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Abstract

For high amplitudes of vibrations, loudspeakers are subject to nonlinear phenomena
that are responsible for audible distortions. In order to describe the complex dy-
namics of the system, the displacement field as well as the radiated sound pressure
must be expressed in the time-domain. Thus the present study proposes a transient
model of the acoustic radiation of axisymmetric structures. The pressure field is
approximated by the Rayleigh integral corresponding to a monopole source distri-
bution over the non-planar vibrating surface. The displacement field is expanded on
the linear modes of the structure and a change of variables in the Rayleigh integral
is then proposed in the case of a monotonic profile function to compute the Spatial
Impulse Response associated to each mode of vibration efficiently. The results are
compared to the formulation obtained in the case of planar and spherical sources.
The method of calculation is then derived in the case of a typical loudspeaker profile
(association of a truncated cone with a spherical cap). Finally, the present approach
is used to estimate the nonlinear radiation pattern of a prototype loudspeaker and
predictions are compared to measurements in anechoic room.
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Nomenclature

a external radius

c celerity of sound in air

h0(r) profile function

P (x, t) Acoustic pressure

qp time-function associated

to the pth natural mode

r radial coordinate

R curvature radius

for the spherical cap

S axisymmetric structure

t time variable

t′ integration time

x observation point

xS integration point

xi impact point

θi angle of the impact point

Φp pth natural mode for the

flexural displacement

ρ density of air

σ ratio of densities

Bc = ( ~ux, ~uy, ~uz) Cartesian basis

Bi = ( ~tix, ~tiy, ~ni) local basis

(x, y, z) coordinates in the basis Bc

(r2, φ) coordinates in the basis Bi

−→
Tα tangent vector with respect

to the variable α

Hp Spatial Impulse Response

associated to mode p

1 INTRODUCTION

The aim of an electrodynamic loudspeaker is to transform an electrical sig-
nal into sound. Such a transduction is expected to be linear. However, for
high levels of vibrations, nonlinear phenomena appear and are responsible
for audible distortions. The various sources of nonlinearities can be separated
into two parts [1,2]: “electrical” nonlinearities due to the large displacement
of the coil in the permanent magnet, and “mechanical” nonlinearities due to
large displacements of the moving parts of the system (geometrical nonlinear-
ities). In order to describe the complex dynamics of the system subjected to
large amplitude motion, the displacement field must be expressed in the time-
domain. In that case, a common way to compute the transient displacement
field is to expand the transverse displacement of the structure onto the linear
modes. This method has received much attention in the literature in the case
of circular sources [3], axisymmetric sources [4] and recently in the case of
loudspeaker like-structure [5] but none of the cited studies include the acous-
tic radiation of the structure. In order to compute the acoustic field radiated
by thin structures subjected to large amplitude motion, the present article
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proposes a transient model of acoustic radiation that takes advantage of the
modal expansion.
Transient acoustic radiation of planar sources vibrating in an infinite planar
baffle has received much attention in the literature. The Rayleigh surface in-
tegral is in that case an exact expression for predicting the acoustic pressure
produced by such sources at any observation point. An extensive review of the
various approaches which have been used to evaluate this radiation integral
has been given by Harris[6]. The most common way to compute the transient
radiation from such sources is to evaluate the so-called Spatial Impulse Re-
sponse (S.I.R.) as described by Stepanishen [7]. This formulation has been
developed initially in the case of an uniform velocity for a circular source, and
has then been extended to handle the case of nonuniform velocity patterns
[8,9] using a modal expansion of the displacement field.
For nonplanar sources, the Rayleigh surface integral is no longer valid, since
diffraction effects appear. An analytical formulation of the transient radiation
of a body of arbitrary shape has been derived by Hu and Wu [10,11], who
expressed the acoustic pressure as a sum of integrations of simple and doublet
source distributions and their couplings induced by the normal and tangential
components of the particle velocity. Under that consideration, the Rayleigh
integral represents the first term of this decomposition. This approximation is
commonly used to compute transient radiation of spherical radiators [12–16],
but the range of validity (in terms of geometrical configuration and wavenum-
ber) is rarely specified.
Only the case of spherical sources has been treated and only few studies con-
cern the acoustic radiation of axisymmetric sources. Farn [17] proposed a
numerical method based on source-density method (approximation of the ra-
diating surface by triangular surface elements) and Guyomar [18] used series
expansion of the source velocity spatial distribution. More recently, Stepan-
ishen [19] adapted a mean-square error method to predict harmonic radiation
of bodies of arbitrary shape but the radiation of transients remains a problem.
Other numerical approaches using retarded potentials combined to boundary
elements in the time domain have can also be found in the literature [20,21]
and give appropriate results but calculation costs remain a problem.
In the present study, a time-domain formulation is adopted to predict the
modal sound radiation from axisymmetric sources with a nonuniform vibra-
tory distribution. The pressure field is approximated by the Rayleigh integral
corresponding to a monopole source distribution over the nonplanar vibrating
surface. The diffraction effects are neglected in the present approach and let for
future work. The displacement field is expanded onto the linear modes of the
structure and a change of variables in the Rayleigh integral is proposed in the
case of a monotonic profile function to compute the Spatial Impulse Response
associated to each mode of vibration efficiently. The results are compared to
the exact formulation obtained in the case of planar sources [6] and to numer-
ical results obtained by Suzuki and Tichy [22,23] with the spherical harmonics
method in the case of spherical radiators. The method of calculation is then
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derived in the case of a typical loudspeaker profile (association of a truncated
cone with a spherical cap). Finally, the present approach is used to estimate
the nonlinear radiation pattern of a prototype loudspeaker and predictions are
compared to measurements in anechoic room.

2 TIME-DOMAIN RADIATION

2.1 Geometry of the problem

x

xS h0(r) xS
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Fig. 1. Geometry of the considered structure. The points x and xs represent the
receiver and an integration point on the structure respectively. The profile function
is denoted by h0(r) and corresponds to the projection in the plane z = 0 of the uz

coordinate of the point xs.

In the present study, attention is paid to the acoustic radiation of a baffled
axisymmetric body S as represented in Fig. 1. Let a denote the external radius,
h0(r) the axisymmetric profile function of the considered structure and hmax

its depth (defined as the maximum of the profile function). The profile function
only depends on the radial coordinate r since S is assumed axisymmetric. For
the same reason, the observation point x depends on two coordinates (y, z) in
the Cartesian space only. The profile function h0(r) is called monotonic if its
derivative ḣ0(r) has a constant sign and called non-monotonic otherwise. A
concave structure refers to a negative profile function h0(r) < 0 while a convex
structure relates to a positive profile function. In the following equations, xS

denotes a point of the structure with cylindrical coordinates (r, θ, h0(r)).

2.2 Nonlinear vibration of loudspeaker-like structures

Previous studies [2,5] mention that the nonlinear vibrations of loudspeaker-like
structure can be modeled using a nonlinear lumped parameters model coupled
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with a nonlinear model of the diaphragm vibrations. This formulation allows
to include typical electrical nonlinearities that appear in the low frequencies
domain but also geometrical nonlinearities that appear around mechanical
resonances of the structure. The approach is based on an axisymmetric modal
decomposition of the displacement field of the structure:

w(r, t) =
∞
∑

p=0

Φp(r)qp(t). (1)

where the functions Φp(r) in Eq. (1) represent the modal shapes (that can
be either measured or calculated) and the functions qp(t) represent the time
function associated to mode p. Using a state-space formulation of the nonlinear
electromechanical problem[2], one obtains:

Ẏ = AY + B(Y )u(t) + NLe(Y ) + NLg(Y ) (2)

where Y is the state vector (time functions qp(t) and their first derivative
q̇p(t)), A denotes the linear dynamics of the problem, B the excitation vec-
tor, u(t) the input signal, NLe(Y ) and NLg(Y ) contain respectively all the
electrical, mechanical and geometrical nonlinear terms of the electromechan-
ical transduction. Eq. (2) is solved numerically using the fixed point method
and Runge-Kutta algorithms, so that the global displacement field is obtained
from the calculation of the state vector Y using modal reconstruction Eq. (1).
This global nonlinear formulation describing the complex dynamics of a typ-
ical loudspeakers needs to be directly solved in the time-domain. In order to
compute the associated radiated sound pressure field for high amplitudes of
vibration, a time-domain formulation of sound radiation from axisymmetric
sources with a nonuniform vibratory distribution has to be adopted, as pre-
sented below.

2.3 Integral formulation

The sound pressure field P (x, t) is solution of the well known Kirchhoff-
Helmholtz integral [24], that can be reduced to the Rayleigh’s integral when
considering weakly curved structures, i.e. for h0(r) ≪ a:

P (x, t) = ρ
∫ t

0

∫∫

S
G(x,xS, t, t′)

∂Vn(xS, t′)

∂t′
dxSdt′ (3)

Using the axisymmetric modal decomposition Eq. (1), the Rayleigh’s integral
is directly computed in the time-domain by separating the space and the time
integration using the Spatial Impulse Response principle[19]:

P (x, t) = ρ
∫ t

0

∞
∑

p=0

Hp(x, t, t′) q̈p(t
′) dt′, (4)
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where the Spatial Impulse Response (S.I.R.) Hp associated to mode p is in-
troduced as follow:

Hp(x, t, t′) =
∫∫

S
G(x,xS, t, t′) Φp(xS)−→uz .

−−→
dxS. (5)

where −→uz .
−−→
dxS denotes the dot product between these 2 vectors. The analytical

formulation of those functions can be obtained through an appropriate change
of coordinates in the case of planar [19] or spherical structures [13]. However, in
the general case, the direct calculation in the time-domain is not obvious due
to the presence of the Dirac delta function. The following section proposes an
appropriate change of variable in order to compute directly the S.I.R. functions
for an axisymmetric source.

3 CALCULATION OF THE RAYLEIGH INTEGRAL IN THE

TIME-DOMAIN

3.1 Geometrical considerations

The aim of the following section is to simplify the calculation of the impulse
response defined in Eq. (5). Geometrical considerations are firstly made in
order to separate 3 areas of calculations where the properties of the sound
pressure field differ. Then, a new local basis is proposed using those geomet-
rical considerations and the S.I.R. are simply expressed using the new set
of coordinates. This method, developped in the case of planar and spherical
sources is extended in the present study to the case of axisymmetric sources
and offers the advantage of suppressing the Dirac delta function in Eq. (5)
(using the convolution theorem), so that the final formulation is reduced to a
simple integration.

The Spatial Impulse Response Hp in Eq. (5) has a compact support [ti; to]
where ti denotes the propagation time between the receiver x and the nearest
point of the structure xi and to represents the propagation time between the
receiver and the farthest point of the structure xo. The points xi = (0, ri) and
xo = (0, ro) are solutions of:

|x − xi| = min
(r, θ)

(|x − xS|) , (6a)

|x − xo| = max
(r, θ)

(|x − xS|) . (6b)

Let xh and xb denote the points located respectively at the top and at the
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Fig. 2. Definition of the 3 different areas of calculation. For each position of the
receiver, the associated points xi (dotted lines) and xo (dashed lines) are represented
. The zones I and III only are defined in front and in back of a convex structure
respectively. The intersection point F of the 3 zones is called the sweet spot (or
geometrical focal point).

bottom of the structure, as shown in Fig. 2. Depending on the structure and
on the location of the receiver x, one can define 3 different zones defined in
Tab. 1, where the radiation properties differ.

zone Conditions on xi and xo

zone I xi 6= {xh,xb} and xo = {xh,xb}

zone II xi = {xh,xb} and xo = {xh,xb}

zone III xi = {xh,xb} and xo 6= {xh,xb}
Table 1
Definition of the 3 calculation zones.

3.2 Change of coordinates

If the present section, the aim is to transform the integration variables of
Eq. (5) by 2 variables |x−xS| and an angle φ that correspond to the geometry
of the problem.

Let θi denote the angle between axis uz and the line (xxi). A new local or-
thonormal basis Bi = ( ~tix, ~tiy, ~ni) centered on point xi is introduced, as pre-
sented in Fig. 3. It is defined in the Cartesian basis Bc = ( ~ux, ~uy, ~uz) as follows:



























−→ni = − sin θi ~uy − cos θi ~uz,
−→
tiy = cos θi ~uy − sin θi ~uz,
−→
tix = ~ux.

(7)
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Fig. 3. Definition of the new local basis Bi = ( ~tix, ~tiy, ~ni) and the new coordinates
(r2, φ). The points x, xi and xS denote the observation point (located in the zone I
for the present example), the projection point and an integration point located on
the surface S, respectively.

In this basis, a set of cylindrical coordinates is introduced for any point located
on the surface xS = (r2, φ) and the coordinates in the new local basis are

defined in appendix A. Introducing the tangent vectors to the surface
−−−−→
T|x−xS|

and
−→
Tφ with respect to the variables |x−xS| and φ (detailed in Appendix A),

the integration vector of Eq. (5) becomes in the new local basis[26]:

−−→
dxS =

(−→
Tφ ×−−−−→

T|x−xS|

)

d|x − xS| dφ. (8)

where (.) × (.) denotes the cross product between 2 vectors. The expression
of tangent vectors and integration vector can be found in Appendix A. The
principle is to replace the integration vector in Eq.(5) by the new one defined
in Eq. (8) and to integrate over |x− xS| in order to eliminate the Dirac delta
function contained in the Green’s function (using the convolution theorem
[27]). Introducing the time delay τ = t − t′, one obtains the final formulation
of the Rayleigh integral:

P (x, t) = − ρc

2π

∫ t

0

∑

p

Hp(x, τ)q̈p(t − τ)dτ (9)

where:

Hp(x, τ) =
∫

φ

Φp(r)

FA + B cos φ − C sin2 φ

∣

∣

∣

∣

∣

|x−xS|=cτ

dφ (10)
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and:



























































F = 1 +
dh0

dr

(

h0(r) − z

r

)

,

A =

(

1 − (sin θi sin φ)2

cos θi

)

,

B =
(

Fri − y

r2

)

,

C =

(

dh0

dr

(

y

r

)

sin θi

)

.

(11)

In this expression, the Spatial Impulse Response explicitly depends on the
profile function h0(r), the modal shape Φp(r) (also dependent on the shape
of the source), the position of the receiver x and the integration time τ . The
notation |x − xS| = cτ means that for each time τ , a distance |x − xS|/c
is associated for computing the integrand of Eq. (10). In that case, for each
time step τ , the intersection between the structure and the sphere centered
on observation point x and of radius cτ is sought.
This path (determined by the boundary values of integration path over φ)
is unique in the case of a monotonic profile function (when the sign of ḣ0(r)
is constant) and can be closed if φ = [0 : 2π] or open if φ = [φmin : φmax]
depending on the location of the receiver, the shape of the structure and the
integration time τ . The calculation of those boundaries and the application
in the case of a spherical cap are expressed in Appendix B for each zone of
calculation.
The formulation of Eq. (10) allows to reduce the order of integration compared
to Eq. (5): only one spatial coordinate on variable φ is required and since
spatial and time-domain integration are separated, the spatial discretization
is independent on the time step (and thus the maximal simulated frequency).
In Fig. 4, the Spatial Impulse Response is computed for a hemispherical shell
and a receiver located at (y, z) = (a, a) i.e. in the near-field region and for
different discretization steps on variable φ in Eq. (10). The solutions in each
case is compared to the solution of the Rayleigh integral [13] represented by
points. It appears that less than 20 points for φ are required to attain a
convergence error below 1% of the integral defined by Eq. (10).
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Fig. 4. Spatial Impulse Responses in the case of a hemispherical transducer and for
a receiver located at (y, z) = (a, a). The exact solution of the Rayleigh’s integral in
the time-domaine derived from [13] is represented by points (◦ ◦ ◦) and the results
obtained using Eq. (10) in the case of different discretizations of the integral over φ
are represented by lines : 3 points (dashed light grey line), 6 points (dashed dark grey
line), 9 points (dashed black line) and 12 points (solid black line). The convergence
is ensured in any case with at less 20 points.

4 VALIDATION

4.1 Planar sources

In the case of a planar structure, the profile function is equal to zero: h0(r) = 0.
In that case, Eq. (10) becomes [7]:

Hp(x, τ) =
∫

φ
Φp(r)||x−xS|=cτ dφ (12)

with the boundaries derived from Eq. (C.1) in Appendix B in accordance
with the results of Harris [6] and Jensen[8]. The classical example [6] of Spa-
tial Impulse Responses obtained for a planar piston with a uniform velocity
distribution is shown in Fig. 5. In this figure, S.I.R. functions are calculated
using an integral discretization of 20 points. The in-axis impulse response is
equal to 1 in a compact support which means that the effect of radiation fil-
ter is equivalent to a low pass filter whose cut-off frequency is determined by
the size of the support of the Spatial Impulse Response. The off-axis response
decreases with respect to the off-axis position y while its compact support in-
creases. In that case, the radiation filter is also equivalent to a low pass filter
whose cut-off frequency is below the the in-axis cut-off frequency. This result
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Fig. 5. Spatial Impulse Responses obtained in the case of a plane piston with an
uniform velocity distribution. The solutions are computed for a receiver located in
z = a and an off-axis position y from 0 to 5a and for 30 points of discretization in
Eq. (12).

is general for axisymmetric structures : the radiation filter is equivalent to a
low-pass filters whose cut-off frequency decreases with respect to the off-axis
position y.

4.2 Spherical sources

In the present section, the approximated formulation of Eq. (9) is compared
to the numerical results obtained by Suzuki [22] using 40 spherical harmonics
in the wavenumbers domain, taking into account the diffraction effects. In the
case of spherical sources, the profile function h0(r) equals:











h0(r) =
√

R2 − r2 −
√

R2 − a2 for r < a,

h0(r) = 0 for r > a,
(13)

where R denotes the radius of curvature of the spherical shell and a the ex-
ternal radius of the structure. In order to compare equivalent results in the
frequency domain, one needs to take the Fourier transform of the Spatial Im-
pulse Response computed using Eq. (10) in the case of a rigid body motion
(one mode of vibration: p = 1 and uniform displacement of the structure:
Φp(r) = 1 for r < 1). In the work of Suzuki, the calculations are limited by
the order of the spherical harmonics (40 for his study), so that his model is
restricted to wavenumbers up to ka = 10. In the present formulation, only
the time discretization of Spatial Impulse Responses influences the upper ka
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Fig. 6. On-axis acoustic pressure (up: magnitude in dB, down: phase in degrees) in
far-field versus nondimensionalized wavenumber ka computed by Suzuki[22] (points)
and using Eq. (9) (lines). The results are presented for 3 different concave structures:
planar piston (black), medium spherical cap (dark grey) and hemispherical cap
(light gray). The wavenumbers domain results are obtained by taking the Fourier
transform of the Spatial Impulse Response computed in the time domain.

limit, so that no limitation of frequency range is observed. In practical cases,
the Spatial Impulse Responses are computed using 20 nondimensionnalized
time steps τ = tc/a and then completing with zeros, the precision in the
wavenumbers domain is adaptable.

The results are presented for 3 different structures: a planar piston, a spher-
ical cap defined by a radius of curvature R = 1.5a and an hemispherical cap
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far-field versus wavenumber ka computed by Suzuki[22] (points) and using Eq. (9)
(lines). The results are presented for 3 different convex structures: planar piston
(black), medium spherical cap (dark grey) and hemispherical cap (light gray).

defined by a radius of curvature R = a. The Fourier Transform of the Spatial
Impulse Responses computed for an on-axis receiver located in the far-field
(y, z) = (0, 100a) are presented in Figs. 6 and 7 for concave and convex caps
and a good agreement between the present approach and the results of Suzuki
is obtained for low wavenumbers (ka < 1) and high wavenumbers (ka > 3).

For low wavenumbers (ka < 1), the monopole approximation is valid and the
equivalent radiation filter has a flat response. For high wavenumbers (ka > 3),
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.
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Fig. 8. Explanation of the interference phenomenon that appears when the wave-
length k is above the path difference between the nearest and the farther point seen
from the observer point. In the frequency domain, this effect is responsible for a
slope of the on-axis sound pressure level of -20 dB/decade and an extension of the
directivity compared to planar radiators.

the local curvature induces a decrease of the on-axis sound pressure level and
the radiation filter is thus equivalent to a low-pass filter with a slope of -
20 dB/decade above a cut-off wavelength depending on the curvature R of
the profile and its radius a. In Figs. 6 and 7 the cut-off frequency of the
equivalent low-pass filter decreases when the curvature radius R increases. This
is explained by interferences phenomena that appears when the wavelength
λ = 1/k is below the path difference between the nearest and the farther
point seen from the observer point as presented in Fig. 8. Thus the more the
structure radius R is important, the more the difference path increases and
the more the cut-off frequency of the equivalent low-pass filter decreases.

Around ka = 1, the diffraction taken into account in the calculations of Suzuki
[22] induces an increase of on-axis sound pressure level up to +6 dB in the
case of concave caps (a decrease in the case of convex structures) that is not
taken into account in the present model. The effect of diffraction appears in
the non-dimensionnalized wavenumbers domain 1 < ka < 3 i.e. when the
wavelength approaches the maximal depth of the structure. The influence of
the diffraction is hardly dependent on the shape and the validity of the present
approach is thus no longer viable in the wavelength range 1 < ka < 3.

Figs. 9 and 10 represent the directivity patterns in linear scale computed for
the considered spherical caps in the far-field (z = 100a) for wavenumbers such
as ka = 1, ka = 3 and ka = 10. Again, the results obtained by taking the
Fourier Transform of Eq. (10) are compared to results obtained by Suzuki
[22]. For low wavenumbers (ka = 1) the radiation patterns are almost omni-
directional and become more directive for high wavenumbers (ka > 3). The
curvature extends the directivity in both convex and concave cases and in the
concave case, the maximum of sound pressure is obtained for a precise obser-
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vation angle depending on the curvature of the considered shell.

In a general manner, the curvature (not necessarily in the case of a spherical
shell) induces a decrease of on-axis sound pressure field due to interference for
high wavenumbers. The effects of diffraction, not taken into account in the
present model, are responsible for an increase of on-axis sound pressure level
around 1 < ka < 3 in the case of concave sources (a decrease in the case of
convex structures). The on-axis high wavenumbers losses due to interferences
are compensated by an extent of directivity related to the local curvature of the
source. This result is general for monotonic profile functions and is extended
in the following section in the case of non-monotonic profile function and in
the case of a typical loudspeaker shape.

4.3 Complex sources

The previous formulation is only valid for a monotonic profile function h0(r). In
the case of a nonmonotonic profile, i.e. when the sign of ḣ0(r) is not constant,
the integration path (intersection between the sphere centered on observation
point x and of radius cτ used in the calculation of Eq. (10)) is made of mul-
tiple paths corresponding to each monotonic part of the global profile.

Neglecting the multiple reflections over the emissive surface, the global radia-
tion can be expanded as the sum of contributions of each monotonic portion
of the profile. For example, for a global structure composed by 2 monotonic
profiles S = S1

⋃

S2, we have:

P (x, t) = − ρc

2π

∑

p

(∫ t

0
H1

p(x, τ1)q̈p(t − τ1)dτ1

+
∫ t

0
H2

p(x, τ2)q̈p(t − τ2)dτ2

)

(14)

where Hi
p(x, τ1) corresponds to the Spatial Impulse Response of mode p asso-

ciated to the ith monotone part of the profile. This procedure is applied in the
case of a typical loudspeaker shape composed as the junction of a truncated
cone with a spherical cap. The profile function is then described by:



























h0(r) = α(b − a) +
√

R2 − r2 −
√

R2 − b2 for r < b,

h0(r) = α(r − a) for r > b,

h0(r) = 0 for r > a,

(15)

where R denotes the curvature of the inner spherical shell, b the radius of the
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Fig. 9. Directivity functions (using a linear scale) for the 3 different concave caps:
plane piston (black), medium spherical cap (dark grey) and hemispherical cap (light
gray). The results obtained by the present model (right) are compared to the results
obtained by Suzuki [22] (left) for 3 wavenumbers: ka = 1 (up), ka = 3 (middle) and
ka = 10 (bottom).

junction between both sub-structures and α the depth of the truncated coni-
cal shell. The following results are obtained for a typical loudspeaker α = 1,
b = 0.5a and R = 1.5b. The profile function and the principle of calculation
of the on-axis Spatial Impulse Response are presented in Fig. 11 and the on-
axis result in the nondimensionalized wavenumbers domain ka is displayed in
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Fig. 10. Directivity functions (using a linear scale) for the 3 different convex caps:
plane piston (black), medium spherical cap (dark grey) and hemispherical cap (light
gray). The results obtained by the present model (right) are compared to the results
obtained by Suzuki [22] (left) for 3 wavenumbers: ka = 1 (up), ka = 3 (middle) and
ka = 10 (bottom).

Fig. 12 taking the Fourier Transform of computed time function.

In Fig. 11, the respective contribution of each sub-structure in the time-domain
for an on-axis receiver is represented. In the frequency domain, the global ra-
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Fig. 11. Calculation procedure of the Spatial Impulse Response of a typical loud-
speaker (junction of a cone and a spherical cap) for an uniform velocity distribution
and for a on-axis receiver located in z = a. The S.I.R. corresponding to the spherical
cap H1(x, τ) is represented by a dashed black line, the S.I.R. corresponding to the
truncated cone H2(x, τ) is represented by a dashed grey line and the global S.I.R.
corresponds to the solid black line.

diation filter is as previously equivalent to a low-pass filter whose cut-off fre-
quency is not only related to the depth of the truncated conical shell. Indeed,
between ka = 1 and ka = 10 in Fig. 12, the comparison between the response
of the truncated conical shell only and the global structure shows that the cut-
off frequency is increased when the inner spherical cap is present. The effect of
the convex spherical cap compensate the interference effect around ka = 1 and
an extension of the flat acoustic response is achieved and a global increase of
+3dB with respect to the conical source is observed in the interference regime.

The contribution of the inner cap appears in the tail of the Impulse Response
and is also responsible for high wavenumber comb-filtering (for ka > 10) that
is not present in absence of the inner spherical cap (see Fig. 12). Around
ka = 25, a decrease of 10dB with respect to the conical source is observed
and can be interpreted as interferences between the conical and the spherical
cap because this phenomenum is not present in the case of a spherical shell
only neither a conical shell only as presented on Fig. 12. This effect is then
amplified above ka = 25 and is responsible for comb filtering at multiples of
that nondimensionalized wavenumber ka = 25, ka = 50 and ka = 75.
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Fig. 12. On-axis acoustic pressure level (magnitude in dB versus wavenumber ka)
obtained in the case of a loudspeaker (junction of a truncated cone and an hemi-
spherical cap). The solution (solid black line) is compared to the truncated cone
radiation only (dashed grey line). The use of a typical loudspeaker profile increases
the low-pass filter cut-off frequency and induces oscillations in the on-axis acoustic
pressure level, due to complex interference phenomena.

5 APPLICATION TO A PROTOTYPE OF LOUDSPEAKER

5.1 Presentation

In order to illustrate the influence of the diaphragm shape of a loudspeaker on
its acoustical response for high amplitudes of vibration, a prototype of loud-
speaker has been developed by G. Lemarquand in the LAUM [25] as presented
on Fig. 13. Its moving part is an aluminium convex spherical shell of 50 mm of
diameter. Experiments have been done with a curvature equals to a/R = 0.3
which is defined as the ratio between the external radius and the radius of
curvature of the shell. For the prototype, the moving part is not made in one
piece, since the emissive surface is glued on the supporting cylinder.

In the studied prototype, attention is paid to the motor and suspensions, in
order to minimize the ”electrical” nonlinear phenomena. The sources of non-
linearities in the motor are the variations of the fore factor (Bl), and the
Eddy currents. As a remedy to these defects, an ironless motor was used,
which is made only out of neodymium iron boron permanent magnets. The
classical suspensions of loudspeakers are mostly made of rubber, impregnated
fabric or molded plastic. They act as a spring, but have a nonlinear behavior.
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Fig. 13. Photography of the studied prototype in anechoic room.

This means that their compliance depends on the movements amplitude and,
above all, that the induced damping depends greatly on both amplitude and
frequency. These phenomena are the sources of the classical nonlinear behavior
of the loudspeakers suspensions at low frequencies. In the studied prototype,
the almost perfect compressibility properties of the air were used to create a
pneumatic stiffness. Indeed, the air is compressed in the closed box, whose
volume tunes the stiffness value. The cabinet is thus a cylindrical pipe which
is closed and filled up with an absorbing material. Classical electrical nonlin-
earities are thus not observed in the present prototype and only geometrical
nonlinearities remain and are due to large amplitudes of vibration of the mov-
ing part. This kind of nonlinearities has been pointed out mechanically but the
influence on the radiated sound pressure field had not been cleared explained.

5.2 Electromechanical characterization

The first step of the experimental analysis consist in understanding and mod-
eling the electromechanical behavior of the prototype. Fig. 14 represents the
impedance curves in both magnitude. Below 1 kHz, the behavior is mostly re-
sistive and become inductive above 2 kHz. As mentioned above, the inductive
part is not modified by eddy currents, due to the ironless conception of the
motor, and then a linear dependency of impedance magnitude with respect
to frequency is observed (not observable on Fig.14 because of the logarithmic
scale for the frequencies).

However, the impedance curves are affected by resonances (amplification of
certain frequencies and perturbation in the phase curve) of different parts of
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Fig. 14. Electrical impedance of the loudspeaker in magnitude (up) and phase
(down).

the prototype. Two tendencies are easily identified on Fig. 14 :

• for frequencies below 5 kHz, the resonances are due to stationary waves in
the rear cavity : the first resonance is around 70 Hz. Under this assumption,
the vibration pattern is then assimilated to a plane piston (rigid body mode).

• for frequencies above 9 kHz, the resonances correspond to mechanical reso-
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nances of the spherical cap, as described in the following part. The properties
of those resonances (eigenfrequencies, modal damping, excitation and shapes)
have been analyzed using Laser Doppler Velocity and a linear modal analysis
software (IDEAS c©) and are presented on Tab. 2.

Mode Resonance Modal Excitation Modal

p Frequency(Hz) Damping(%) Vector Shape Φp

1 73 100 1

2 9650 3.2 20

3 17290 0.6 2

4 18550 0.6 0.8

Table 2
Axisymmetric modal parameters (eigenfrequency fp, modal damping µp and exci-
tation Tp associated to mode p) measured for the spherical dome. The first mode
corresponds to a piston mode (rear cavity resonance) and is very damped compared
to the structural modes (above 9 kHz).

5.3 Nonlinear radiation : on-axis response

For high amplitudes of vibration, nonlinearities appear and give rise to har-
monic distortion in the velocity and sound pressure signals. Due to the ironless
conception of the motor, the electrical nonlinearities classically observed in
electrodynamic loudspeakers vanish and only geometrical nonlinearities (due
to large deformations of the moving part) remain.

This type of nonlinearities can be modeled using the modal formulation pro-
posed in [5]. This approach is absolutely suitable in the present case, since
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few modes radiate in the audible range. The principle is to model the proto-
type as a 4 degrees of freedom system (since 4 modes radiate in the audible
range, as presented in Tab. 2) and to include geometrical nonlinearities in
the modal equations through cubic and quadratic nonlinearities [2]. In order
to illustrate the typical effects of geometrical nonlinearities on radiation of
the prototype, only quadratic and cubic nonlinearity terms have been added
for the second mode of vibration (at 9650 Hz). The displacement field is cal-
culated for high amplitudes of vibrations using the State-Space formulation
described by Eq. (2), and the radiation problem is solved using the Spatial
Impulse Response (S.I.R.) approach developed in the present study. In this
practical case, the measured modal shapes Φp(r

′) and profile function h0(r
′)

are introduced in Eq. (10) and convolutions are performed at the sampling
frequency of 48 kHz. It is important to notice that the calculations of the
displacement field and radiated sound pressure are computed directly in the
time-domain and the results are presented in the frequency domain for clarity
(taking the Fourier transform of the transient responses).
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Fig. 15. Measurement (points) and prediction (solid lines) of on-axis sound pressure
level for a 10 W input. For each frequency, the energy of fundamental (black) and
harmonics 2 (dark grey) and 3 (light grey) are measured and predicted.

Fig. 15 represent the on-axis sound pressure measurement and prediction at
1 m of the fundamental and of the harmonics 2 and 3 in the case of the
convex spherical dome. Measurements have been performed in anechoic room
(approximate size 1000m3) using sinusoidal input signals. A good agreement
is observed in the audible bandwidth and the geometrical nonlinearities are
correctly predicted around discrete frequencies such as :
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• f = fa : around a mechanical resonance frequency, the amplitude of vi-
bration increases and harmonics are generated. For example, on figure 15,
harmonics 2 and 3 are generated for an excitation frequency around 9.6kHz
(first mechanical resonance).

• f = fa/p with p integer : for the submultiple p of a resonance frequency, the
frequency of harmonic p corresponds to an eigenfrequency and this harmonic
is then amplified. For example, on Fig. 15, an increase of harmonic 3 at 3.2
kHz which corresponds to a third of the first mechanical resonance is observed
(the same effect appears with harmonic 2 at 4.8 kHz).

The Spatial Impulse Response appear to model efficiently the complex radia-
tion pattern for high amplitudes of vibration. The influence of the geometrical
nonlinearities on the acoustic response of the prototype has been observed ex-
perimentally and modeled properly using the present approach. Other sources
of nonlinearities could also be taken into account in order to predict the non-
linear acoustic response of classical loudspeakers.

6 CONCLUSIONS

In order to compute acoustic radiation from axisymmetric structures sub-
jected to large amplitude motion, an explicit integral formulation is derived
for predicting the modal time-domain radiation. The radiated acoustic pres-
sure is assumed to be expressed as an integration of a simple source distri-
bution (Rayleigh integral), which is valid except in the nondimensionalized
wavenumber range 1 < ka < 3 because the diffraction effects are neglected
in the present study and will be detailed in a future work. The displacement
is expanded onto the linear modes of the structure and the acoustic pressure
is expressed as a sum of modal contributions, by introducing the Spatial Im-
pulse Responses depending on the shape of the source, the position of the
receiver and the modal shapes (also dependent of the shape of the source).
The solution is compared to the literature in the cases of a piston and of spher-
ical caps and gives quite good results and low calculation costs compared to
frequency-domain formulations. In a general way, the radiation induces a low-
pass filtering whose cut-off frequency is related to the radius of the source
and the local curvature. The method is extended for predicting the radiation
of an axisymmetric source whose profile function is complex and corresponds
to a typical loudspeaker shape. Finally, predictions and experimental mea-
surements of on-axis radiation of a prototype loudspeaker subjected to large
amplitudes motion are compared and a good agreement is achieved on the
audible bandwidth.
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A Definition of the new local basis

In the new local basis Bi = ( ~tix, ~tiy, ~ni), the coordinates of point xS are defined
by:

−−→xixS =

(

h0(ri) − h0(r)

cos θi

− r2 cos φ tan θi

)

−→ni

+ r2 cos φ
−→
tiy + r2 sin φ

−→
tix.

(A.1)

where r2 is defined by the Cartesian coordinates of integration point xS =
(x, y):

r2
2 = x2 + cos2 θi [y − ri − (h0(r) − h0(ri)) tan θi]

2 . (A.2)

Under those considerations, the tangent vectors to the surface
−−−−→
T|x−xS| and

−→
Tφ

with respect to the variables |x − xS| and φ are described by:



































−−−−→
T|x−xS| =

∂−→xS.−→ux

∂|x − xS|
−→ux +

∂−→xS.−→uy

∂|x − xS|
−→uy +

∂−→xS.−→uz

∂|x − xS|
−→uz ,

−→
Tφ =

∂−→xS.−→ux

∂φ
−→ux +

∂−→xS.−→uy

∂φ
−→uy +

∂−→xS.−→uz

∂φ
−→uz ,

(A.3)

B Change of variable

One point located in the integration surface S is parameterized in the Carte-
sian basis by its 3 coordinates xS = (x, y, h0(

√
x2 + y2)). In order to compute

the tangent vectors expressed in Eq. (A.3), one needs to express the depen-
dency of |x − xS| and φ with respect to those 3 coordinates:



















∂x

∂|x − xS|
=

|x − xS|
Fx

∂y

∂|x − xS|
=

|x − xS|
Fy − r

,
(B.1)
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









































∂x

∂φ
= r2

(

cos φ + sin φ
Fx

Fy − r
(cos θi − C)

+
dh0

dr
sin φ sin θi

x

r

)−1

∂y

∂φ
=

−Fx

Fy − r

(

∂x

∂φ

)

,

(B.2)

and:
∂h0(r)

∂⋆
=

dh0(r)

dr

(

x

r

(

∂x

∂⋆

)

+
y

r

(

∂y

∂⋆

))

, (B.3)

so that the change of variables in Eq.(8) leads to:

−→uz .
−−→
dxS =

(

2|x − xS|
FA + B cos φ − C sin2 φ

)

d|x − xS|dφ, (B.4)

where F , A, B and C are defined in Eq. (11).

C Boundary values of integration

Depending on the zone of calculation, the boundaries of integration in Eq. (10)
differ and the integration has to be computed on a closed or an open path (an
example of the two cases is represented on Fig. C.1. Tab. C.1 describes the
different integration paths depending on the integration time τ and receiver
position x .
In the case of open contours, the boundaries are defined by the value of φm

determined in Eq. (C.1) which corresponds to the angle of intersection of the
outer edge of the structure with a sphere centered on x and of radius cτ :

φm = arccos





(

1 +
((cτ)2 − z2 − (y − a)2) ((cτ)2 − z2 − (y + a)2)

cos2 θi ((cτ)2 − z2 − y2 − a2 + 2yri + 2r(h0(ri)) tan θi)
2

)−1/2


 .

(C.1)

In the case of an observation point located in the zone I, the intersection start
by impact point xi when cτ = |x− xi| then the contour is closed (integration
over φ = [0 : 2π]) as presented in Fig. C.1 (up) until cτ = |x − xh| then the
integration path is open (integration over φ = [φm : 2π − φm]) as presented in
Fig. C.1 (down) until cτ = |x − xb|.
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Fig. C.1. Example of a closed contour (left) and an open contour (right) of inte-
gration in the case of a spherical cap and a receiver x located in the zone I. The
integration path corresponds to the intersection of the structure with a sphere of
radius cτ centered on x.
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zone Conditions on x and τ Contour Integration over φ

I |x − xi| < cτ < |x − xh| Closed [0 : 2π]

|x − xh| < cτ < |x − xb| Open [φm : 2π − φm]

II |x − xh| < cτ < |x − xb| Open [φm : 2π − φm]

III |x − xh| < cτ < |x − xb| Open [−φm : φm]

|x − xb| < cτ < |x − xi| Closed [0 : 2π]

Table C.1
Definition of the integration contours depending on the zone, receiver location x and
integration time τ = |x − xS|/c. For open contours, the boundary are determined
by φm defined in Eq. (C.1).
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