+ = 02×1 (6)

In the second case, the both legs remain on the
support after the passive impact. The ground produces
impulsive reactions and their vertical components in
both legs have to be directed upwards. But we consider
the first case only. To do this we take into account the
corresponding conditions: the vertical components of
the velocity vector of the hind leg tip and of the ground
reaction in the front leg have to be directed upwards.



• The swing leg 1 takes off the ground at the second sub-
phase, which is passive impact. After the next ballistic
single support motion on the leg 2 starts. Just after the
take off, in the third sub-phase at time T + = T + 0,
impulsive torques Γ+(t) = I+δ(t − T +) are applied
in the inter-link joints to change the velocity of the
biped instantaneously from the velocity vector just after
passive impact Ẋ+ to the known velocity vector Ẋa.
Integrating the differential equations (1) we come to the
following matrix relation:

A[q(T )](Ẋa − Ẋ+) = DI+ + J∗
2 [q(T )]I+

R2
(7)

System (4)-(7) is composed of 31 scalar equations to
find 36 unknown variables, which are the components of
the vectors: Ẋ−, I−, I−

R2
, Ẋ+, IR2 , I+ and I+

R2
. Then

infinity of solutions exists to solve this problem of impulsive
control. But if the number of the equations is less than
the number of unknown variables, it is possible to extract
a unique solution minimizing some cost functional. The
components of mentioned above vectors are subjects of
minimization. Among this set of components five can be
defined as parameters to minimize a cost functional. In the
next Section IV, the chosen cost functional is presented. But
solving system (4) - (7) it is necessary to take into account
that the vertical component of the ground reactions can be
never directed downwards. The vertical component of the
hind leg tip velocity at the instant of take-off has to be
directed upwards also.

IV. ENERGY COST OF IMPULSIVE CONTROL

We assume that the actuators are not regenerative (energy
cannot be restored in the drives). Then the motion energy
cost functional is defined as in [5], [10] and [6]:

W =

T+0∫

T−0

| Γ∗θ̇ | dt (8)

If the mentioned above assumption is relaxed, then the cost
functional must be changed. But this is a problem to choose
the corresponding functional.

In our case with impulsive torques, the cost functional (9)
can be expressed as:

W =
6∑

i=1

⎡
⎣

T∫

T−0

∣∣∣Γ−
i (t)θ̇i(t)

∣∣∣ dt +

T+0∫

T

∣∣∣Γ+
i (t)θ̇i(t)

∣∣∣ dt

⎤
⎦ (9)

where the joint variables θi are such as:

θ1 = q2 − q1 + π, θ2 = q3 − q2 + π,
θ3 = q3 − q4 + π, θ4 = q4 − q5 + π,
θ5 = q3 − q6 + π, θ6 = q3 − q7 + π.

The calculation of the integrals in the expression (9) leads
[10] to the following formulas:

W =
6∑

i=1

(
W−

i + W+
i

)
(10)

with

W−
i =

∣∣∣∣∣I−i
θ̇i(T−) + θ̇i(T )

2

∣∣∣∣∣ if θ̇i(T−)θ̇i(T ) ≥ 0

W−
i =

∣∣∣∣∣∣I
−
i

θ̇2
i (T−) + θ̇2

i (T )

2
[
θ̇i(T−) − θ̇i(T )

]
∣∣∣∣∣∣ if θ̇i(T−)θ̇i(T ) < 0

W+
i =

∣∣∣∣∣I+
i

θ̇i(T ) + θ̇i(T +)
2

∣∣∣∣∣ if θ̇i(T )θ̇i(T +) ≥ 0

W+
i =

∣∣∣∣∣∣I
+
i

θ̇2
i (T ) + θ̇2

i (T
+)

2
[
θ̇i(T ) − θ̇i(T +)

]
∣∣∣∣∣∣ if θ̇i(T )θ̇i(T +) < 0

In simulation, with given length and time period of the
step, for each arms amplitude, we choose a unique solution
of the system (4) - (7) by minimizing the quantity (10).

V. SIMULATIONS

For several values of the length step and of the time period,
we study here numerically the influence of the arm swinging
on the energy cost of biped walking.

In Figure 4, the energy consumption as function of the
amplitude of the arms swinging is shown for a fixed length of
the half step L = 0.45 m and different time periods. All these
curves correspond to the ballistic motions. In the boundary
configurations of these motions, the legs are straight. The
initial angle of the trunk inclination q3(0) = 0◦. The initial
angles for the arm q6(0) belong to the interval (0◦, 60◦) and
q7(0) = −q6(0).

By solid line, the curve with the time period T = 0.50 s
and the half step length L = 0.45 m is drawn. We can
see from this Figure 4 that with amplitude 2 × 36.8◦ the
energy consumption is minimal. It means that this amplitude
is optimal one for this case. In Figure 2, the boundary
configurations namely for this case are shown.

By dashed line, the graph with less time period T = 0.45 s
and the same half step length L = 0.45 m is drawn. We can
see from this Figure 4 that the optimal amplitude becomes
less. By dash-dot line, the graph with the larger time period
T = 0.55 s and the same half step length L = 0.45 m is
drawn. It follows from this Figure 4 that optimal amplitude
becomes larger.

In Figure 5, the energy consumption as function of the
amplitude of the arms swinging is shown for the fixed time
period T = 0.50 s and a length half step L varying L =
0.40 m, L = 0.45 m and L = 0.50 m. If the length of the
step increases, the optimal amplitude of the arms swinging
decreases.

Thus, if the velocity of the biped walking decreases, the
optimal amplitude of arms swinging increases.

These results complete the study of [7]. We can remark
that for initial and final configurations, drawn in Figure 2
with a deviation of arms, close to the optimal deviation for
a ballistic motion with the half step length L = 0.45 m and
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Fig. 4. For L = 0.45 m, cost functional W versus amplitude motion of the
arms [degrees] T = 0.45 s (dashed), T = 0.50 s (solid), and T = 0.55 s
(dashdot).
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Fig. 5. For T = 0.50 s, cost functional W versus amplitude motion
of the arms [degrees] L = 0.40 m (dashed), L = 0.45 m (solid), and
L = 0.50 m (dashdot).

the time period T = 0.50 s, the arms are almost parallel to
the legs.

Figures 6-11, correspond to the ballistic motion with the
time period T = 0.50 s and the half step length L = 0.45 m
for the optimal amplitude of the arms swinging. In Figure 6,
a plot of ballistic walking as a sequence of stick figures is
shown. The swing leg moves over the support and bends
with knee forward. The stance leg remains almost straight
during the half step. These features haven’t been prescribed
in the statement of the problem previously. In the boundary
configurations (see Figures 2, 6), the legs are straight; the
initial angle of the trunk inclination q3(0) = 0◦; the initial
angles for the arms q6(0) = −q7(0) = 36.8◦. Figures 7-9
show the behavior of the seven joint variables, Figures 10,
11 show the Cartesian position of the hip and the ground
reaction components.

The absolute orientation of the stance tibia has a monotone
evolution, which is well-known for a biped in its sagittal
motion [2]. The trunk makes one vibration during one half
step. Its motion is almost sinusoidal during the half step.
The hip motion is similar to those of a human [3]. Figure 11
proves that the ballistic motion is valid because the vertical
component of the ground reaction in the supporting leg is

Fig. 6. Sequence of stick figures.
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Fig. 7. Orientations [degrees] of tibias q1 for the stance leg and q5 for
the swing leg versus time [seconds].

always positive.
The vertical displacement of center of mass (CoM) of

the biped is less than 3.5 cm for all amplitudes of the arm
swinging: from 0◦ to 120◦. The horizontal displacement of
the CoM is not sensitive to the motion amplitudes of the
arms.

Note, for the case q3(0) = 0 there are two kinds of
boundary value problem solutions [10]. Following the initial
velocity vector Ẋ(0) the solutions can lead to a symmetrical
evolution of the variables relative to the time instant T/2 or
a non-symmetrical, which is the case here.
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Fig. 8. Orientations [degrees] of the trunk q3 and of femurs, q2 for the
stance leg and q4 for the swing leg versus time [seconds].
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Fig. 9. Orientations [degrees] of arms, q6 and q7 versus time [seconds].
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Fig. 10. Evolutions [meters] of Cartesian coordinates for the hip joints
versus time [seconds].

VI. CONCLUSION

Using ballistic trajectories and an impulsive control, nu-
merically we have shown an existence of optimal amplitude
of the arms swinging. The energy consumption for the
walk is minimal, if the arms swing with this amplitude.
If the velocity of the biped walking decreases, the optimal
amplitude of arms swinging increases. The perspective is to
extend the obtained results for a 3D biped model.
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