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S U M M A R Y

The aim of the paper is to emphasize the importance of accounting for the Fresnel volume and

for the Interface Fresnel zone (IFZ) for calculating the amplitude of the P wave emanating from

a point source and recorded at a receiver after its specular reflection on a smooth homogeneous

interface between elastic media. For this purpose, by considering the problem of interest as a

problem of diffraction by the IFZ, that is, the physically relevant part of the interface which

actually affects the reflected wavefield, we have developed a method which combines the An-

gular Spectrum Approach (ASA) with the IFZ concept to get the 3-D analytical solution. The

variation in the reflected P-wave amplitude evaluated with the ASA, as a function of the inci-

dence angle, is compared with the plane wave (PW) reflection coefficient and with the exact

solution provided by the 3-D code OASES, for one solid/solid configuration and two dominant

frequencies of the source. For subcritical incidence angles the geometrical spreading compen-

sation is mostly quite sufficient to reduce the point-source amplitudes to the PW amplitudes.

On the contrary, for specific regions of incidence angles for which the geometrical spreading

compensation is not sufficient anymore, that is, near the critical region and in the post-critical

domain, the ASA combined with the IFZ concept yields better results than the PW theory

whatever the dominant frequency of the source, which suggests that the additional application

of the IFZ concept is necessary to obtain the reflected P-wave amplitude. Nevertheless, as the

ASA combined with the IFZ has been used only for evaluating the contribution of the reflected

wavefield at the receiver, its predictions fail when the interference between the reflected wave

and the head wave becomes predominant.

Key words: amplitude, Fresnel volume, Interface Fresnel zone, P wave, reflected wave,

smooth interface.

I N T RO D U C T I O N

Since many decades geophysicians have developed various theoret-

ical methods to fit the real seismic data, their ultimate goal being to

invert them to retrieve the geometrical and physical characteristics

of the Earth. Since the media heterogeneity can be highly complex,

depending on the seismic frequency range of interest, using the exact

form (in the time domain) of waves emanating from a point source

and being reflected by interfaces (Aki & Richards 2002, chap. 6)

can be a very difficult task for interpreting some seismic obser-

vations. Interpretation of such observations then always relies on

approximations.

The basis of many seismic studies is the ray theory (Cerveny

2001). Under this approximation it is assumed that the high-

∗Deceased on 2007, June 28th

frequency part of elastic energy propagates along infinitely nar-

row lines through space, called rays, which join the source and the

receiver. Ray theory is then strictly valid only in the limit of a hy-

pothetical infinite-frequency wave. As recorded data have a finite

frequency content, it is accepted that seismic wave propagation is

extended to a finite volume of space around the ray path, called the

first Fresnel volume (Kravtsov & Orlov 1990), hereafter denoted

FV. The wave properties are thus influenced not only by the me-

dia structure along the ray, but also by the media structure in the

vicinity of the ray. This well-known limitation of ray theory has re-

ceived broad attention in recent past years. The concept of FV (also

known as physical ray, 3-D Fresnel zone, etc.) is continually being

developed and has found so many applications in seismology and

in seismic exploration, that it is impossible here to review all the

books and articles which pay attention to it in seismic wave prop-

agation. Nevertheless, we shall mention the works of Cerveny and

his co-authors who have proposed two methods for including FV

parameter calculations into the ray tracing procedure in complex
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2-D and 3-D structures. The first one, called the Fresnel volume ray

tracing (Cerveny & Soares 1992), combines the paraxial ray approx-

imation with the dynamic ray tracing and is only applicable to zero-

order waves (direct, reflected and transmitted waves. . .), whereas

the second method, more accurate than the previous one, is based

on network ray tracing (Kvasnicka & Cerveny 1994). Contrary to

the previous methods, the FVs can also be computed without knowl-

edge of the velocity model of the media (Hubral et al. 1993). Note

that analytical expressions for FVs of seismic body waves and for

their intersection with interfaces, called the Interface Fresnel zones

(IFZ), have been derived in Kvasnicka & Cerveny (1996a) and in

Kvasnicka & Cerveny (1996b). Many works have shed new light on

the role of the FVs in the seismic imaging of reflectors. They have

shown that, besides being connected with the resolution of seismic

methods (Sheriff 1980; Lindsey 1989; Knapp 1991), the FVs also

play a role in the migration and demigration processes (Hubral et al.

1993; Schleicher et al. 1997). Moreover, FVs have been applied to

inversion studies of seismic data (Yomogida 1992) and they have

been incorporated into tomographic traveltime inversion schemes

(Vasco & Majer 1993). Note also that in global seismology, sensi-

tivity kernels have been developed for global tomography inversions

to overcome the limitations of ray theory and to account for finite-

frequency effects upon seismic wave propagation (Zhou et al. 2005).

Sensitivity kernels (also known as Fréchet kernels) linearly relate

velocity perturbations of the medium to changes in some seismic

observables (traveltime, waveform, splitting intensity) of the band-

limited waves (Marquering et al. 1999; Dahlen et al. 2000; Dahlen &

Baig 2002; Favier & Chevrot 2003). FVs and sensitivity kernels are

closely connected through the concept of constructive interferences

of waves (Vasco et al. 1995; Spetzler & Snieder 2004).

The variability of the amplitudes of the reflected waves with the

incidence angle is of great interest for many seismological applica-

tions, for instance to constrain localization of reflectors and media

properties. Since the media heterogeneity can be highly complex

in the typical seismic frequency range, and considering that both

source and receivers are usually located far from the interfaces, the

exact form of spherical waves generated by a point source is not con-

venient for interpreting complex seismic observations. A survey of

the literature brings to light that most calculations are generally per-

formed within the framework of monochromatic plane wave (PW)

theory or finite-frequency theory without nevertheless taking into

account the frequency-dependent spatial regions (i.e. FVs) in the

vicinity of the ray. This is justified by the fact that for some typical

configurations and for subcritical incidence angles, the geometri-

cal spreading compensation is mostly quite sufficient to reduce the

point-source amplitudes to the PW amplitudes. On the contrary, for

critical and post-critical incidence angles this compensation is gen-

erally not sufficient anymore, and an additional processing should

be considered. To the best of the authors’ knowledge, a theoretical

study of the FV and IFZ imprint on the reflected wave amplitudes

for critical and post-critical angles has not been developed yet, de-

spite the band-limited nature of seismic data. This is the purpose

and scope of this work.

The paper is divided in two sections. Section 1 is mainly con-

cerned with 3-D analytical derivations. After briefly introducing the

FV and IFZ concepts, we describe the method we used for deriv-

ing the amplitude of the P wave emanating from a point source

and recorded at a receiver after its reflection on a smooth inter-

face between elastic media. As the problem under consideration

can be viewed as a problem of diffraction by the IFZ, that is, the

physically relevant part of the interface which actually affects the

reflected wavefield, we applied the Angular Spectrum Approach

(ASA) (Goodman 1996) to get the 3-D analytical solution. Section 2

investigates the role of the IFZ in the reflected wave propagation,

more specially in the critical and post-critical regions. The variation

in the reflected P-wave amplitude, as a function of the incidence

angle, evaluated with the ASA is compared with the PW reflec-

tion coefficient, and with the exact solution obtained with the 3-D

code OASES (http://acoustics.mit.edu/faculty/henrik/oases.html),

for one solid/solid configuration and two dominant frequencies of

the source.

1 3 - D A N A LY T I C A L D E R I VAT I O N S O F

T H E R E F L E C T E D P - WAV E A M P L I T U D E

1.1 Characteristics of the Interface Fresnel zone

We consider two homogeneous isotropic elastic media in welded

contact at a plane interface characterized by the xy-plane, the ver-

tical z-axis being directed downwards. The point source S(−xS , 0,

−zS) and the receiver R(xS , 0, −zS) are located at a distance zS

from the interface. The source generates in the upper medium a

spherical wave with a constant amplitude. The spherical wave can

be decomposed into an infinite sum of PW synchronous each other

at the time origin. We consider the harmonic PW with frequency

f which propagates in the upper medium with the velocity V P1

from S to R, after being reflected by the interface at the Cartesian

coordinate origin M(0,0,0) in a specular direction θ with respect to

the normal to the interface. Let the traveltime of the ray SMR be

tSMR.

The frequency-dependent spatial region in the vicinity of the ray

SMR which actually affects the wavefield at the receiver R is known

to be the FV corresponding to the source–receiver pair (S, R) and

relative to the specular reflection SMR. By definition, the FV is

formed by virtual points F which satisfy the following condition

(Kravtsov & Orlov 1990):

|t (F, S) + t (F, R) − t (M, S) − t (M, R)| ≤
1

2 f
, (1)

or:

|l (F, S) + l (F, R) − l (M, S) − l (M, R)| ≤
λ1

2
, (2)

where λ1 =
VP1

f
is the wavelength corresponding to the dominant

frequency f of the narrow-band source signal. The quantity t (X, Y )

denotes the traveltime from the point X to the point Y, and l (X, Y )

the distance between X and Y. The boundary of the FV is then given

by the following equation:

|l (F, S) + l (F, R) − l (M, S) − l (M, R)| =
λ1

2
. (3)

Here, it must be specified that, as seismic wavefields are transient

and large-band, it is generally necessary to decompose the source

signal into narrow-band signals for which monochromatic FV can

be constructed for the prevailing frequency of the signal spectrum

(Knapp 1991). The physical meaning of eq. (2), describing the FV

concept, is quite obvious: the waves passing through the diffraction

points F interfere constructively with the specular reflected wave

when the path-length difference is less than one-half of the wave-

length λ1. As is well known, the main contribution to the wavefield

comes from the first FV as the rapid oscillatory responses of the

higher-order FVs and Fresnel zones cancel out and give minor con-

tributions to the wavefield (Born & Wolf 1999). That is why in

our work we restrict ourselves to the first FV which will be simply

referred to as FV.

C© 2007 The Authors, GJI, 171, 841–846

Journal compilation C© 2007 RAS



Influence of the IFZ on wave amplitude 843

Figure 1. Representation in the xz-plane of the Fresnel volume involved in the wave reflection at the point M at a plane homogeneous interface, under the

incidence angle θ . The source S and the receiver R are located at a distance zS from the interface. The classical representation of the Fresnel volume is the

ellipsoid of revolution with foci located at R and at the image source S′ situated symmetrically to the point source S on the other side of interface. The Interface

Fresnel zone is characterized by the intersection of the ellipsoid of revolution (Fresnel volume) with the interface plane.

The IFZ is defined as the cross-section of the FV by an interface

which may not be perpendicular to the ray SMR. If the source S and

the receiver R are situated at the same distance from the interface,

the IFZ is represented by an ellipse centred at the reflection point M.

The common way of determining the size of the IFZ is to consider

the FV represented by the ellipsoid of revolution with foci at the

receiver R and at the image source S′ situated symmetrically to S on

the other side of interface (Fig. 1). The boundary of this FV is then

given by the following equation:

|l(F, S′) + l(F, R) − l(M, S′) − l(M, R)| =
λ1

2
, (4)

or in the Cartesian coordinates (x, y, z) after some straightforward

calculations:

(x sin θ − z cos θ )2

(

zS

cos θ
+ λ1

4

)2
+

y2 + (x cos θ + z sin θ )2

λ1

2

(

zS

cos θ
+ λ1

8

) = 1. (5)

The boundary of the IFZ is then obtained from the formulation

of the ellipsoid of revolution, eq. (5), equating the variable z to zero:

x2

r ‖2
+

y2

r⊥2
= 1, (6)

where the in-plane semi-axis r‖, corresponding to the plane of inci-

dence, and the transverse semi-axis r⊥, corresponding to the direc-

tion perpendicular to the plane of incidence, of the IFZ are expressed

as (Kvasnicka & Cerveny 1996a):

r ‖ =

[

λ1

2

(

zS

cos θ
+

λ1

8

)]
1
2

[

1 −
z2

S tan2θ
(

zS

cos θ
+ λ1

4

)2

]− 1
2

,

r⊥ =

[

λ1

2

(

zS

cos θ
+

λ1

8

)]
1
2

. (7)

The characteristics of the IFZ depend on the position of the source–

receiver pair, and also on the incidence angle of the ray SM. More-

over, larger portions of the interface (reflector) are involved for low-

frequency than for high-frequency components of the wavefield. It

is also well known that a perturbation of the medium actually affects

the reflected wave when this perturbation is located inside the IFZ.

1.2 Analytical expression for the reflected P-wave

amplitude

We consider the same previous configuration. Let the orthotropic

source be located at the point S, far from the plane interface be-

tween two homogeneous isotropic elastic media. The spherical

P wave emanating from the source propagates obliquely in the upper

medium and strikes the interface. It is then reflected from the inter-

face and finally recorded at the receiver located at the point R, far

from the interface. Our objective is to calculate the amplitude of the

reflected wavefield measured at the receiver, by accounting for the

FV and the IFZ which physically contribute to the wave propagation

process.

The problem under consideration can be viewed as a problem of

diffraction by the physically relevant part of the interface (namely,

the IFZ). We chose to apply the ASA (Goodman 1996) to get the 3-D

analytical solution to this problem. The motivations of this choice are

twofold. Provided the spherical wavefield is decomposed by Fourier

analysis into a linear combination of elementary plane wavesurfaces,

travelling in different directions away from the source, the effect of

propagation over distance is simply a change of the relative phases of

the various plane wavesurface components. Moreover, despite their

apparent differences, the ASA and the first Rayleigh-Sommerfeld

solution (Goodman 1996, chap. 3, p. 47) yield identical predictions

of diffracted fields (Sherman 1967). The advantage of using the

ASA then seems obvious: it permits straightforward derivations of

the measured amplitude of the reflected wave at the point R. We

refer to the book of Goodman (Goodman 1996, chap. 3, pp. 55–61)

for a detailed treatment of the ASA.

When using the ASA, we have to remind that it is a technique for

modelling the propagation of acoustic fields between parallel planes.

Considering the case of the field reflection from an oblique interface

then requires several steps including rotational transformation of

C© 2007 The Authors, GJI, 171, 841–846
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complex amplitudes in the Fourier domain. This step which is the

most essential and significant operation in the problem of interest

here causes various problems. The non-linearity of the rotational

transformation has to be taken into account and a Jacobian must

be introduced. The rotational transformation also causes numerical

problems, more specifically the distortion of equidistant sampling

grid of the field and a shift in the centre frequency in the resulting

spectrum, which makes the standard Fast Fourier Transform (FFT)

algorithm inapplicable. Efficient solutions to these problems can

be found in (Matsushima et al. 2003). We refer to the paper of

Matsushima and his collaborators for a detailed treatment of these

solutions.

The procedure of the method we used to get the amplitude of the

reflected wavefield measured at the receiver can be summarized as

follows. At the interface z = 0, and more precisely within the IFZ,

the amplitude U generated by the point source S and diffracted by

the IFZ has a 2-D Fourier transform given by:

A
(

fx , fy, 0, θ
)

=

∫ ∫ +∞

−∞

U (x, y, 0, θ ) exp
[

− j2π
(

fx x + fy y
)]

dxdy (8)

where U (x, y, 0, θ ) = e
j

2 π f
VP1

RM

RM
H (x, y, θ ) with RM =

√

x2 + y2 + z2
I and z I = z S/cos θ .

The function H (x, y, θ ) represents the size of the IFZ which is

a function of the incidence angle θ :
{

H (x, y, θ ) = 1 if (x, y) ∈ I F Z

H (x, y, θ ) = 0 if (x, y) /∈ I F Z

The term A
(

fx , fy, 0, θ
)

represents the plane wave decompo-

sition of the incident wavefield, that is, the angular spectrum. The

direction cosines of each plane wave associated with the frequencies

(f x, f y) are given by (Goodman 1996):

α = λ1 fx , β = λ1 fy, γ =
√

1 − α2 − β2.

As the incident wavefield is reflected from the interface, the an-

gular spectrum of the resulting wavefield is obtained by multiplying

A
(

fx , fy, 0, θ
)

by the classical plane wave reflection coefficient

R
(

fx , fy, θ
)

given by Zoeppritz equations (Aki & Richards 2002):

AR( fx , fy, 0, θ ) = A( fx , fy, 0, θ ) R( fx , fy, θ ). (9)

The reflection coefficient takes into account the fact that the

central ray is incident on the interface under the incidence angle

θ . The angular spectrum AR( f̃x , f̃y, 0, θ ) is then calculated from

AR( fx , fy, 0, θ ) for the interface plane rotated by θ clockwise about

the origin M. This plane is perpendicular to the specularly reflected

ray passing through the point M. At this step, we must multiply

the angular spectrum AR( f̃x , f̃y, 0, θ ) by the Jacobian J ( f̃x , f̃y, θ )

resulting from the rotational transformation in order to get the cor-

rect energy of each plane wave component. The resulting angular

spectrum in the rotated plane is:

ÃR( f̃x , f̃y, 0, θ ) = AR( f̃x , f̃y, 0, θ ) |J ( f̃x , f̃y, θ )|. (10)

We must also apply a method of interpolation to obtain an equidis-

tant sampling grid of the spectrum, as suggested in (Matsushima

et al. 2003). The angular spectrum ÃR( f̃x , f̃y, 0, θ ) is then prop-

agated to the parallel plane passing through the receiver R. The

resulting spectrum is expressed as:

ÃR( f̃x , f̃y, −zS, θ ) = ÃR( f̃x , f̃y, 0, θ ) exp

[

j 2πγ
z I

λ1

]

. (11)

Table 1. Properties of the homogeneous, isotropic, and elastic media in con-

tact. ρ, V P and V S denote, respectively, the density, P- and S-wave velocities

for the upper (subscript 1 in the text) and lower media.

Properties V P (m s−1) V S (m s−1) ρ (kg m−3)

Upper medium 4000 2000 2000

Lower medium 5200 2500 2400

By using inverse Fourier transform, we get the amplitude of the

reflected wavefield:

UR(x̃, ỹ, −zS, θ )

=

∫ ∫ +∞

−∞

ÃR( f̃x , f̃y, −zS, θ ) exp[ j2π ( f̃x x̃ + f̃y ỹ)]dx̃ dỹ.

(12)

Since the receiver is located at the centre of the plane, the am-

plitude of the reflected wavefield at the receiver is finally given by

UR (0, 0, −zS, θ ).

2 C O M PA R I S O N W I T H T H E E X A C T

S O L U T I O N A N D W I T H T H E P L A N E

WAV E T H E O RY P R E D I C T I O N

The aim of this section is to evaluate the importance of using the

band-limited data concept, based on the IFZ, in order to simulate

the amplitudes of the reflected waves recorded at receivers. For

this purpose, it is instructive to compare the variation in the ampli-

tude obtained with our approximation (ASA combined with the IFZ

concept), as a function of the incidence angle, with the amplitude

predicted by a numerical code which provides the exact solution,

and with the amplitude predicted by the classical PW theory [here,

the Zoeppritz equations (Aki & Richards 2002)]. We used the 3-

D code OASES (http://acoustics.mit.edu/faculty/henrik/oases.html)

to compute accurately synthetic seismograms in media. OASES is

a general purpose computer code for modelling seismo-acoustic

propagation in horizontally stratified media using wavenumber in-

tegration in combination with the Direct Global Matrix solution

technique (Schmidt & Jensen 1985; Schmidt & Tango 1986; Jensen

et al. 1994). In seismology, the wavenumber integration methods

are often referred to as reflectivity methods or discrete wavenum-

ber methods (Fuchs & Muller 1971; Bouchon 1981; Kennett 1983;

Olson et al. 1984; Muller 1985). This software has the great advan-

tage of providing reference solutions for various types of sources

(explosive source, vertical point force, etc.). In addition, upward and

downward propagation of compressional and of shear waves can be

easily separated. This 3-D code is widely used in the underwater

acoustics community and has been thoroughly validated.

One case of interface between elastic media whose properties

are reported in Table 1 has been chosen to illustrate the theoretical

results. The interface is situated at a distance z S = 3000 m from the

source–receiver plane. For the 3-D code the amplitude of the source

signal is chosen to be the Fourier transform of a Ricker wavelet

with either the dominant frequency f = 32 Hz and the frequency

bandwidth B = 10 Hz, or f = 12 Hz and B = 6 Hz.

Fig. 2 depicts the amplitude-versus-angle (AVA) curves provided

by the exact solution and by our approximation for the frequencies

f = 32 and 12 Hz, and the AVA curves provided by the PW theory

which does not depend on frequency. A geometrical spreading com-

pensation factor equal to zS

cos θ
was applied to the predictions of our

3-D approximation and to the synthetic data provided by the 3-D

code OASES, in order to be compared in a suitable way with the

C© 2007 The Authors, GJI, 171, 841–846

Journal compilation C© 2007 RAS



Influence of the IFZ on wave amplitude 845

0 10 20 30 40 50 60
Incidence angle (degree)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
m

p
li

tu
d

e

Zoeppritz

Oases f=32Hz B=10Hz
ASA f=32Hz
Oases f=12Hz B=6Hz
ASA f=12Hz

Figure 2. Variation of the amplitude of the P wave reflected from a plane interface, as a function of the incidence angle. Comparison between the plane

wave reflection coefficient and the spreading-free amplitudes associated with the exact solutions and with the approximate solutions. The exact solutions were

provided by the 3-D code OASES. The source signal was a Ricker wavelet with either the dominant frequency f = 32 Hz and the frequency bandwidth B =

10 Hz, or f = 12 Hz and B = 6 Hz. The approximate solutions were obtained by applying the Angular Spectrum Approach together with the Interface Fresnel

Zone concept for f = 32 and 12 Hz.

PW predictions. Inspection of Fig. 2 shows that for small subcriti-

cal angles, AVA curves associated with the exact (OASES) solution

and AVA curves associated with the PW theory are quite identi-

cal. The discrepancies between them do not exceed 1.4 per cent

(for f = 12 Hz) and 1 per cent (for f = 32 Hz) up to θ = 40◦.

As the PW reflection coefficient varies smoothly with the incidence

angle, the geometrical spreading compensation is sufficient to re-

duce the amplitude of the reflected wave generated by the point

source to the reflected PW amplitude. The effect of the IFZ on the

wave amplitude, is therefore, negligible for small incidence angles

in the subcritical region. Between θ = 40◦ and the critical angle

θ C = 50.28◦, the PW reflection coefficient rapidly increases with

the incidence angle, and the geometrical spreading compensation is

not sufficient anymore. The discrepancies between the exact curves

and the PW reflection coefficient increase monotonically with the

incidence angle and exceed 105 per cent (for f = 12 Hz) and

70 per cent (for f = 32 Hz) for θ C. Therefore, the additional ap-

plication of the IFZ concept becomes necessary to get the reflected

P-wave amplitude. Note that the discrepancies between the exact

solution and the reflection coefficient also increase with decreasing

frequencies. The PW theory does not yield reasonable results for

low frequencies.

In Fig. 2 we can also note that near the critical angle, the predic-

tions of our approximation which combines the ASA and the IFZ

concept yields better results than the PW reflection coefficient, more

particularly between θ = 40◦ and θ C. Whatever the frequency, the

discrepancies between the ASA curves and the exact curves do not

exceed 5 per cent up to θ = 52◦ and are smaller than 1 per cent

for θ C = 50.28◦. Nevertheless, with increasing incidence angle, the

approximate solutions show increasing discrepancies in comparison

with the corresponding exact solutions. The discrepancies reach the

maximum value of 26 per cent for θ = 60◦ and f = 12 Hz, and the

maximum value of 22 per cent for θ = 56◦ and f = 32 Hz. Beyond

these angles they sharply decrease with increasing incidence angles.

The explanation of the discrepancies between our approximate so-

lutions and the exact ones may come from the fact that we calculated

only the reflected wave amplitude, whereas the code OASES pro-

vides the amplitude of the interference between the reflected and the

head wavefields. The contribution of each wavefield to the global

amplitude at the receiver cannot be discriminated in the synthetic

seismograms because both waves have the same traveltime for a

specific range of incidence angles. In fact, it would be interesting

to get the amplitude of the head wave by using the combination of

the ASA with the IFZ concept associated with this particular wave,

in order to determine the contribution of the reflected wave and the

contribution of the head wave at the receiver, taking into account the

phase shifts. This would enlighten on the complex physical process

of wave interference with the reflected wave. Our present work is

focused precisely on this particular aspect and will be reported later.

C O N C L U S I O N

The aim of the paper was to discuss the influence of the IFZ for

modelling the amplitude of the P wave emanating from a point

source and recorded at a receiver after its specular reflection on a

smooth interface between two elastic media. As the problem of in-

terest can be viewed as a problem of diffraction by the IFZ, that is,

the physically relevant part of the interface which actually affects

the reflected wavefield, we have applied the ASA combined with

the IFZ concept to get the 3-D analytical solution. The variation in

the reflected P-wave amplitude obtained with the ASA, as a func-

tion of the incidence angle, has been compared for one solid/solid

configuration and two frequencies of the source with the PW re-

flection coefficient and with the exact solution obtained with the

3-D code OASES. It results that for subcritical incidence angles the

geometrical spreading compensation is mostly quite sufficient to

reduce the point-source amplitudes to the PW amplitudes. On the

contrary, near the critical region, the ASA combined with the IFZ
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concept yields better results than the PW theory whatever the dom-

inant frequency of the source. These results suggest that near and

beyond the critical region the geometrical spreading compensation

is not sufficient anymore, and that the additional application of the

IFZ concept, therefore, becomes necessary to obtain the reflected

P-wave amplitude. As in the paper our approximation is concerned

only with the reflected wavefield, its predictions fail in the post-

critical region when the interference between the reflected wave and

the head wave becomes predominant. For a further validation of our

method, we need to evaluate the contribution of the head wave at the

receiver by taking into account its own IFZ, in order to combine it

with the contribution of the reflected wavefield at the receiver. Our

present work is focused precisely on this particular aspect and will

be reported later.
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