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Summary

The paper describes the reflector from a seismic viewpoint, and investigates the imprint of such a description on
the wave reflection process. More specifically, the spatial region in the vicinity of the interface which actually
affects the reflected wavefield is determined using the Fresnel volume and the Interface Fresnel zone (IFZ) con-
cepts. This region is represented by a volume of integration of properties above and below the interface whose
maximum lateral extent corresponds to the lateral extent of the IFZ, and whose maximum vertical extent corre-
sponds to a thickness we evaluate accurately and which can be greater than the seismic wavelengths. Considering
this description of a reflector, we then calculate the amplitude of the P-wave emanating from a point source
and recorded at a receiver after its specular reflection on a smooth homogeneous interface between two elastic
media. As the problem under consideration can be viewed as a problem of diffraction by the IFZ which is the
physically relevant part of the interface which actually affects the reflected wavefield in this simple case, we then
apply the Angular Spectrum Approach (ASA) combined with the IFZ concept to get the 3D analytical solution.
The variation in the reflected P-wave amplitude evaluated with the ASA, as a function of the incidence angle,
is finally compared with the plane-wave reflection coefficient, and with the exact solution obtained with the 3D
code OASES. Below but close to the critical angle, the prediction of our approximation better fits the exact so-
lution than the plane-wave reflection coefficient, which emphasizes the importance of accounting for the IFZ in

amplitude calculations even for a very simple elastic model.

PACS no. 43.20.Gp, 91.30.Ab

Introduction

In seismic reflection surveys the waves generated by a
point source propagate in the stratified Earth, and are
recorded at the surface by the receivers, after being re-
flected by the reflectors (or, more generally speaking, in-
terfaces). Analysis of the seismic data provides informa-
tion on the medium characteristics. Provided the veloc-
ity model of the medium is known, analysis of the travel-
times provides the reflector location, while from the wave-
forms we can get information on the physical properties
of the medium. Nevertheless, retrieving the geometrical
and physical characteristics of the Earth is actually a dif-
ficult task, since the medium can be highly complex and
heterogeneous, depending on the seismic frequency range
of interest. Since many decades geophysicians have there-
fore developed various theoretical methods to fit the real
seismic data. Most of them are based on approximations
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of wave propagation processes and on assumptions on the
geological model. One of the approximations consists in
neglecting the effect of the laterally varying properties of
the interfaces. However, recorded data bear the marks of
the heterogeneities located in the medium body, and also
the marks of the heterogeneities located at the interfaces.
Our ultimate goal is therefore to evaluate the imprint of
the interface properties on the recorded seismic data. Ex-
cept for mathematical convenience, interfaces are not in-
finitely thin. The underlying questions are then: What is a
reflector like from the seismic and physical viewpoints? In
other words, considering an isolated interface, how thick
are the regions above and beyond the interface which ac-
tually affect the reflected wavefield recorded by the re-
ceivers? What is the imprint of these regions on the in-
terface reflectivity and on the amplitudes of the reflected
waves? In the paper we focus on these questions.

The basis of many seismic studies is the ray theory
[1]. Under this approximation it is assumed that the high-
frequency part of elastic energy propagates along infinitely
narrow lines through space, called rays, which join the
source and the receiver. Ray theory is then strictly valid
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only in the limit of a hypothetical infinite-frequency wave.
As recorded seismic data have a low frequency content
(typically, between 10 and 60 Hz), it is accepted that seis-
mic wave propagation is extended to a finite volume of
space around the ray path, called the 1st Fresnel volume
[2], which contributes to the received wavefield for each
frequency. The first Fresnel volume, hereafter denoted FV,
and its intersection with a reflector, called the Interface
Fresnel zone (IFZ), have received broad attention in re-
cent past years. These concepts are continually being de-
veloped and have found so many applications in seismol-
ogy and in seismic exploration, that it is impossible here
to review all the books and articles which pay attention to
them in seismic wave propagation [3, 4, 5]. Nevertheless,
we shall mention the works of Cerveny and his co-authors
who have suggested two methods for including FV param-
eter calculations into the ray tracing procedure in complex
2D and 3D structures. The first one, called the Fresnel vol-
ume ray tracing [6], combines the paraxial ray approxi-
mation with the dynamic ray tracing, and is only applica-
ble to zero-order waves (direct, reflected and transmitted
waves...), whereas the second method, more accurate than
the previous one, is based on network ray tracing [7]. They
have also derived analytical expressions for FVs of seis-
mic body waves and for IFZ for simple structures, which
offers a deeper insight into the properties of FV and IFZ
[8, 9]. Of particular interest are the size of the IFZ and the
size of the volume of the reflector involved in reflection
time measurements [10], because each one can be related
to the horizontal and vertical resolutions of seismic meth-
ods [11, 12]. Unfortunately, as Cerveny and co-authors’
objectives were concerned essentially with kinematic ray
tracing, the expressions they derived are incomplete. Until
now, only the IFZ and the penetration depth of the FV be-
low the reflector were considered in studies. Nevertheless,
if the seismic amplitudes at receivers have to be evaluated,
we must determine the interface reflectivity by accounting
for the spatial region in the vicinity of the interface which
affects it. In other words, we must account for the IFZ and
for certain volumes below the interface in the transmission
medium and above the interface in the incidence medium.
The goal of the paper is to define the reflector from the
seismic viewpoint, and thus to obtain a better understand-
ing of the process of wave reflection from the reflector.

The paper is organized in two sections. Section 1 is con-
cerned with the seismic description of a reflector. Spe-
cial attention is paid to the FV and to the IFZ which are
frequency-dependent, and which also depend on the po-
sition of the source and the receivers. We then determine
the part of the reflector which actually affects the reflected
wavefield. Section 2 investigates the role of the IFZ in
the reflected wave propagation. To focus specifically on
the imprint of the IFZ, we consider a very simple elastic
model, e.g. a smooth homogeneous interface between ho-
mogeneous, isotropic, and elastic media. Heterogeneities
at the interface will be the scope of future works. We intro-
duce the method we used for deriving the amplitude of the
P-wave, emanating from a point source and recorded at the
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receiver after its reflection on the interface. As the problem
under consideration can be viewed as a problem of diffrac-
tion by the IFZ, i.e. in this case the physically relevant part
of the interface which actually affects the reflected wave-
field, we applied the Angular Spectrum Approach (ASA)
[13] to get the 3D analytical solution. Finally, the variation
in the reflected P-wave amplitude, as a function of the in-
cidence angle, evaluated with the ASA is compared with
the classical plane-wave (PW) reflection coefficient, and
with the exact solution obtained with the 3D code OASES
(http://acoustics.mit.edu/faculty/henrik/oases.html).

1. Seismic amplitude: contribution of the
interface and of its near volume

We assume that the interface is isolated from the other
ones. We mean that the distance between this interface
and another one is much greater than %, where V' is the
medium velocity and B is the frequency bandwidth of
the source. Consequently, there is no interference between
close interfaces.

1.1. Maximum lateral extension of the contributing
volume

We consider two homogeneous isotropic elastic media in
welded contact at a plane interface located at a distance z,
from the xy-plane including the point source S (xs,0,0),
and the receiver R (xg,0,0). The source generates in the
upper medium a spherical wave with a constant ampli-
tude. The spherical wave can be decomposed into an in-
finite sum of plane waves (PW), synchronous each other
at the time origin. We consider the harmonic PW with fre-
quency f which propagates in the upper medium with the
velocity Vp; from S to R, after being reflected by the inter-
face at the point M(0,0,z) in a specular direction 6 with
respect to the normal to the interface (Figure 1). Let the
traveltime of the specular reflected wave be 75/ g.

The set of all possible rays S'M;R with constant trav-
eltime 7 g g defines the isochrone for the source-receiver
pair (S,R) relative to the specular reflection SMR. This
isochrone describes an ellipsoid of revolution tangent to
the interface at M, whose rotational axis passes through S
and R. By definition, the FV corresponding to S and R, and
associated with the reflection at M, is formed by virtual
diffraction points F such that the waves passing through
these points interfere constructively with the specular re-
flected wave. This condition is fulfilled when the path-
length difference is less than one-half of the wavelength
L=l corresponding to the dominant frequency f of

f
the narrow-band source signal [2]:

|I(F. 8)+I(F,R)~ (M, S) = (M, R)| < % o)

the quantity /(X,Y) denoting the distance between the
point X and the point Y. As is well-known, the main contri-
bution to the wavefield comes from the first FV as the rapid
oscillatory responses of the higher-order FVs and Fresnel
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foci at S and R, tangent to fictitious parallel planes to the
interface and located at a distance % below and above the
interface (Figure 1). The two ellipsoids of revolution are
defined by:

x2 y2

Depth (m

Interface z =z,
4000

5000

z

6000 g

-4000 -2000 0 2000 4000
Length (m)

Figure 1. Representations, in the xz-plane, of the Fresnel volume
involved in the wave reflection at the point M at a plane inter-
face, under the incidence angle & = 35°. The source S and the
receiver R are situated at a distance 3000 m from the interface.
The classical representation of the Fresnel volume is the ellip-
soid of revolution with foci located at R and at the image source
S”. This representation, mainly based on transmission considera-
tions, is suitable for accounting for the heterogeneities located in
the medium body. Another representation of the Fresnel volume
associated with the reflection SMR is given by the volume lo-
cated in the incidence medium between the ellipsoids of revolu-
tion with foci at S and R (see the text for more details). This rep-
resentation is appropriate for acounting for the heterogeneities in
the vicinity of the interface. The velocities in the upper and lower
media are respectively Vp; = 4000 m/s and Vp, = 5200 m/s, and
the frequency f = 32 Hz. The seismic wavelengths in the upper
and lower media are respectively 4; = 125m and 4, = 162.5m.
The critical angle is equal to 6c = 50.28°.

In-plane and transverse semi-axes (m)

400O 5 10 15 20 25 30 35 40 45

Incidence angle (degree)

Figure 2. Variation in the in-plane semi-axis ! (—) and in the
transverse semi-axis r+ (- - -) of the Interface Fresnel zone as
a function of the incidence angle 6. The velocities in the upper
and lower media are respectively Vp; = 4000m/s and Vp, =
5200m/s, and the frequency f = 32Hz. The seismic wave-
lengths in the upper and lower media are respectively 4; = 125m
and A, = 162.5 m. The critical angle is equal to Oc = 50.28°.

zones cancel out and give minor contributions to the wave-
field [14]. In our work we restrict ourselves to the first FV
which is simply referred to as FV. The FV is represented
by the volume situated above the interface in the upper
medium and bounded by two ellipsoids of revolution, with

+
(zm/cosO £ A1/4)?  (zy/cos £ A /4)2—25, tan O

z2

+ -—
(zm/ cos O + Ay /4)? — 23, tan? 0

1=0. )

Here, it must be specified that, as seismic wavefields are
transient and large-band, it is generally necessary to de-
compose the source signal into narrow-band signals for
which monochromatic FV can be constructed for the pre-
vailing frequency of the signal spectrum [15].

The IFZ is defined as the cross section of the FV by an
interface which may not be perpendicular to the ray SM.
If the source S and the receiver R are situated at the same
distance from the interface, the IFZ is represented by an
ellipse centered at the reflection point M, whose equation
is obtained from the formulation of the ellipsoid of revo-
lution, equation (2), keeping the sign + and replacing z by
zu- The in-plane semi-axis !l and the transverse semi-axis
rt of the IFZ are then expressed as:

I A iM A Z%u tan® 0
SN I R | B Ly
(2 +4)

cos 0

3

The characteristics of the IFZ depend on the positions of
the source-receiver pair, and also on the incidence angle of
the ray SM. Moreover, larger portions of the interface are
involved for low-frequency than for high-frequency com-
ponents of the wavefield, and also for great incidence an-
gles 6 rather than for small angles (Figure 2). It is also
well-known that a perturbation of the medium actually af-
fects the reflected wave when this perturbation is located
inside the IFZ.

Expressions for the semi-axes of the IFZ associated with
the reflected wavefield, given by equation (3), are identical
to those reported in [8]. Here, we must clarify some impor-
tant points. In many papers is used the classical representa-
tion of the FV which is an ellipsoid of revolution with foci
located at R and at the mirror image S” of the source S
(Figure 1). This representation, mainly based on transmis-
sion considerations, is suitable for accounting for the het-
erogeneities of the medium body located in the vicinity of
the ray, while the FV representation we use is more appro-
priate to account for the heterogeneities of the interface,
as it is connected strictly to the wave reflection process.
Moreover, unlike the classical one, this representation al-
lows the definition of the volumes above and beyond the
interface which characterize the reflector. The following
subsection is focused on this definition. Note that the two
representations are complementary and must be combined

911



ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 93 (2007)

if the wave propagation in media with heterogeneities in
the body and at the interfaces is investigated.

1.2. Maximum vertical extension of the contributing
volume

It is well-known that the FV of the reflected wave is not
limited by the interface, but penetrates across the interface
in the transmission medium. The penetration distance can
be evaluated approximately in an analytical way following
traveltime measurements or in a numerical way using the
network ray tracing [8]. We propose to define it accurately
in the plane of symmetry between S and R for subcritical
incidence angles.

The transmission law of curvature described in [16,
p-431:

2

|4 cos 0 K Vpy cos 0

K> = K| 22 + £ -1}, @
Vp1 \ cos 0’ cos &' \ Vp; cos &'

connects the curvature K, of the transmitted wavefront to
the curvature K; of the incident wavefront and to the inter-
face curvature K. The transmission angle 6’ is connected
to the incidence angle 6 through Snell’s law, and Vp; de-
notes the velocity in the lower medium. In the case of a
plane interface (K = 0), the transmission law of curva-
ture, equation (4), becomes in terms of radii of curvature
R2 and Rll

2
Vp1 (cos @
R, =R, — . 5

2 1Vp2<cos0> )

By substituting the radii of curvature R, and R, for their
respective expression Cf)’f 7 and c§+9 we get the position
of the new fictitious source-receiver pair (S°,R’) with re-
spect to the interface plane z = z,s, as a function of the

incidence angle 6:

3
Vpy [cos &\
— r = —_— . 6
R= Ly =AM Vpa <cos€> ©)

The pair (S’,R’) which can be viewed as image of (S,R)
for the transmission process would provide the same wave-
front curvature as (S,R), but occuring entirely in the trans-
mission medium. As previously, by considering the ellip-
soid of revolution with foci S” and R’, tangent to the inter-
face plane at M, and the new ellipsoids which define the
FV associated with the reflection S"MR’ (Figure 3), it is
straightforward to evaluate the penetration distance D, of
the FV of the reflected wave, in the transmission medium,
in the plane of symmetry between S and R:

=

A zs ph:
2 2 LS +_2 — zs. (7)

D, = & + 2255
25\ T 2 cose T 16

This result is valid only for subcritical incidence angles
0 and in the plane of symmetry between S and R. For
A2

0 = 0, the distance D; equals the well-known value 7
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Figure 3. Representation, in the xz-plane, of the Fresnel vol-
ume involved in the fictitious wave reflection at the point M of
the plane interface, under the incidence angle ¢'. The fictitious
source-receiver pair (S’,R’), located at a distance zs from the
interface plane, can be viewed as image of the pair (S,R) and
would provide the same wavefront curvature as (S,R), but oc-
curing entirely in the transmission medium. The velocities in
the upper and lower media are respectively Vp; = 4000 m/s
and Vp, = 5200m/s, and the frequency f = 32 Hz. The seis-
mic wavelengths in the upper and lower media are respectively
Ay =125mand 4, = 162.5m.

[8]. The penetration distance D, increases with increas-
ing incidence angles, but is always smaller than the seis-
mic wavelength A, (Figure 4). The penetration distance,
out of the plane of symmetry, can be also evaluated in the
same way from the envelope of the ellipsoids of revolu-
tion with foci S” and R’ moving along caustics, even for
non-planar interfaces (K # 0). Nevertheless, for postcriti-
cal incidence angles, as total reflection occurs, we are not
able to define the penetration distance of the FV below
the interface by using the transmission law of curvature.
Note that the approximation of the distance D, given in
[8] can be obtained for values of the incidence angle 6
close to zero, and then for great position z, by deriving a
1%"-order approximation of the expression (7) of D, with
respect to (1/2%)(42zs /2 cos 6 + 12 /8). This approxima-
tion overestimates the real value of the distance D, , and its
accuracy decreases with increasing incidence angles (Fig-
ure 4).

Following the same reasoning, it is clear that a region
above the interface in the incidence medium also con-
tributes actually to the reflected wavefield. This region has
got thickness D; in the plane of symmetry between S and
R which can be evaluated in the same way as previously,
the pair (S”,R”) being viewed as image of (S,R) with re-
spect to the interface plane:

=

2
2 Al Zm j'1

D, = 2
PR T 20050 T 16

—3IM- ()

This result is exact in the plane of symmetry between S and
R whatever the incidence angle 0. For 8 = 0, the distance
D, equals the value %. The thickness D, increases with
increasing incidence angles and is always smaller than the

seismic wavelength A; and the penetration distance D,
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Figure 4. Variation in the penetration depth D; of the Fresnel
volume above the interface (.....) and in the penetration depth
D, below the interface (—) as a function of the incidence an-
gle 6. Comparison with the variation in the penetration depth
D, (- - -) provided by Kvasni¢ka and Cerveny’s approxima-
tion as a function of the incidence angle 6. The velocities in
the upper and lower media are respectively Vp; = 4000 m/s
and Vp, = 5200m/s, and the frequency f = 32Hz. The seis-
mic wavelengths in the upper and lower media are respectively
A1 = 125m and A, = 162.5m. The critical angle is equal to
0c =50.28°.

Dy Interface

~ D,

Figure 5. Seismic description of a reflector in the xz-plane. The
in-plane semi-axis of the Interface Fresnel zone is denoted by r!l.
The distance D; is the maximum thickness of the region above
the interface which affects the reflected wavefield, whereas the
distance D, characterizes the penetration distance of the Fresnel
volume (associated with the reflected wave) below the interface
in the transmission medium, in the plane of symmetry between
the source and the receiver.

(Figure 4). The distance D, out of the plane of symme-
try, can be also evaluated exactly in the same way because
the caustics along which the foci S” and R” move are de-
generate and are then reduced to points.

We are now able to define what a reflector is like from
the seismic and physical viewpoints. A reflector is a vol-
ume of integration of properties above and below the inter-
face. This volume is represented by the regions with maxi-
mum thicknesses D and D; in the plane of symmetry be-
tween the source and the receiver (Figure 5). Its maximum
lateral extent corresponds to the lateral extent of the IFZ,
and its maximum vertical extent corresponds to the thick-
ness D = D; + D, which can be greater than the seismic
wavelengths.

Here, we must clarify some points. If amplitude mea-
surements are considered, the interface reflectivity has to
be determined by considering this volume which actually

ACTA ACUSTICA UNITED WITH ACUSTICA
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affects it. For the evaluation of the interface reflectivity, the
structural description of the multi-scaled heterogeneities
located in the regions above and below the interface has
to be considered as a preliminary step toward the forward
modeling of the response of the interface. Our future con-
tributions will be focused on this topic. On the other hand,
if only traveltime measurements are considered, for in-
stance, for locating the reflectors in the media, there is
no need for defining the region above the interface with
thickness D, because this region is already included in
the classical representation of the FV. In this case, only the
region beyond the interface with thickness D, has to be
considered.

2. Application

The aim of this section is to investigate the imprint of the
reflector described previously on the wave reflection pro-
cess. More specifically, we want to evaluate its influence
on the calculation of the amplitude of the reflected wave
measured at the receiver. For this purpose, it is instructive
to compare the variation in the amplitude obtained with
a method which accounts for the physical description of
the reflector, as a function of the incidence angle, with the
amplitude predicted by a numerical code which provides
the exact solution, and with the amplitude predicted by the
classical PW theory (here, the Zoeppritz equations [17]).
To focus specifically on the imprint of accounting for the
FV concept, we consider a very simple elastic model, e.g.
a smooth homogeneous interface between homogeneous,
isotropic, and elastic media. As there is no heterogeneity
in the vicinity of the interface, and more specially in the
regions above and below the interface which describe the
reflector, only the IFZ has to be considered for the compu-
tation of the amplitude of the reflected wave.

2.1. Medium, model and exact solution

Let the orthotropic source be located at the point S, far
from the plane interface beween the media. The spherical
P-wave emanating from the source propagates obliquely in
the upper medium and strikes the homogeneous interface.
It is then reflected from the interface and finally measured
at the receiver located at the point R, far from the interface.

One case of interface between elastic media whose
properties are reported in Table I has been chosen to il-
lustrate the theoretical results. The interface is situated at a
distance zp = 3000 m from the source-receiver plane. The
source spectrum is chosen to be the Fourier transform of a
Ricker wavelet with the dominant frequency f = 32 Hz
and the frequency bandwidth Af =8 Hz.

We used the 3D code OASES! to compute accurately
synthetic seismograms in media. OASES is a general pur-
pose computer code for modeling seismo-acoustic prop-
agation in horizontally stratified media using wavenum-
ber integration in combination with the Direct Global Ma-
trix solution technique [18, 19, 20]. This software has

!http://acoustics.mit.edu/faculty/henrik.oases.html
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Table 1. Properties of the homogeneous, isotropic and elastic me-
dia in contact. p, Vp and Vs denote, respectively, the density, P-
wave and S-wave velocities for the upper (subscript 1 in the text)
and lower (subscript 2 in the text) media.

Properties Vp (m/s) Vs (m/s) p (kg/m®)
Upper medium 4000 2000 2000
Lower medium 5200 2500 2400

the great advantage of providing reference solutions for
various types of sources (explosive source, vertical point
force, etc...). In addition, upward and downward propa-
gation of compressional and of shear waves can be easily
separated. This 3D code is widely used in the underwater
acoustics community and has been thoroughly validated.

2.2. Angular Spectrum Approach combined with
IFZ

The problem under consideration can be viewed as a prob-

lem of diffraction by the physically relevant part of the

interface (namely, the IFZ). We chose to apply the An-
gular Spectrum Approach (ASA) [13] combined with the

IFZ concept to get the 3D analytical solution to this prob-

lem. The motivations of this choice are twofold. Pro-

vided the incident spherical wavefield is decomposed by

Fourier analysis into a linear combination of elementary

plane wavesurfaces, traveling in different directions away

from the source, the effect of propagation over distance
is simply a change of the relative phases of the various
plane wavesurface components. Sherman [21] has proved
that despite their apparent differences, the ASA and the
first Rayleigh-Sommerfeld solution [13, chapter 3 page

47] yield identical predictions of diffracted fields. The ad-

vantage of using the ASA then seems obvious: it permits

straightforward derivations of the measured amplitude of
the reflected wave at the point R. We refer to the book of

Goodman [13, chapter 3 pages 55-61] for a detailed treat-

ment of the ASA.

When using the ASA, we have to remind that it is a
technique for modeling the propagation of acoustic fields
between parallel planes. Therefore, considering the case of
the reflection of fields from an oblique interface requires
the following successive stages:

e stage 1: calculation of the spherical P-wavefield ema-
nating from the point source S which has propagated in
the upper medium, only inside the IFZ at the interface.
Nullification of the wavefield outside the IFZ,

e stage 2: 2D Fast Fourier Transformation of the wave-
field in order to obtain its angular spectrum,

e stage 3: application of the PW reflection coefficient
(here, the P-P reflection coefficient),

e stage 4: rotational transformation of complex ampli-
tudes in the Fourier domain and interpolation [22],

e stage 5: propagation of the angular spectrum,

e stage 6: 2D inverse Fast Fourier Transformation of the
angular spectrum, in order to get the amplitude of the
reflected P-wave measured at the receiver.

914
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Figure 6. Variation in the amplitude of the P-wave reflected from
a plane interface, as a function of the incidence angle. Com-
parison between the plane-wave reflection coefficient and the
spreading-free amplitudes associated with the exact solution and
with the approximate solution. The exact solution is provided
by the 3D code OASES, whereas the approximate solution is
obtained by applying the Angular Spectrum Approach together
with the Interface Fresnel Zone concept. (See Table I and text for
the description of the medium configuration).

Relative error (%)
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Figure 7. Discrepancies, in percentage, between the AVA curve
provided by the exact solution with the AVA curve provided by
our approximation (—), and between the AVA curve provided by
the exact solution with the AVA curve provided by the PW reflec-
tion coefficient (- - -). (See Table I and text for the description of
the medium configuration).

2.3. Results and discussion

Figure 6 depicts the amplitude-versus-angle (AVA) curves
provided by the exact solution, by our approximation, and
by the PW theory. A geometrical spreading compensation
factor equal to 2 was applied to the predictions of our
3D approximation, and to the synthetic data provided by
the 3D code OASES, in order to be compared in a suitable
way with the PW predictions.

Inspection of Figure 6 shows that for small subcritical
angles, AVA curves associated with the exact solution and

with the PW theory are quite identical. The discrepancies
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between them do not exceed 1% up to 8 = 40° (Figure 7).
As the PW reflection coefficient varies smoothly with the
incidence angle, the geometrical spreading compensation
is sufficient to reduce the amplitude of the reflected wave
generated by the point source to the reflected PW ampli-
tude. The effect of the IFZ on the wave amplitude is neg-
ligible for small incidence angles in the subcritical region.
Between 6 = 40° and the critical angle 8 = 50.28°, the
PW reflection coefficient rapidly increases with the inci-
dence angle, and the geometrical spreading compensation
is not sufficient anymore. The discrepancies between the
exact curve and the PW reflection coefficient increase with
the incidence angle and exceed 70% for 6 (Figure 7).
Therefore, the additional application of the IFZ concept
becomes necessary to get the reflected P-wave amplitude.

Below and close to the critical angle, the predictions of
our approximation better fit the exact solution than the PW
reflection coefficient, more particularly between 8 = 47°
and O¢. The discrepancies between the ASA curves and
the exact curves do not exceed 5% up to 8 = 52° and are
smaller than 1% for ¢ (Figure 7). Nevertheless, with in-
creasing incidence angle, the approximate solution shows
increasing discrepancies in comparison with the exact so-
lution. The discrepancies reach the maximum value of
22% for 8 = 56°(Figure 7). The explanation comes from
the fact that we calculated only the reflected wave ampli-
tude, whereas the code OASES provides the amplitude of
the interference between the reflected and the head wave-
fields. The contribution of each wavefield to the global am-
plitude recorded at the receiver cannot be discriminated in
the synthetic seismograms because both waves have the
same traveltime for a specific range of incidence angles.
For great postcritical angles, for which the signal relative
to the head wave and the signal relative to the reflected
wave can be separated in time, our approximation tends
to the exact solutions. Our present work is focused on this
topic and results will be reported later.

Note that general conclusions drawn above which are
concerned with the interface model described in Table I
are in fact common to other interface models with lower
or stronger impedance contrasts.

Conclusion

The goal of the paper was twofold: to describe the reflector
from the seismic viewpoint, or in other terms, to determine
the region in the vicinity of the interface which actually
affects the reflected wavefield recorded by the receivers,
and to evaluate the imprint of this region on the amplitude
of the reflected waves. For this purpose, the spatial region
has been determined using the Fresnel volume and the In-
terface Fresnel zone (IFZ) concepts. It is represented by
a volume of integration of properties above and beyond
the interface, with a maximum lateral extent correspond-
ing to the lateral extent of the IFZ, and with a maximum
vertical extent corresponding to a thickness we have eval-
uated exactly and which can be greater than the seismic
wavelengths. We have then calculated the amplitude of the
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P-wave emanating from a point source and recorded at a
receiver after its specular reflection on a smooth homoge-
neous interface between two elastic media. As the problem
under consideration can be viewed as a problem of diffrac-
tion by the IFZ which is the physically relevant part of the
interface which actually affects the reflected wavefield in
this simple case, we have applied the Angular Spectrum
Approach (ASA) to get the 3D analytical solution. The
variation in the reflected P-wave amplitude evaluated with
the ASA, as a function of the incidence angle, has been
finally compared with the plane-wave (PW) reflection co-
efficient, and with the exact solution obtained with the 3D
code OASES. For small incidence angles in the subcriti-
cal region, for which the PW reflection coefficient varies
smoothly with the incidence angle, the geometrical spread-
ing compensation has been sufficient to reduce the ampli-
tude of the reflected wave generated by the point source
to the reflected PW amplitude, and therefore the effect of
the IFZ on the wave amplitude has been negligible. Nev-
ertheless, for incidence angles close to the critical angle,
for which the PW reflection coefficient rapidly increases
with the incidence angle, the prediction of our approxima-
tion has better fitted the exact solution than the plane-wave
reflection coefficient, which emphasizes the importance of
accounting for the IFZ in amplitude calculations. Never-
theless, with increasing incidence angle, the approximate
solution has shown increasing discrepancies in compari-
son with the exact solution because, contrary to the code
OASES, we have calculated only the contribution of the
reflected wavefield, without accounting for the contribu-
tion of the head wavefield.

The work presented in the paper is a preliminary step
toward a “more physical” modeling of wave propagation
in complex media. It identifies the volume of integration
and homogeneization of the properties of the interface for
which a structural description of the multi-scaled hetero-
geneities has to be performed for modeling the response of
the interface. Our future contributions will be focused on
this topic.
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